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effectively released from tissues via the iron export 
protein ferroportin and subsequently bound to the 
iron carrier protein transferrin in the blood. CP is par-
ticularly important in facilitating iron release from the 
liver and central nervous system, HEPH is the major 
MCF in the small intestine and is critical for dietary 
iron absorption, and ZP is important for normal hair 
development. CP and HEPH (and possibly ZP) func-
tion in multiple tissues. These proteins also play other 
(non-iron-related) physiological roles, but many of 
these are ill-defined. In addition to disrupting iron 
homeostasis, MCF dysfunction perturbs neurological 
and immune function, alters cancer susceptibility, and 
causes hair loss, but, despite their importance, how 
MCFs co-ordinately maintain body iron homeostasis 

Abstract  The mammalian multicopper ferroxidases 
(MCFs) ceruloplasmin (CP), hephaestin (HEPH) 
and zyklopen (ZP) comprise a family of conserved 
enzymes that are essential for body iron homeostasis. 
Each of these enzymes contains six biosynthetically 
incorporated copper atoms which act as intermediate 
electron acceptors, and the oxidation of iron is asso-
ciated with the four electron reduction of dioxygen 
to generate two water molecules. CP occurs in both 
a secreted and GPI-linked (membrane-bound) form, 
while HEPH and ZP each contain a single C-terminal 
transmembrane domain. These enzymes function to 
ensure the efficient oxidation of iron so that it can be 
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and perform other functions remains incompletely 
understood.

Keywords  Hephaestin · Ceruloplasmin · Zyklopen · 
Ferroxidase · Copper · Iron

Introduction

The MCFs are representatives of the large and diverse 
blue copper protein family (Rydén and Hunt 1993; 
Nakamura and Go 2005). The blue copper proteins 
vary greatly in size and complexity, and contain up 
to 9 copper atoms. Their functions are also broad, and 
include proteins involved in iron homeostasis (CP, 
HEPH, ZP), electron transfer (plastocyanin), blood 
clotting (coagulation factors V and VIII), ascorbate 
metabolism (ascorbate oxidase), oxidation of poly-
phenols (laccase), and oxidative phosphorylation 
(cytochrome c oxidase subunit II). The relatively 
complex mammalian members of this family evolved 
from an ancestral single-domain, cupredoxin-fold 
protein, and the MCFs are the only known members 
of the blue copper protein family in mammals that 
contain multiple copper atoms (Nakamura and Go 
2005).

CP is the most studied MCF and is the major fer-
roxidase in the blood (Hellman and Gitlin 2002). It 
was first identified in 1948 by Holmberg and Laurell 
as an abundant plasma protein with a distinctive sky 

blue color, and was subsequently shown to be synthe-
sized and secreted, mainly by hepatocytes (Hellman 
and Gitlin 2002). Other cell types, including astro-
cytes and neurons in the brain, Sertoli cells in the 
testes and cells in the retina, lung and pancreas can 
also synthesize CP. While most CP is secreted into 
the extracellular fluids, alternative splicing of the CP 
transcript leads to production of a GPI-linked form of 
the protein which tethers it to the plasma membrane 
(Fig. 1). GPI-CP is expressed in astrocytes (Patel and 
David 1997; Jeong and David 2003), Sertoli cells, 
hepatocytes, macrophages and retinal epithelial cells 
(Mostad and Prohaska 2011; Marques et al. 2012).

HEPH is a protein critical for intestinal iron 
absorption and was cloned by identifying the gene 
mutated in the sex-linked anemic (sla) mouse (Vulpe 
et  al. 1999). Unlike the secreted form of CP, HEPH 
is tethered to membranes by a single C-terminal 
transmembrane domain (Fig.  1). HEPH is strongly 
expressed in the small intestine, and at low to moder-
ate levels in multiple other tissues, most notably the 
CNS (Vulpe et  al. 1999; Hudson et  al. 2009; Jiang 
et al. 2015).

ZP is the least studied MCF. It was identified rela-
tively recently as a possible placental iron oxidase 
(Chen et al. 2010), although this now seems unlikely 
as placental iron transfer is not impeded in mice in 
which the gene encoding ZP (Hephl1) is knocked 
out, at least under standard (unstressed) physiological 
conditions (Helman et al. 2021). The only confirmed 

Fig. 1   Nature of the mammalian MCFs. A Recombinant 
mouse HEPH (without its transmembrane domain), gener-
ated as described by Deshpande et  al. (2017), showing the 
intense blue color typical of the MCFs and related blue cop-
per proteins. B General structure of the four forms of mam-
malian MCFs. From left to right: secreted CP; GPI-CP; and 

the two MCFs with single transmembrane domains, ZP and 
HEPH. The ribbon diagrams of each protein were generated 
using AlphaFold (https://​alpha​fold.​ebi.​ac.​uk/​entry/​Q9BQS7) 
(Jumper et al. 2021). Created with BioRender.com. (Color fig-
ure online)

https://alphafold.ebi.ac.uk/entry/Q9BQS7
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role for ZP at present is a contribution to normal 
hair development (Eragene et al. 2019; Sharma et al. 
2019; Kuca et  al. 2021). Like HEPH, ZP contains a 
single C-terminal transmembrane domain. ZP is most 
strongly expressed in the placenta, mammary gland, 
kidney, brain and testis (Chen et al. 2010).

The MCFs are very similar structurally (Fig. 1). At 
the amino acid level, HEPH and ZP show 50% and 
46% identity to CP respectively, while HEPH and 
ZP are 49% identical (Vulpe et al. 1999; Chen et al. 
2010). The residues involved in copper binding and 
disulfide bond formation (the latter suggesting similar 
folding of the proteins) are highly conserved between 
the three proteins. In addition, both HEPH and ZP 
contain a single C-terminal transmembrane domain 
of 86 amino acids, although the sequences of these 
domains are only 23% conserved at the protein level 
(Chen et al. 2010).

Most of our current knowledge about the structure 
of the mammalian MCFs comes from the detailed 
characterization of CP (Zaitsev et  al. 1999). It is a 
large protein consisting of 1046 amino acids that 
are arranged in three major homology units, each of 
which appears to have arisen from internal duplica-
tion of an ancient cupredoxin fold, to give a six-
domain protein (Ortel et al. 1984; Nakamura and Go 
2005). An X-ray crystallographic structure of CP is 
available (Zaitseva et al. 1996; Bento et al. 2007), and 
this confirmed the domain organization of the protein 
predicted by earlier sequence analysis (Ortel et  al. 
1984). The six domains are each made up of a plas-
tocyanin-like fold and beta-barrel strands organized 
similar to those found in the cupredoxin family of 
metalloreductases (Bento et al. 2007). A key feature 
of CP’s structure, and one that underlies its biological 
activity, is the presence of three types of copper-con-
taining sites, each of which has distinct spectroscopic 
properties resulting from their specific coordination 
environments. Three of the six copper atoms in CP 
are distributed between three type I copper sites, in 
domains 2, 4, and 6, and the remaining three copper 
atoms are in a distinctive type II/type III trinuclear 
cluster at the interface of domains 1 and 6. Molecular 
modelling of HEPH and ZP reveals predicted struc-
tures that closely align with the known structure of 
CP (Syed et al. 2002; Chen et al. 2010).

