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Abstract Increased levels of trace metals are an

important problem of environmental pollution. Ni is

one of the metals essential for normal plant develop-

ment, but elevated levels usually cause deleterious

effects on plant growth. The aim of the study was to

evaluate the effects sulphur nutrition on growth,

oxidative status, and Ni bioaccumulation of Ni-treated

rape (Brassica napus L.). Two different oilseed rape

cultivars (Hammer and Compass) were grown under

sulphur deficiency and under optimal S availability (0

and 1 mM sulphate, respectively) and exposed to 0.1,

0.3, and 0.5 mM Ni concentrations for 3 weeks.

Exposure of plants to elevated Ni concentrations

resulted in a decrease in the shoot and root biomass

and chlorophyll content. The enhancement of Ni

caused increased lipid peroxidation. The sulphur

nutrition had an effect on the level of oxidative stress

of Ni-treated plants—under the deficiency of sulphur

the concentration of TBARS was significantly higher

than under the optimal level of S. The beneficial effect

of optimal sulphur nutrition was lower Ni accumula-

tion in exposed plants but translocation of Ni was

dependent on the cultivar.
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Introduction

The pollution of trace elements is one of the serious

problems of environmental degradation (Li et al.

2019). Increased concentration in trace elements could

induce negative effects on the environment and

assimilation of them by plants could lead to metal

accumulation in the trophic network and cause a threat

to human health (Kumar et al. 2019; Mishra et al.

2019).

Mining, smelting, refining, alloy processing, scrap

metal reprocessing, fossil fuel combustion, and waste

incineration are the primary sources of atmospheric

nickel, contributing to nickel loadings in terrestrial

and aquatic ecosystems with high concentrations that

are potentially toxic to wildlife (Cempel and Nikel

2006). Releases of Ni are of concern due to environ-

mental pollution because of anthropogenic activi-

ties—the burning of coal and fuel oil, mining, and

waste incineration. In small quantities, nickel, an

essential plant nutrient, has been observed to improve

plant growth and yield quality (Khoshgoftarmanesh

and Bahmanziari 2012; Kumar et al. 2018). It plays an

important role in plant metabolic processes and is a

component of metalloenzymes (Boer et al. 2014). Like

other micronutrients, Ni becomes toxic to plants at

higher concentrations and has detrimental effects on

plant growth and metabolism. Exposure of plants to

elevated Ni concentrations results in inhibition of seed

germination (Ahmad et al. 2011). Excess Ni retards
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shoot and root growth, decreases biomass production,

induces leaf spotting, and produces Fe deficiency

leading to chlorosis and necrosis (Ahmad and Ashraf

2012). In addition, a high concentration of Ni induces

the potentially damaging effects of metal-induced

reactive oxygen species (Baccouch et al. 2001). Nickel

also has the function to reduce the activity of enzymes

for nitrogen fixation in legume plants (Zobiole et al.

2010).

Sulphur is a key element that plays a pivotal role in

plant growth and development as it is a component of

amino acids, co-factors, and several secondary

metabolites. S-containing defense compounds are

involved in plant survival during abiotic stresses such

as metals toxicity (Nawaz et al. 2019). Management of

sulphur in crop plant nutrition is essential due to its

crucial role in fundamental processes such as home-

ostasis, electron transport, catalysis, and regulation. S

compound’s protective function of against excessive

amounts of trace metals is related to the functional

sulphydryl groups (–SH) of ligands (glutathione and

phytochelatins), which can form complexes with trace

metals. The former is essential for metal tolerance

(Hossain et al. 2012; Zagorchev et al. 2013).

Some plant species can accumulate large amounts

of trace elements, including rapeseed which belongs to

the Brassicaceae family. Hence, we selected two

cultivars of rapeseed as hyperaccumulating plants and

as important crops for edible oil and biodiesel

production (Carré and Pouzet 2014). Alternatively,

oilseed rape has a high requirement for S in compar-

ison to other species (Randall et al. 1997). Considering

that an optimal level of S can improve the growth of

plants under trace element stress since S has an

important protective function against trace element

stress, the study aims to assess the effect of S nutrition

on growth and induced oxidative stress of Ni-treated

rape (Brassica napus L.) and to compare the sensitiv-

ity of different cultivars.