Both CP and HEPH have been shown to possess 
a high affinity ferrous iron binding site near the type 
I copper atom in domain 6, and ZP is predicted to 

possess a similar site (Lindley et  al. 1997; Brown 
et  al. 2002; Vashchenko and MacGillivray 2012). 
Additional iron-binding sites have also been demon-
strated in CP (a second site in domain 4) and HEPH 
(additional sites in domains 2 and 4), but they are of 
lower affinity (Lindley et  al. 1997; Vashchenko and 
MacGillivray 2012; Zaitsev and Lindley 2019). Fol-
lowing binding, ferrous iron predicted to deliver 
an electron to the nearest type I copper site. This is 
associated with the transfer of the oxidized iron to an 
adjacent ferric iron holding site. Electrons are sub-
sequently transferred through the protein to the type 
I copper site in domain 6, and then to the closely 
associated type II/type III trinuclear cluster where 
molecular oxygen binds. The Type II/Type III site 
can then sequentially transfer a total of four electrons, 
originally donated from different ferrous iron atoms, 
to dioxygen to form water (Lindley et al. 1997; Vash-
chenko and MacGillivray 2012). The MCFs can also 
oxidize a range of substrates in addition to iron, and, 
in CP, many of these bind at sites different from the 
iron binding sites (Bielli and Calabrese 2002).

Some of the residues important for ferroxidase 
and amine oxidase activity in CP have been identi-
fied by site directed mutagenesis, (Brown et al. 2002) 
and most, but not all of these are conserved in HEPH 
and ZP (Chen et al. 2010). CP interestingly has a non-
typical, permanently-reduced type I copper site in 
domain 2 that is believed to be non-functional, while 
all three type I copper sites are predicted to be func-
tional in HEPH and ZP (Chen et  al. 2010). In CP, 
the copper atoms in two of the three type I sites are 
coordinated in a trigonal pyramid arrangement, with 
three ligands (a cysteine and two histidines) arranged 
in a plane, and the fourth, a methionine, at the apex of 
the pyramid. In the third (non-functional) type I site, 
however, the apical methionine has been replaced by 
a leucine residue. In contrast, in both HEPH and ZP, 
the third type I site shows the ‘typical’ coordination 
arrangement with an apical methionine.

Not only is copper required for the ferroxidase 
activity of CP and the other MCFs, it is also structur-
ally important and the apo-proteins (lacking copper) 
are inherently unstable (Gitlin et  al. 1992; Reeves 
and Demars 2005; Chen et  al. 2006). The half-life 
of apo-CP is approximately five hours whereas the 
holo-protein has a half-life of over five days (Hellman 
and Gitlin 2002). Although the precise details of the 
mechanisms responsible for the metalation of CP are 
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not known, the necessary copper is transported into 
the trans-Golgi network by ATPase copper-transport-
ing Beta (ATP7B) where the metal is inserted into the 
nascent protein (Sato and Gitlin 1991; Hellman et al. 
2002; Lutsenko et al. 2007). In cases of ATP7B defi-
ciency (Wilson Disease), this process is less efficient 
and much of the CP that is produced lacks both cop-
per and oxidase activity (Członkowska et  al. 2018). 
Consequently, measurements of serum ferroxidase 
activity are a useful diagnostic tool for Wilson Dis-
ease and for assessing moderate to severe copper defi-
ciency (Sánchez-Monteagudo et al. 2021). It is likely 
that the biosynthetic pathways for HEPH and ZP are 
similar to that of CP, but these processes have yet to 
be studied in detail. There is certainly very strong evi-
dence that the biological activities of HEPH and ZP 
are also copper-dependent (Chen et  al. 2006; Chen 
et al. 2010).

The role of the MCFs in iron homeostasis

In 1966, Frieden and Osaki demonstrated that plasma 
CP had the ability to oxidize ferrous iron (Osaki et al. 
1966) and subsequently showed that the protein was 
important for mobilizing iron from the liver (Osaki 
et al. 1971). These pioneering studies, along with an 
important series of experiments in pigs showing that 
copper deficiency was associated with anemia (Lee 
et  al. 1968; Roeser et  al. 1970), highlighted what is 
now known to be a very close physiological relation-
ship between copper and iron (Gulec and Collins 
2014).

Understanding how the MCFs function requires 
a basic understanding of iron homeostasis. Despite 
being essential, iron is also toxic when present in 
excess as it can catalyze the formation of reactive 
oxygen species. To meet cellular iron requirements 
while preventing iron accumulating to toxic levels, 
cellular and body iron concentrations must be kept 
within defined limits. To achieve this, both dietary 
iron absorption and internal iron trafficking are tightly 
regulated (Anderson and Frazer 2017). Most iron 
within the body is used for the production of hemo-
globin in red blood cells. At the end of their func-
tional life, senescent red cells are phagocytosed by 
macrophages, which can store iron or return it to the 
circulation, a process referred to as iron recycling. 
In addition, iron in excess of immediate metabolic 
needs may be stored within tissues, particularly in 

the liver, but it can be readily mobilized in times of 
metabolic need. Dietary iron absorption, internal iron 
recycling and mobilization of stored iron are all criti-
cally dependent on MCFs. This requirement is best 
illustrated by situations in which MCF dysfunction 
occurs. In the rare genetic disease aceruloplasmine-
mia, CP is either absent or expressed at very low lev-
els (Marchi et al. 2019). This condition is typified by 
extensive iron deposition in many tissues, illustrating 
the key role that CP plays in iron mobilization. Subse-
quent studies with Cp knockout mice, and analogous 
work with mouse models of HEPH deficiency, have 
supported and extended these early findings (Harris 
et al. 1999; Fuqua et al. 2014; Fuqua et al. 2018).

Iron is exported from cells as Fe2+ via the unique 
iron export protein ferroportin (FPN), however, Fe2+ 
must be oxidized before it can bind to transferrin, the 
major plasma iron transport protein (Anderson and 
Vulpe 2009). The MCFs likely facilitate this pro-
cess, but how they contribute to cellular iron efflux 
is incompletely understood. The membrane-bound 
MCFs HEPH and GPI-CP have been demonstrated 
to interact physically with FPN (Jeong and David 
2003; Yeh et al. 2009, 2011; Dlouhy et al. 2019), but 
there is not yet any convincing data that the soluble 
form of CP behaves similarly (Musci et  al. 2014). 
FPN has been shown to co-localize with GPI-CP in 
astrocytes (Jeong and David 2003) and with HEPH 
in enterocytes (Yeh et  al. 2009; Fuqua et  al. 2018). 
It has been suggested that MCFs are able to oxidize 
Fe2+ that has been transported by FPN and that this 
oxidation is important for the release of the iron from 
the transporter (De Domenico et  al. 2007). If iron 
is not released from FPN, the transporter is ubiqui-
tinated, internalized and degraded, which suggests 
that the MCF is important in maintaining FPN sta-
bility. Although, this is an attractive hypothesis, the 
data have not yet been independently verified, and 
this work was mentioned in a scientific misconduct 
investigation (McCormack 2013). Nevertheless, there 
is some support for this concept. For example, brain 
microvascular endothelial cells express both HEPH 
and soluble CP, and when the levels of these proteins 
are depleted by copper chelation, FPN levels are also 
reduced (McCarthy and Kosman 2013). Similarly, 
knockdown of HEPH in neurons reduces FPN levels 
and iron export (Ji et  al. 2018). Interestingly, how-
ever, loss of HEPH in the small intestine is not associ-
ated with any overt decline in FPN expression (Fuqua 
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et al. 2018), suggesting that the MCFs may only sta-
bilize FPN in some tissues. There is also some evi-
dence that GPI-CP is able to interfere with the bind-
ing of hepcidin to FPN (Kono et al. 2010). Hepcidin 
is a liver-derived peptide hormone that is considered 
the master regulator of systemic iron homeostasis, 
and it acts by binding to FPN and removing it from 
the cell surface, consequently blocking iron export. 
This interaction could be a second mechanism by 
which MCFs facilitate iron efflux, and is consistent 
with a close physical association between FPN and 
the MCF, but it requires further investigation.

Essentially all of the (ferrous) iron that is exported 
from cells via FPN and oxidized by an MCF is bound 
by transferrin (TF) in the plasma, and this protein can 
then deliver iron to the various sites in the body where 
it is required (Anderson and Vulpe 2009). TF binds 
ferric iron (Fe3+), thus oxidation of Fe2+ by MCFs 
could not only facilitate the release of iron from FPN 
(as discussed above), but also permit binding of Fe3+ 
to TF. Although Fe2+ will auto-oxidize in the plasma, 
this process is considered too slow for the trafficking 
of iron under physiological conditions (Osaki et  al. 
1966). While some studies have found evidence for a 
physical association between CP and TF (Ha-Duong 
et al. 2010), others have found no evidence that either 
CP or HEPH can stably interact with TF (Hudson 
et  al. 2008). A strong interaction between CP and 
lactoferrin (LF), a close relative of TF, has been iden-
tified (Zakharova et al. 2000; Ha-Duong et al. 2010), 
although the physiological relevance of this interac-
tion has yet to be established.

In addition to its well-described role in cellular 
iron efflux, CP has been shown to stimulate the uptake 
of iron by some mammalian cells in culture using 
a TF-independent pathway (Mukhopadhyay et  al. 
1998; Attieh et al. 1999). In this case, it is proposed 
that non-transferrin-bound iron (NTBI) is reduced by 
a ferrireductase and that the resulting ferrous iron is 
oxidized by CP to make it available for a trivalent cat-
ion-specific transporter (Attieh et al. 1999). However, 
the identity of this uptake pathway remains unknown, 
and further work is required to determine its physi-
ological relevance in vivo.

Other physiological roles of MCFs

Although their role in oxidizing iron is clear, 
MCFs have broader roles and can utilize a range of 
other substrates. Some of these are summarized in 
Table 1. The non-ferroxidase activities of the MCFs 
have only been extensively studied in the case of 
CP. In addition to iron, CP can oxidize a range of 
organic amines, including biogenic amines (such as 
catecholamines, serotonin and dopamine), low-den-
sity lipoprotein (LDL), and nitric oxide (NO) (Bielli 
and Calabrese 2002; Vashchenko and MacGillivray 
2013). HEPH and ZP can also oxidize amines (e.g. 
para-phenylene diamine) (Vulpe et  al. 1999; Chen 
et  al. 2010; Deshpande et  al. 2017), so it is quite 
possible that they also have a broad spectrum of 
catalytic actions. Studies with CP and recombinant 
HEPH have demonstrated that they share the ability 
to oxidise some amines, but not others (Vashchenko 

Table 1   Some catalytic roles of the MCFs

MCF Activity Substrate Reference

CP Ferroxidase Fe2+ Osaki (1966)
NO-oxidase NO Shiva (2006)
Glutathione peroxidase Hydrogen peroxide, organic peroxides Cha (1999), Park (1999)
Cuprous oxidase Cu+ Mukhopadhyay (1997)
Amine oxidase Organic amines (e.g. p-phenylene diamine, o-dianisidine) Young (1972)
Amine oxidase Biogenic amines (adrenaline, noradrenaline, serotonin, dopa-

mine)
Young (1972)

Superoxide dismutase Superoxide Vasilyev (1988)
HEPH Ferroxidase Fe2+ Vulpe (1999), Deshpande (2017)

Amine oxidase Organic amines (e.g. p-phenylene diamine, o-dianisidine) Vulpe (1999), Deshpande (2017)
ZP Ferroxidase Fe2+ Chen (2010)

Amine oxidase Organic amines (e.g. p-phenylene diamine) Chen (2010)
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et  al. 2011), so there are likely to be some differ-
ences in the range of activities that individual MCFs 
participate in.

The physiological significance of many of these 
non-iron-related activities has never been clearly 
defined. For example, in humans with aceruloplas-
minemia and Cp knockout mice, the dominant phe-
notypes are either directly or indirectly related to tis-
sue iron accumulation (Harris et al. 1999; Ayton et al. 
2013; Marchi et al. 2019), but this does not exclude 
more subtle effects on other aspects of body physiol-
ogy. It has been estimated that no more than 5–10% 
of the CP in plasma is sufficient to perform all its 
iron-related functions (Roeser et al. 1970; Osaki et al. 
1971), so is the excess simply ‘reserve’ iron oxidiz-
ing capacity, or does the protein perform other func-
tions? Furthermore, HEPH is expressed at high levels 
throughout the small intestine and colon, even though 
dietary iron absorption occurs mainly in the duode-
num (Frazer et  al. 2001). Its function in the regions 
of the gut that absorb little iron is unknown. There is 
also considerable evidence that CP can act as an anti-
oxidant (Goldstein 1983; Song et al. 2010; Bakhaut-
din et  al. 2013; Vasilyev 2019), and HEPH and ZP 
may play similar roles, but this function of the MCFs 
has never been investigated systematically. Interest-
ingly, CP can also act as a pro-oxidant, causing dam-
age to macromolecules such as LDL (Mukhopadhyay 
and Fox 1998; Fox et al. 2000), and thus may act as 
a risk factor for the development of atherosclerotic 
disease.