Materials and methods

Seeds of two hybrid oilseed rape cultivars—Hammer

and Compass of (Brassica napus L.) were chosen for

the experiment. Compass cultivar is early emerging

and steady with a dense root system and high

resistance to drought. Hammer cultivar is very resis-

tant to frost. The 3-month experiment was conducted

under controlled environmental conditions (photon

flux density 180–200 mol m-2 s-1; photoperiod:

12 h; day/night temperature: 22/15 �C; humidity:

65/75%). Three seeds per pot were sown in plastic

pots filled with 500 g of the substrate [coarse sand

(1.0–1.5 mm) as a medium] and germinated. The

treatments were run in seven replicates (7 pots per

treatment). For the optimal nutrients availability

Blake–Kalff nutrient solution containing 1 mM

MgSO4, 3 mM KNO3, 2 mM Ca(NO3)2, 1 mM NH4-

H2PO4, 50 lM KCl, 25 lM H3BO3, 2 lM MnCl2,

2 lM ZnCl2, 0,5 lM CuCl2, 0,5 lM (NH4)6Mo7O24,-

and 20 lM NaFeEDTA (Blake-Kalff et al. 1998) was

applied daily to compensate for water losses and

supply nutrients. The pH of the solution was adjusted

to 5.5. To ensure uniform application, the substrate

was sprayed with 75–80 mL of solution in each

application.

After 3 weeks, plants were exposed to different Ni

concentrations—Ni (as nickel chloride) was tested at

four levels of contamination—0 (no addition, control),

0.1, 0.3, and 0.5 mM. As before the treatment, the

plant watering was on the same schedule as the

nutrient solution. To imitate sulphur deficiency con-

ditions, sulphur from the nutrient solution was elim-

inated—MgSO4 was changed with MgCl2. The

sulphur level was treated as deficient when S was

excluded from the nutrient solution and considered

sulphur deficient (0 mM sulphate). Therefore, the

S-containing solution has an adequate level of S for

plant nutrition, and it was suggested as the optimal

level (1 mM sulphate). Seven replications were

included in each treatment.

After the experiment, the plant’s dry weight was

determined after the plant material was dried at 80 �C
until constant weight. The content of photosynthetic

pigments was analyzed according to Buschmann et al.

(1984). Oxidative stress was determined by measuring

lipid peroxidation products—the concentration of

thiobarbituric acid reactive substances (TBARS)

according to Hodges et al. (1999).

Ni concentration in plants was measured in shoot

and root. Tissues were oven-dried at 60 �C until a

constant weight was achieved. The powdered tissues

were digested with concentrated nitric acid and

filtered. The content of Ni was determined using an

induced emission plasma spectrometer (iCAP 6000,

Thermo Scientific). The translocation coefficient was
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calculated by dividing the concentration of metal in

shoots by the concentration in roots.

To determine if Ni and S have any impact on

measured parameters, two-Way ANOVA was used.

Tukey’s multiple comparison test was used for the

statistically significant difference assessment between

means (p\ 0.05).

Results and discussion

Effects of nickel on plant growth, pigment content,

and oxidative stress under the different sulphur

availability

Nickel had a significant negative effect on the shoot

and root biomass of B. napus cultivars (p\ 0.001;

Fig. 1a, b). Even the lowest Ni concentration

(0.1 mM) has a significantly negative effect on plant

growth—the shoot biomass decreased by about 20% in

this case (p\ 0.05; Fig. 1a). The decrease in the shoot

biomass of plants treated with the highest Ni concen-

tration (0.5 mM) was 44–50% compared to Ni-

untreated plants (p\ 0.05). A similar tendency was

obtained by analyzing the impact of Ni on the root

biomass of both cultivars (Fig. 1b). The decrease in

weight of the treated plants was more prominent in

roots than in shoots of Ni-treated plants. The decrease

in root biomass was significantly lower at the highest

concentration of Ni comparing with the control

without respect to sulphur nutrition (p\ 0.05). The

changes in plant biomass were also dependent on the

cultivar (p\ 0.001). The effect of Ni on Compass

cultivar’s root biomass was more pronounced—the

biomass was halved even at the lowest Ni concentra-

tion used (p\ 0.05). The results are in accordance

with other experiments where Ni negatively affected

plants’ growth, such as wheat (Shevyakova et al.