Although the main physiological roles of the 
MCFs most likely relate to iron homeostasis, they also 
are relevant to the biology of other metals. For exam-
ple, CP possesses cuprous oxidase activity (Mukho-
padhyay et al. 1997; Stoj and Kosman 2003) and may 
play a role in copper distribution in some circum-
stance (such as copper transport to the fetus and neo-
nate) (Lee et al. 1993; Chu et al. 2012; Kenawi et al. 
2019). Indeed, CP-bound copper represents the larg-
est pool of copper in the circulation, and it has been 
suggested that it may provide an important pathway 
for delivering copper to a range of tissues (Linder 
2016). Nevertheless, there is no evidence for altered 
copper homeostasis in aceruloplasminemia (Meyer 
et  al. 2001). Studies with CP-deficient rodents have 
also shown that CP plays a role in the body distribu-
tion of manganese (Jursa and Smith 2009; Kenawi 
et al. 2019). Whether HEPH or ZP also contribute to 

the homeostasis of metals other than iron has yet to 
be determined.

In addition to its enzymatic roles, CP has been 
shown to bind to a range of other proteins, thereby 
affecting their activity (Vasilyev 2019). These include 
myeloperoxidase (MPO), matrix metalloproteinases 
2 and 12, eosinophil peroxidase, 5-lipoxygenase and 
coagulation factor FIIa. CP binding to other iron-
associated proteins such as ferritin (Van Eden and 
Aust 2000) and lactoferrin (Zakharova et  al. 2000; 
Pulina et al. 2002) has also been reported. The bind-
ing of iron by LF is facilitated by CP, and it has 
been suggested that this is one mechanism by which 
the host might protect itself against the respiratory 
burst that occurs when neutrophils infiltrate a site of 
inflammation or infection (Sokolov et al. 2005). Neu-
trophils are a rich source of LF, and secreted LF has 
the capacity to bind a considerable amount of iron at 
the site of inflammation, particularly in the presence 
of CP. Another potential anti-inflammatory function 
of CP is its ability to bind to MPO and inhibit the pro-
duction of hypochlorous acid (Sokolov et  al. 2007; 
Chapman et al. 2013).

Regulation of the MCFs

Given their important role in cellular iron efflux, 
it is not surprising that the expression of MCFs is 
increased under iron deficient conditions (Vulpe 
et  al. 1999; Hellman and Gitlin 2002; Chen et  al. 
2010; Ranganathan et  al. 2011). This response is 
likely an adaptation to support hemoglobin produc-
tion in developing red cells when iron supply is limit-
ing. The mechanisms responsible for this regulation 
have not been defined. The expression of many of 
the central proteins in iron homeostasis is regulated 
post-transcriptionally (either translationally or via 
mRNA stability) by the binding of iron regulatory 
proteins (IRPs) to iron regulatory elements (IREs) in 
target transcripts (Zhang et al. 2014), but none of the 
mRNAs encoding MCFs appears to contain an IRE. 
Thus, alternative transcriptional or post-transcrip-
tional mechanisms must be involved. CP, at least, can 
be regulated by a combination of transcriptional and 
translational mechanisms by factors such as hypoxia 
(Chepelev and Willmore 2011; Linder 2016), proin-
flammatory cytokines (Gitlin 1988; Sampath et  al. 
2003; Conley et al. 2005; Mazumder et al. 2006; Per-
sichini et  al. 2010; Linder 2016; Tisato et  al. 2018) 
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and oxidative stress (Das et  al. 2007; Tapryal et  al. 
2009; Tisato et  al. 2018). The other MCFs have not 
been extensively investigated, however, HEPH has 
been shown to be regulated by transcriptional and epi-
genetic mechanisms. In the small intestine and colon, 
the HEPH gene is a prominent target of the transcrip-
tion factor CDX2 (Hinoi et  al. 2005), which plays a 
major role in intestinal development and cancer. In 
addition, CDX2 itself was found to be regulated by 
iron, providing a transcriptional loop for the regula-
tion of HEPH in the absorptive epithelium of the gut 
(Hinoi et al. 2005). The transcription of HEPH is also 
regulated by the H3K9 methyltransferase G9a (Wang 
et  al. 2017), which represses HEPH expression, 
resulting in cellular iron accumulation and enhanced 
growth of breast cancer cells. Other epigenetic modes 
of regulation of the MCFs are likely to be uncovered 
upon further investigation.

Changes in the subcellular localization of mem-
brane proteins represent another mode of regula-
tion which is particularly useful as a rapid response 
mechanism. Several studies have demonstrated that 
HEPH will re-localize from an intracellular supra-
nuclear compartment to the basolateral membrane (or 
a compartment in close proximity to the basolateral 
membrane) of polarized epithelial cells in response to 
iron treatment (Yeh et al. 2009; Lee et al. 2012). This 
likely represents an adaptation to reduce the risk of 
intracellular iron increasing to toxic levels by stimu-
lating expression of components of the iron export 
pathway. This effect has also been observed in non-
polarized cells (Dlouhy et al. 2019).

Genetics and the pathology of MCF loss or 
dysfunction

Loss of MCF function leads to increased cellu-
lar iron accumulation and its associated pathologi-
cal consequences (Hellman and Gitlin 2002; Musci 
et  al. 2014; Linder 2016). The best characterised 
MCF disturbance in humans is aceruloplasminemia, 
in which iron accumulates in multiple tissues, par-
ticularly the liver, CNS and pancreas (Kono 2013; 
Piperno and Alessio 2018; Marchi et al. 2019). Liver 
injury, neurodegenerative disease, diabetes and retinal 
degeneration are common complications. Reduced 
CP expression has also been implicated in athero-
sclerosis (Ji et  al. 2015), while increased expression 
has been noted in various cancers (Gangoda et  al. 

2017; Matsuoka et  al. 2018; Dai et  al. 2020; Zhang 
et  al. 2021b). Fewer data are available on HEPH or 
ZP deficiency. Polymorphisms in HEPH have been 
associated with migraine (Maher et al. 2012; Albury 
et al. 2017), and reduced HEPH expression has been 
noted in atherosclerotic plaques (Ji et al. 2015) and is 
linked to the iron deficiency associated with a high-
fat diet (Albury et  al. 2017). Increased HEPH (and 
CP) levels have also been found in the placenta from 
a GRACILE syndrome fetus (Kotarsky et  al. 2010). 
A patient carrying a missense mutation in HEPHL1, 
the gene which encodes ZP, had notable hair defects, 
including pili torti (flattened, twisted hair) as well as 
behavioural abnormalities (Sharma et  al. 2019). A 
missense mutation in HEPHL1 has also been identi-
fied in patients with Parkinson’s disease (Al Yemni 
et al. 2019).

Rodent strains with disturbed MCF function have 
proven particularly important in revealing some of 
the physiological roles of these proteins. No natural 
or induced mouse mutants of CP have been identi-
fied, but the phenotype of engineered CP knockout 
mice has been well studied and it largely, but not 
entirely, parallels the clinical presentation of acerulo-
plasminemia in humans (Harris et  al. 1999; Kenawi 
et  al. 2019). CP null mice accumulate iron in the 
liver, spleen, brain and retina, and show progressive 
neurodegeneration. These mice are also more sus-
ceptible to oxidative stress, as demonstrated by their 
enhanced disease severity index in a murine model of 
inflammatory bowel disease (Bakhautdin et al. 2013). 
A CP knockout rat has also been generated (Kenawi 
et al. 2019), and its phenotype is similar to the mouse 
model and human aceruloplasminemia. In these 
animals, as in human patients, hepatic and splenic 
macrophages were not iron loaded. Why this is the 
case has not yet been resolved. It may suggest that 
MCFs other than CP are important for macrophage 
iron release, or that release can occur via an MCF-
independent mechanism. Alternatively, the relative 
paucity of iron in the absence of functional CP may 
reflect systemic processes, including a preferential 
redistribution of iron (perhaps as NTBI) to parench-
myal cells such as hepatocytes (Kenawi et al. 2019).

The sex-linked anemia (sla) mouse was first iden-
tified in an X-ray induced mutagenesis screen as a 
strain with a profound anemia (Grewal 1962), and it 
was the subsequent molecular analysis of these ani-
mals that led to the identification of HEPH as the 
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defective gene (Vulpe et al. 1999). The sla mutation 
is a large in-frame deletion that leads to the loss of 
194 amino acids, yet surprisingly, the protein retains 
some ferroxidase activity. Well before HEPH was 
identified, extensive physiological characterization 
of sla mice was carried out, and these studies demon-
strated that the animals had reduced iron absorption 
due to impaired iron efflux from duodenal enterocytes 
(Pinkerton and Bannerman 1967; Manis 1971). Such 
observations are completely consistent with HEPH 
playing a role in increasing the efficiency of FPN-
mediated iron export from intestinal epithelial cells. 
Despite this, when sla mice were placed on an iron 
deficient diet, their absorption increased to the same 
level as a wild-type mouse placed on the same diet 
(Sorbie et  al. 1974; Thomson and Valberg 1975), 
suggesting that the need for HEPH can be overcome 
when the drive to absorb iron is particularly high. 
The early studies also showed that the anemia in 
sla mice was greatest in young animals and largely 
resolved with age as growth slowed and iron demands 
decreased. Despite the large deletion in HEPH in 
sla mice, the fact that the truncated protein (a) only 
retains 25% of the ferroxidase activity of the wild-
type protein and (b) is not appropriately trafficked to 
the basolateral region of enterocytes, means that its 
effective function is very limited (Chen et  al. 2004; 
Kuo et  al. 2004). Consequently, the phenotypes of 
whole body HEPH knockout mice and sla mice are 
very similar, but not identical (Fuqua et al. 2014).

After the gene encoding ZP was identified, HephL1 
knockout mice were generated and they showed a sur-
prisingly mild phenotype (Sharma et  al. 2019) (i.e. 
they were overtly normal and were not anemic). ZP 
had been identified as a protein that may be involved 
in placental iron transport, but the knockout mice bred 
normally and knockout animals were not underrepre-
sented in the litters. Interestingly, however, the pla-
centas were 26% larger in these mice (Helman et al. 
2021). The only clear physical abnormality displayed 
by ZP knockout mice was unusually wavy whiskers, 
and this finding is consistent with the abnormal hair 
phenotype of the patient carrying HEPHL1 mutations 
mentioned above. Supporting this observation is the 
recent identification of HEPHL1 as the gene affected 
in the Curly Whiskers mouse (Eragene et  al. 2019), 
and demonstration that a mutation in HEPHL1 is 
responsible for the hair abnormalities in Belted Gal-
loway Cattle (Kuca et al. 2021). While the available 

data suggest that ZP plays an important role in hair 
development, whether this role reflects altered iron 
homeostasis or some other function of ZP has yet to 
be determined. Whether ZP plays roles in other tis-
sues has not yet been determined.

More recently, mice with disrupted expression of 
both HEPH and CP have been generated and analy-
sis of their phenotype has clearly shown that both of 
these MCFs play roles in multiple tissues. Such stud-
ies were first carried out by examining the progeny 
of crosses of Cp knockout and sla mice (Hahn et al. 
2004), and more recently by generating animals in 
which each of these genes has been deleted (Fuqua 
et al. 2018). These studies have shown that the phe-
notype arising in the mice when both MCFs are dis-
rupted is more severe than that observed in either 
of the single mutants. Double knockout mice were 
severely anemic and had defects in intestinal iron 
absorption, but they also loaded iron in a broad range 
of tissues, including the heart, kidney, pancreas, ret-
ina and adrenal gland. In these extra-intestinal tissues, 
little or no iron loading was observed in either sin-
gle knockout, indicating that the MCFs work together 
to facilitate iron release from these tissues. Interest-
ingly, even mice lacking both ferroxidases were still 
able to absorb orally administered iron, but that iron 
was distributed in an unusual pattern, with particu-
larly high retention in the liver (Fuqua et al. 2018). It 
is possible that in these mice, the limited ferroxidase 
activity meant that iron loading onto transferrin was 
inefficient, and consequently that the level of NTBI 
was unusually high. NTBI is very efficiently taken up 
by the liver (Craven et al. 1987). Although there is no 
report in the literature describing the consequences 
of the combined deletion of ZP and CP, or ZP and 
HEPH, our unpublished studies have shown that the 
progeny of both crosses are viable.

Since an adequate iron supply is required to sup-
port cancer cell growth, there are numerous links 
between the expression of various proteins of iron 
homeostasis, including the MCFs, and tumor progres-
sion (Chen et al. 2019a). Much of the interest in this 
area in recent years has focused on HEPH. Reduced 
HEPH protein levels have been associated with more 
advanced disease in mesothelioma (Crovella et  al. 
2016), breast cancer (Wang et  al. 2017) and colo-
rectal cancer (Brookes et  al. 2006), and high HEPH 
expression has been linked to improved prognosis 
in lung cancer (Zacchi et  al. 2021) and renal clear 
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cell carcinoma (Chen et al. 2019a). In breast cancer, 
both lower HEPH (Wang et al. 2017) and lower FPN 
(Pinnix et  al. 2010) expression are associated with 
iron accumulation and more aggressive tumours. 
Together, these data indicate that reduced iron export 
favours tumour growth. The recent demonstration 
that Euchromatic histone-lysine N-methyltransferase 
2 (EHMT2) can repress HEPH transcription (Wang 
et  al. 2017) in breast cancer cells makes it a poten-
tial therapeutic target for modulating HEPH expres-
sion in tumours. Indeed, EHMT2 is frequently ele-
vated in breast cancer (Wang et  al. 2017). Reduced 
HEPH expression has also been linked to enhanced 
resistance of colon cancer cells to the chemothera-
peutic drug methotrexate (Zhang et  al. 2021a). In 
this case, the mechanism involves a regulatory path-
way whereby the microRNA miR-24-3p released 
from cancer-associated fibroblasts acts on colon 
cancer cells to reduce the activity of the transcrip-
tion factor CDX2, a major (positive) regulator of the 
HEPH gene. Although reduced HEPH levels show a 
clear link to a more severe tumor phenotype, studies 
with CP have shown the opposite relationship, with 
increased CP expression being associated with poorer 
prognosis (Gangoda et al. 2017; Matsuoka et al. 2018; 
Zhang et al. 2021b). Much of this increase may reflect 
the fact that CP is an acute phase protein, but some 
studies have indicated that CP itself can drive cellular 
changes that promote tumorigenesis (Dai et al. 2020; 
Zhang et al. 2021b). Understanding how the cellular 
iron export machinery contributes to tumor progres-
sion and exploring the MCFs as therapeutic targets 
are areas that warrant further investigation.