2006), barley (Rahman et al. 2005), cucumber

(Khoshgoftarmanesh and Bahmanziari 2012), chamo-

mile (Kováčik et al. 2009), cowpea (Kopittke et al.

2007), and spinach (Mishra and Agrawal 2006).

Ghasemi et al. (2009) suggested that the disruption

of root-to-shoot Fe translocation is a major cause of

nickel toxicity symptoms in Alyssum inflatum of

Brassicaceae. The decrease in root growth at high Ni

concentrations may result from carbohydrate accumu-

lation in shoots (Baccouch et al. 1998).

The deficiency of sulphur enhanced the negative

effect of Ni on plant growth. Under S deficiency, Ni-

treated plants’ shoot and root biomass was signifi-

cantly reduced compared to the optimal S supply

(p\ 0.05). Treatment with two similar stressors—

chromium toxicity and sulphur deficiency—indicated

a slightly negative effect on the growth of Brassica

juncea plants (Schiavon et al. 2008). It is important to

note that S deficiency negatively affected shoot weight

and root length of B.juncea in the absence of Cr as an

essential nutrient but not in its presence.

Increasing the concentration of Ni significantly

negatively affected the concentration of the chloro-

phyll (p\ 0.05, Fig. 2a). The content of chlorophyll

significantly decreased in N-treated plants at 0.3 mM

Ni, especially for Compass cultivar (27% decrease

Fig. 1 Effect of nickel treatments (0 (control), 0.1, 0.3, 0.5 mM

NiCl2) on dry weight (DW) shoots (a) and roots (b) of Brassica
napus cultivars (Hammer and Compass) under deficiency (no

sulphate) and optimal concentration of sulphur (1 mM sulphate)

in the nutrient solution. Bars show means ± SE (n = 7). The

different letters above the bars indicate a significant difference

between the treatments (p\ 0.05)
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compared to Hammer). The lowest chlorophyll con-

tent was observed under the highest Ni concentration

used, and there was no difference with respect to S

nutrition (p[ 0.05; Fig. 2a). This implies that Ni is

the primary factor affecting the photosynthesis process

through changes in chlorophyll concentrations (Gha-

semi et al. 2009). Similarly, the effect of chromium

induced no variation in chlorophyll regardless of S

availability (Schiavon et al. 2008). It is suggested that

substitution of Fe and Mg by Ni from the chlorophyll

structure results in disruption of the normal production

of chlorophyll and impair the plant metabolism

decreasing photosynthesis rate (Piccini and Malavolta

1992; Ewais 1997). Higher sugar concentration in

biomass could lead to a decrease in photosynthesis due

to inhibition of dark reactions (Langford and Wain-

wright 1987; Rahman et al. 2005).

TBARS is one of the most frequently studied

products of polyunsaturated fatty acid and it is

considered a marker of lipid peroxidation (Zhang

et al. 2007). The study results showed that with

increasing Ni concentration TBARS concentration in

both cultivars also increased (p\ 0.05, Fig. 2b). The

increased levels of TBARS in nickel treated plants

confirmed enhanced lipid peroxidation (Gajewska and

Skłodowska, 2007; Maheshwari and Dubey, 2009).

Since Ni is a redox inactive metal, it cannot directly

generate reactive oxygen species. It is affecting the

activity and content of oxidants differently and the

exact mechanism is unknown (Gajewska et al. 2006).

The data obtained confirmed that deficiency of S

results in higher levels of oxidative stress—under the

deficiency of sulphur, the concentration of TBARS

was significantly higher than under the standard level

of S (p\ 0.05). This was confirmed by the study

results showing that the extra S supply induced an

antioxidative response—reduced glutathione accumu-

lated in the plants treated with Ni (Matraszek-Gawron

and Hawrylak-Nowak 2019).

Metal accumulation and translocation

High nickel mobility from soil to plant is associated

with its capacity to form complexes. Ni could be

transported to plant with nickel-peptide or nickel-

histidine complexes, and this may increase its mobility

(Dan et al. 2002). Ni concentrations in shoots and roots

of both cultivars increased with Ni level in growing

medium despite S availability (Fig. 3). The exposure

of the wheat seedlings to Ni also resulted in a rapid

increase in Ni concentration in the shoots, and a

significant reduction in these organs’ fresh biomass

(Gajewska and Skłodowska 2009). The results suggest

that Ni can pass the endodermic barrier and enter the

stele and quickly move from roots to shoots (Gajewska

and Skłodowska, 2007; Seregin and Kozhevnikova,

2006).