The need for multiple ferroxidases: tissue and 
organ‑specific roles of the MCFs

As CP is secreted into the plasma, it might be 
expected that it could be involved in iron mobiliza-
tion from most cells, but, surprisingly, it only appears 
to perform this role efficiently for some tissues. In 
other tissues, either other MCFs are more important, 
or MCFs work together to coordinate iron efflux. As 
noted above, the characterization of rare human dis-
eases where MCF function is disturbed and a range 
of MCF knockout/mutant mouse strains has demon-
strated that CP is particularly important for facilitat-
ing iron efflux from the liver, and certain cell types 
in the brain and pancreas (Hellman and Gitlin 2002; 

Jeong and David 2003; Linder 2016), whereas HEPH 
is the major MCF functioning in the small intestine 
(Fuqua et  al. 2014). However, more recent studies 
with mice lacking both CP and HEPH have indicated 
a more complex picture, with both MCFs contribut-
ing to iron efflux from multiple peripheral tissues 
(Fuqua et  al. 2018). Tissue-specific knockouts of 
particular proteins in mice can be a powerful tool for 
assessing their function in individual tissues, but very 
few tissue-specific MCF knockout mice have been 
generated to date (e.g. HEPH deletion in the intestine 
(Fuqua et al. 2014) and retina (Wolkow et al. 2012)).

The MCFs clearly function in multiple tissues, 
but do so with varying efficiencies and in vary-
ing combinations. This may reflect factors such 
as accessibility to circulating CP, varying MCF 
expression levels, differential subcellular distribu-
tion (particularly for membrane-bound MCFs), or 
even differences in their catalytic profile. A few 
remarks on the contributions of the MCFs to iron 
homeostasis in selected tissues are provided below 
and an overview is provided in Fig. 2.

Liver

The liver is quantitatively the major iron storage 
organ in the body, so it is critically important that 
iron is efficiently mobilized from the liver when 
required (Anderson and Frazer 2005). CP is clearly 
the major MCF involved in liver iron mobilization, 
as hepatic iron levels increase substantially when 
CP is missing or dysfunctional (Harris et al. 1999; 
Piperno and Alessio 2018; Kenawi et  al. 2019; 
Marchi et  al. 2019). Loss of HEPH either glob-
ally or specifically in the small intestine leads to 
a reduction in dietary iron absorption, and con-
sequently hepatic iron levels are low (Fuqua et  al. 
2014). If HEPH played a significant role in hepatic 
iron release, liver iron levels might be expected to 
increase, or at least not decrease, but this is not the 
case. The low expression of HEPH in the liver is 
consistent with it playing a limited role in this organ 
(Vulpe et al. 1999; Frazer et al. 2001; Hudson et al. 
2009). Nevertheless, studies with CP/HEPH double 
knockout mice have suggested that lack of HEPH 
in the intestine may influence the kinetics of iron 
flux through the liver (Fuqua et  al. 2018), and this 
requires further investigation.
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Small intestine

The best characterized role of HEPH is its contri-
bution to dietary iron absorption, as it is required at 
the basolateral membrane of enterocytes to facilitate 
the efficient export of iron into the portal circulation 
(Fuqua et  al. 2014; Fuqua et  al. 2018; Doguer et  al. 
2017). Early studies with sla mice demonstrated this 
phenotype, even though at the time HEPH had not 
been identified. Heph knockout mice show a similar 

phenotype to sla animals, but loss of HEPH does 
not completely block iron absorption and the anemia 
observed in intestine-specific HEPH knockouts is 
relatively mild (Fuqua et  al. 2014). Indeed, the ane-
mia in these mice is milder than that of whole body 
HEPH knockout mice, indicating that HEPH makes 
contributions to iron supply to the plasma from tis-
sues other than the gut. The fact that dietary iron 
absorption can continue even in the absence of HEPH 
indicates that either another iron oxidase performs 
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Fig. 2   Relative contributions of CP, HEPH and ZP to iron 
export from selected tissues. We now know that the MCFs 
contribute to iron export from multiple tissues, and often from 
specific cell types within those tissues. For example, in the 
brain, the MCFs are important for intra-organ iron trafficking. 
In this diagram, CP, HEPH and ZP are represented by blue, 
green and yellow balls respectively. For each tissue, the size of 
the ball represents the relative contribution of that MCF to iron 
transport from (or within) that tissue. For example, CP appears 
to be largely, if not solely, responsible for enhancing iron efflux 

from the liver, whereas in the duodenum, HEPH provides the 
majority of the ferroxidase activity, with CP contributing, 
albeit less efficiently, in some circumstances. In a number of 
tissues, both CP and HEPH appear to contribute significantly. 
The contributions of ZP to body iron homeostasis have yet to 
be firmly established, but its role in hair development is well 
supported. It is presumed a ferroxidase is required for efficient 
iron transport by the placenta to the fetus, but the identity of 
that ferroxidase remains uncertain, and is represented here by a 
grey ball. (Color figure online)
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this function or that ferroxidase activity is not essen-
tial for iron export from enterocytes. Under normal 
physiological conditions, CP appears to make lit-
tle contribution to dietary iron absorption, but when 
body iron demands are particularly high, such as 
following hemolysis, CP can help to mobilize iron 
from enterocytes (Cherukuri et al. 2005). The appar-
ent lower efficiency of CP in facilitating dietary iron 
absorption may indicate that the precise subcellu-
lar location of the ferroxidase activity is important. 
Although HEPH is generally considered to act on the 
basolateral membrane and some localization studies 
support this contention (Han and Kim 2007), other 
data suggest HEPH could be located in an intracel-
lular compartment very close to the membrane, rather 
than on the basolateral membrane itself (Kuo et  al. 
2004). Intriguingly, a ferroxidase activity that can-
not be attributed to CP or HEPH has been detected 
in rodent enterocytes (Ranganathan et  al. 2012), but 
its identity is not yet known. It has also been dem-
onstrated that HEPH appears to be important for iron 
absorption under normal physiological conditions, 
but is not limiting when dietary iron absorption is 
stimulated by iron deficiency or following haemolytic 
anemia (Doguer et al. 2017), a finding consistent with 
early studies using sla mice (Sorbie et al. 1974) and 
supporting the suggestion that other ferroxidase activ-
ities are present.

Central nervous system

The important role the MCFs, and particularly CP, 
play in the CNS has been extensively documented 
(Piperno and Alessio 2018). Progressive neurode-
generation and retinopathy are characteristic features 
of aceruloplasminemia and reflect iron deposition in 
these tissues associated with loss of CP activity (Kono 
2013; Marchi et  al. 2019). Thus, CP can be consid-
ered a neuroprotective molecule. It is the GPI-linked 
form of CP in astrocytes that appears to be particu-
larly important in brain iron metabolism, as it facili-
tates the export of iron from astrocytes, which makes 
this iron available for other types of cells in the brain 
(Jeong and David 2006; Marchi et  al. 2019). When 
CP is missing or defective, not only is this iron supply 
disrupted, but iron can accumulate within astrocytes 
to cytotoxic levels and this in turn may exacerbate the 
neurodegeneration (Kono 2013). HEPH has also been 
shown to play a significant role in maintaining iron 

homeostasis in the brain, and mice lacking both func-
tional CP and HEPH show greater iron accumulation 
in multiple brain regions than either of the individual 
mutant strains (Zhao et al. 2015; Zheng et al. 2018b). 
The double knockout animals also showed significant 
learning and memory defects (Zheng et  al. 2018b). 
Interestingly, while CP is predominantly expressed 
in astrocytes, HEPH is most strongly expressed in 
oligodendrocytes. Loss of CP function in astrocytes 
or HEPH function in oligodendrocytes leads to iron 
accumulation in each of these cell types and con-
comitant oxidative stress (Chen et al. 2019b). Loss of 
HEPH leads to iron accumulation in oligodendrocytes 
in the gray matter, but not in the white matter, with a 
compensatory increase in CP expression in the white 
matter cells explaining the difference (Schulz et  al. 
2011). The retina is another component of the CNS 
where MCFs play important roles. Retinal pigment 
epithelial (RPE) cells express both CP and HEPH, 
and mutation or loss of these proteins is associated 
with iron accumulation in these cells and retinal 
degeneration (Hahn et al. 2004; Hadziahmetovic et al. 
2008; Wolkow et  al. 2012). These ferroxidases play 
a very limited role in photoreceptor cells, but since 
global MCF knockout mice show more severe retinal 
damage than mice lacking the CP and HEPH only in 
the RPE, these MCFs must be contributing to retinal 
iron homeostasis via their roles in some other cell 
type(s) (Wolkow et al. 2012).

Pancreas

The pancreas is an organ that is particularly prone 
to iron loading (Kimita and Petrov 2020), so ensur-
ing it has an efficient mechanism for divesting itself 
of iron is critical for its normal function. Diabetes is 
a common feature of aceruloplasminemia (Piperno 
and Alessio 2018), but interestingly, there is no overt 
iron loading in the endocrine pancreas in this condi-
tion (Kato et al. 1997), suggesting the effects on the 
endocrine cells are secondary to iron loading in other 
cell types. In mice, loss of either CP or HEPH alone 
appears to have little effect on iron levels in the pan-
creas, but when both genes are ablated together, sig-
nificant iron loading is observed in this organ (Chen 
et  al. 2018; Fuqua et  al. 2018). Most of this iron 
loading is observed in the exocrine pancreas (i.e. the 
acinar cells) rather than in the Islets (i.e. the endo-
crine pancreas). This iron loading causes oxidative 
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damage and enhanced production of plasma lipase 
and trypsin, which are typically elevated when the 
exocrine pancreas is damaged, but there were no sig-
nificant changes in insulin levels (Chen et al. 2018). 
These studies clearly show the important protective 
role the MCFs play in the pancreas.

Placenta

Given the importance of MCFs in iron export from 
other tissues (Vashchenko and MacGillivray 2013), 
it is likely that a placental ferroxidase is required for 
efficient transfer of iron from the mother to the fetus, 
particularly in the final weeks of pregnancy. Although 
newborn sla mice, which essentially lack functional 
HEPH, are anemic and have reduced total body iron 
(Bannerman et  al. 1973), radioactive iron transport 
studies did not indicate a defect in placental iron 
transfer (Kingston et al. 1978). Fetal CP has also been 
suggested to facilitate the export of iron from the 
placenta based on studies in BeWo cells (Danzeisen 
et al. 2000, 2002), but studies with CP knockout mice 
argue against CP playing a major role in iron delivery 
to the fetus (Harris et al. 1999). When ZP was identi-
fied, it was initially considered to be a putative pla-
cental MCF based on its high expression in the pla-
centa at embryonic day 18 and its major contribution 
to the ferroxidase activity of BeWo cells (Chen et al. 
2010). However, highest expression was observed in 
the implantation chamber at embryonic day 7, before 
the definitive placenta has formed. A recent study has 
shown that when ZP was knocked out in the laby-
rinth, the nutrient transporting layer of the placenta, 
there was no change in hemoglobin or total fetal iron 
content compared with littermate controls (Helman 
et al. 2021). Dissection of late-gestation placentas to 
separate the various layers revealed that expression of 
Hephl1, the gene encoding ZP, is high in the maternal 
decidua, but undetectable in the labyrinth, making it 
unlikely to play a role in iron export to the fetus (Hel-
man et al. 2021). Furthermore, no iron phenotype was 
found under normal conditions when ZP was knocked 
out in the maternal decidua, but the placentas were 
26% heavier, suggesting that ZP may play a role in 
placental development (Helman et  al. 2021). Thus, 
it appears that no one MCF plays a dominant role in 
placental iron transport, but the studies conducted 
to date do not exclude a combined role of multiple 
ferroxidases.

Hair

An association between iron deficiency and hair loss 
has been recognized for some time, but the mecha-
nisms involved are poorly understood (Trost et  al. 
2006; Almohanna et al. 2019). The MCFs may play 
an important role in hair development as disruption 
of either HEPH or ZP has been associated with an 
abnormal hair phenotype. The importance of ZP for 
maintaining normal hair growth was noted above. A 
patient carrying a mutation in HEPHL1, as well as 
Zp−/− and Zpcw/cw mice, all exhibit loss of ferroxidase 
activity and develop similar hair abnormities, with 
reduced lysyl oxidase activity in fibroblasts (Eragene 
et  al. 2019; Sharma et  al. 2019). A recent genome-
wide association study in Belted Galloway cattle with 
hypotrichosis demonstrated the alopecia phenotype is 
caused by a mutant variant in HEPHL1 (Kuca et al. 
2021). Together, these studies suggest that the skin-
expressed ZP may play an important role in facilitat-
ing hair growth and preventing hair disorders. HEPH 
may also play a role in normal hair development. Pre-
weaning pups born to or nursed by Heph knockout 
dams developed truncal hair loss (the “mask” phe-
notype) and systemic iron deficiency (Wolkow et al. 
2012; Zhou 2020). Transcriptomic studies have indi-
cated that the WNT/β-catenin signaling pathway, the 
key regulatory pathway for hair growth and hair fol-
licle development, was downregulated in the affected 
skin (Zhou 2020). Preliminary data suggest that 
decreased expression and activity of stearoyl coen-
zyme A desaturase, an iron-containing enzyme essen-
tial for WNT palmitoylation (Stoffel et al. 2017), may 
provide the link between disturbed iron homeostasis 
and hair loss in the Heph deficient mice (Zhou 2020). 
In addition, single nucleotide polymorphisms in the 
HEPH gene have been associated with male pattern 
baldness in humans (Hagenaars et  al. 2017), how-
ever, whether the association reflects HEPH itself 
or the nearby androgen receptor gene has yet to be 
established.