Nickel accumulation was significantly higher in

roots than in shoots (p\ 0.05; Fig. 3b). Other studies

also confirmed that Ni was mainly accumulated in the

roots of wheat (Wang et al. 2015). Under the sulphur

deficiency, Ni accumulation was higher in roots of

Hammer cultivar treated with 0.5 mM Ni than in

Compass while there was no statistically significant

difference under optimal sulphur availability

(p[ 0.05).

Fig. 2 Effect of nickel treatments (0 (control), 0.1, 0.3, 0.5 mM

NiCl2) on total chlorophyll content (a) and TBARS (b) of

Brassica napus cultivars (Hammer and Compass) under

deficiency (no sulphate) and optimal concentration of sulphur

(1 mM sulphate) in the nutrient solution. Bars show means ±

SE (n = 7). The different letters above the bars indicate a

significant difference between the treatments (p\ 0.05)
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Ni translocation from roots to shoots depends on its

concentration in roots but not on its concentration in

the cytoplasm of parenchyma. It confirmed that

translocation to shoots is controlled by roots and is

associated with the protective functions of roots

(Cataldo et al. 1978). Translocation coefficients under

0.3 mM Ni were lower than 1, meaning that Ni

accumulated in the roots of the Ni-treated plants. The

more intense translocation from roots to shoots was

noticed under the higher Ni concentration, indicating

higher metal accumulation in Compass shoots

(Fig. 4). Our study results indicate that Ni exposure

could have different effects on Ni accumulation

depending on the cultivar. It is important to choose a

cultivar for cultivation in S-deficient soil; the

deficiency of this nutrient could result in Ni accumu-

lation. Under deficiency of S nutrition, the majority of

Ni (45.7%) was accumulated in roots of Hammer,

while higher Ni content was detected in shoots of

Compass. In general, higher accumulation of Ni

without S nutrition was observed indicating that the

concentration of S in growth substratum could influ-

ence the ability of plants to accumulate elements,

including Ni (Schiavon et al. 2008). This is in

accordance with the results of Matraszek et al.

(2016) where the intense S nutrition significantly

increases Ni accumulation in roots of Ni-treated

wheat. The beneficial effects of sufficient S nutrition

were also noticed on Ni-treated plants’ micronutrient

(Cu, Mo, B, Fe) balance, which could be explained by

the changes in root surface properties—cation

exchange capacity (Matraszek et al. 2016; Matras-

zek-Gawron and Hawrylak-Nowak 2019).

Conclusions

In the present study increasing levels of Ni reduced the

growth of rapeseed cultivars. Both shoot and root

biomass of Ni-treated plants were reduced, and S

significantly influenced the growth parameters. Lipid

peroxidation was statistically significantly enhanced

even at the lowest Ni concentration with enhanced

negative impact in sulphur starved plants. Ni accu-

mulation was significantly higher in rape roots than in

shoots. Rapeseed has a weak ability to translocate Ni

from roots to shoots (TC\ 1). Significantly higher Ni

concentrations were determined under sulphur

Fig. 3 Effect of nickel treatments (0 (control), 0.1, 0.3, 0.5 mM

NiCl2) on concentrations of nickel in shoots (a) and roots (b) in

Brassica napus cultivars (Hammer and Compass) under

deficiency (no sulphate) and optimal concentration of sulphur

(1 mM sulphate) in the nutrient solution. Values are means ±

SE (n = 7). The different letters above the bars indicate a

significant difference between the treatments (p\ 0.05)

Fig. 4 Effect of nickel treatments (0 (control), 0.1, 0.3, 0.5 mM

NiCl2) on translocation coefficient of nickel in Brassica napus
cultivars (Hammer and Compass) under different sulphur

availability—deficiency (no sulphate) and optimal concentra-

tion (1 mM sulphate). Bars show means ± SE (n = 7). The

different letters above the bars indicate a significant difference

between the treatments (p\ 0.05)
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deficiency conditions, but the location depended on

the cultivar.
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