Other tissues

Loss of either CP or HEPH in mice does not lead 
to overt iron accumulation in the heart, kidney or 
in adipose tissue, but when both of these MCFs are 
deleted, iron loading is observed (Qian et  al. 2007; 
Jiang et  al. 2016b; Fuqua et  al. 2018). This finding 
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suggests that the combined actions of these two fer-
roxidases are important in maintaining iron homeo-
stasis in these tissues. In the kidney, loss of CP and 
HEPH leads to iron loading in both the medulla 
and cortex, and is associated with proteinuria and 
elevated urinary iron, consistent with renal damage 
(Jiang et al. 2016a). Some histological changes, par-
ticularly in the medulla, were also observed. In the 
heart, the iron loading in CP/HEPH double knockout 
mice was particularly apparent in cardiac myocytes 
(Fuqua et al. 2018). The iron loading that is observed 
in Cp−/−/Heph−/− adipocytes was associated with 
decreased leptin and adiponectin mRNA expression 
(Zheng et  al. 2018a). Fasting glucose levels were 
significantly increased in the double knockout mice, 
and both glucose and insulin tolerance were impaired. 
This finding is of clinical interest given the recent 
observation that adipocyte iron levels regulate intes-
tinal lipid absorption (Zhang et al. 2021c), and raises 
the possibility that pharmacologically increasing 
MCF levels could prove beneficial by limiting lipid 
intake.

Future areas of research

Although CP has been studied for many decades, and 
HEPH and ZP have been investigated for more than 
20 and 10  years respectively, there are still many 
aspects of their biology that are incompletely under-
stood. The following list highlights some of the areas 
where further investigation is warranted.

	 (1)	 Although we have some valuable clues as to 
how the MCFs function in conjunction with 
FPN to facilitate efficient iron export, the pre-
cise details of this process remain unclear, 
and it is possible that MCF/FPN interactions 
will vary depending on the tissue and the 
MCF involved. Some key questions include: 
Do the membrane-tethered MCFs act in the 
same way as soluble CP? Is the oxidation of 
recently transported ferrous iron necessary for 
its release from FPN? What is the link between 
MCF action and FPN stability?

	 (2)	 Understanding the structure of the MCFs indi-
vidually, and when complexed with FPN (and 
potentially other proteins) will be extremely 
helpful in elucidating the mechanisms of MCF 
action.

	 (3)	 The nature of the interactions of the MCFs with 
transferrin has yet to be defined.

	 (4)	 How the three MCFs work together to co-
ordinately regulate body iron homeostasis is 
incompletely understood. Studies with single 
and multiple MCF knockout in specific tissues 
are beginning to answer these questions, but 
more extensive investigations are required.

	 (5)	 Why MCF ferroxidase activity is apparently in 
gross excess in the plasma and some other tis-
sues needs to be resolved.

	 (6)	 Are there ferroxidases other than CP, HEPH 
and ZP that play important roles in body iron 
trafficking?

	 (7)	 Does ZP have physiological roles in addition to 
its described function in hair development?

	 (8)	 Which MCFs contribute to iron recycling 
through macrophages and what are the rela-
tive contributions of cell-specific and systemic 
mechanisms?

	 (9)	 The cell biology of the MCFs, particularly the 
membrane bound forms, is not well understood 
and warrants further investigation. This is par-
ticularly important as changes in the subcel-
lular localization of these proteins appears to 
be a significant mode of regulation, at least in 
response to altered iron availability.

	(10)	 It is known that each of the MCFs is able to 
oxidize substrates in addition to Fe2+, but how 
broad this spectrum of substrates is (particu-
larly for HEPH and ZP) has not been deter-
mined and the physiological relevance of many 
of these ‘non-iron’ activities has yet to be 
defined.

	(11)	 Why does the loss of ferroxidase activity in CP 
or HEPH knockout mice not lead to a pheno-
type as severe as might be expected, either in 
terms of tissue iron loading or the anemia that 
develops (Prohaska 2011)? While redundancy 
between the MCFs might explain this observa-
tion to some extent, other factors may also be 
involved.

	(12)	 How does lack of HEPH contribute to anemia 
beyond its role in intestinal iron absorption? 
For example, why are Hephint/intCp−/− mice 
(with knockout of HEPH only in the intestine) 
not more anemic than Cp knockout mice, while 
Heph−/−/Cp−/− mice (with global deletion of 
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both HEPH and CP) have a much more severe 
anemia?

	(13)	 The demonstration that only specific cells in 
various tissues of Heph/Cp double knockout 
mice retain iron (Fuqua et al. 2018) suggests a 
mosaic expression of the MCFs. Understanding 
MCF function at the single-cell resolution is 
thus essential to fully understand their biology.

	(14)	 Do the MCFs have sex-specific roles and/or are 
there quantitative differences in their impact 
between the sexes? We have some understand-
ing of their role in female specific tissues, but 
historically, most experimental studies have 
been carried out in males only, or in mixed sex 
groups.

	(15)	 What roles do the MCFs play in the patho-
genesis of various diseases? Do they generally 
play a role as antioxidants as appears to be the 
case with CP? Understanding their role in CNS 
disorders is particularly significant. Given the 
association of iron accumulation in specific 
regions of the brain with multiple neurodegen-
erative disorders, including both Alzheimer’s 
disease and Parkinson’s disease, understanding 
the roles of the MCFs may provide important 
insight into the pathophysiology of these disor-
ders.

	(16)	 Perhaps the most exciting future direction of 
MCF research is the exploration of whether 
modulating MCF function could provide a 
therapeutic avenue for human diseases. Either 
blocking or enhancing MCF expression could 
have application in different situations, and 
altering MCF functions could be relevant to 
either iron-related pathologies or to some of 
their non-iron roles. As an example, there is 
growing evidence that reduced HEPH expres-
sion plays a role in the progression of multiple 
cancers, so increasing its activity has therapeu-
tic potential.

Concluding remarks

Investigation of the mammalian MCFs over the past 
several decades has increased our collective under-
standing of the complex process of iron homeostasis. 
More recent work has demonstrated new, potentially 

important functions for these proteins, but additional 
experimentation is required to make definitive con-
clusions about possible other physiological roles. 
Collectively, these advances have led to postulates 
regarding MCF function and development of chronic 
diseases in humans, which has logically led to spec-
ulation that therapeutic targeting of these proteins 
could be a fruitful area for future research.
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