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Abstract Copper is an essential element in all forms

of life. It acts as a cofactor of some enzymes and is

involved in forming proper protein conformations.

However, excess copper ions in cells are detrimental

as they can generate free radicals or disrupt protein

structures. Therefore, all life forms have evolved

conserved and exquisite copper metabolic systems to

maintain copper homeostasis. The yeast Saccha-

romyces cerevisiae has been widely used to investi-

gate copper metabolism as it is convenient for this

purpose. In this review, we summarize the mechanism

of copper metabolism in Saccharomyces cerevisiae

according to the latest literature. In brief, bioavailable

copper ions are incorporated into yeast cells mainly

via the high-affinity transporters Ctr1 and Ctr3. Then,

intracellular Cu? ions are delivered to different

organelles or cuproproteins by different chaperones,

including Ccs1, Atx1, and Cox17. Excess copper ions

bind to glutathione (GSH), metallothioneins, and

copper complexes are sequestered into vacuoles to

avoid toxicity. Copper-sensing transcription factors

Ace1 and Mac1 regulate the expression of genes

involved in copper detoxification and
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uptake/mobilization in response to changes in intra-

cellular copper levels. Though numerous recent

breakthroughs in understanding yeast’s copper meta-

bolism have been achieved, some issues remain

unresolved. Completely elucidating the mechanism

of copper metabolism in yeast helps decode the

corresponding system in humans and understand

how copper-related diseases develop.

Keywords Copper � Metabolism � Homeostasis �
Chaperone � Transporter � Saccharomyces cerevisiae

Introduction

Copper (Cu) is an essential element in all forms of life.

There are two oxidation states of copper, Cu(I)/Cu?

(cuprous ion) and Cu(II)/Cu2? (cupric ion). Cu?

prefers to bind to the thiol group in cysteine or the

thioether group in methionine, while Cu2? exhibits a

high affinity for the secondary carboxyl group in

aspartic/glutamic acid or the imidazole nitrogen group

in histidine (Festa and Thiele 2011). Thus, copper ions

readily form complexes with these amino acids or the

peptides containing them. On the one hand, Cu acts as

a cofactor of some enzymes due to its potential to

either accept or donate an electron during the switch

between Cu(I) and Cu(II). On the other hand, Cu can

stabilize the conformations of proteins by binding to

them (Festa and Thiele 2011). However, excess copper

can be harmful to cells. Copper may generate reactive

oxygen species (ROS), such as superoxide anions

(O2-), nitric oxide (NO-), hydroxyl radicals (OH-),

and hydrogen peroxide (H2O2), which can damage

various molecules in cells. High levels of copper ions

may also disrupt the normal conformations and

functions of proteins by binding to them. Owing to

the dual roles of this metal, all life forms evolved

different mechanisms to maintain copper homeostasis,

such as copper chelation, transport, and efflux (Festa

and Thiele 2011; Xiao et al. 2004).

The primary understanding of copper metabolism

comes from the study of baker’s yeast, Saccharomyces

cerevisiae (Festa and Thiele 2011). Copper metabolic

pathways that have been characterized in yeast share a

high degree of conservation with those of mammalian

systems (Zhou and Gitschier 1997). As a model

organism, this microbe has advantages in multiple

aspects: (a) it is the first eukaryote whose genome has

been completely sequenced and well understood;

(b) without long-stretch of non-coding DNA frag-

ments, the yeast genome is relatively easy to manip-

ulate; (c) this single-celled organism is the simplest

eukaryote that shares many characteristics with multi-

cellular creatures in terms of the cellular homeostasis

of most transition metals; (d) it is convenient to

manipulate yeast’s nutritional environment to study

the biochemical pathways of the metabolism of copper

and other metals. Due to these advantages, this

eukaryote is widely employed to investigate the

mechanism of copper metabolism and numerous

breakthroughs have been made in this field (De Freitas

et al. 2003). The key genes involved in copper

metabolism have been identified (see Table 1). In this

review, we will describe how copper is metabolized in

Saccharomyces cerevisiae, including the processes of

copper influx, utilization, detoxification and home-

ostasis (as shown in Fig. 1).

Influx of copper ions

Most extracellular copper ions are in the form of

Cu(II). These cupric ions (Cu2?) are reduced into

cuprous ions (Cu?) by reductase Fre1 or Fre2 on the

cell surface before entering the yeast cell (Dancis et al.

1990; Georgatsou and Alexandraki 1999; Yun et al.

2001). It was recently reported that Fre1 overexpres-

sion is sufficient to increase copper internalization and

increase stress tolerance to H2O2 exposure (Berterame

et al. 2018), showing a key role of this reductase in

copper influx. Once being reduced, the univalent ions

are transported by copper transporters (CTRs) located

on plasma membranes. Under physiological condi-

tions, transmembrane transportation of copper is

mediated by two high-affinity CTRs, Ctr1 and Ctr3

(Dancis et al. 1994a, b; Knight et al. 1996; Luk et al.

2003; Pena et al. 2000; Yonkovich et al. 2002), which

both form a homo-trimeric Cu?-selective ion-channel-

like architecture to import the metal (Pena et al. 2000;

Ren et al. 2019). However, in most laboratory-bred

yeast strains, such as BY4742, the Ctr3 gene is

disabled by the insertion of a Ty2 transposon (Knight

et al. 1996). Thus, copper-dependent enzymes in yeast

cell lines lacking the components of the Ctr1 transport

system generally exhibit copper deficiency (Dancis

et al. 1994a; Pena et al. 2000). Yeast strains without
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functional Ctr1 and Ctr3 genes demonstrate growth

defects on non-fermentable media due to a lack of Cu?

for cytochrome c oxidase (CcO). Using this charac-

teristic, Zhou et al. cloned the human Ctr1 gene,

whose expression perfectly complements the growth

defect of Ctr1D yeast and significantly increases the

level of cellular copper (Zhou and Gitschier 1997).

These mutant yeast strains defective in high-affinity

copper transport have also been used to identify

candidate copper importers in a wide range of

organisms, including algae and land plants (Page

et al. 2009; Senovilla et al. 2018). Besides Cu?,

platinum is also imported by Ctr1 (Bodiga et al. 2018).

It has been reported that reduced glutathione (GSH) is

the first acceptor of copper after it enters into the cell,

following which Cu? can be delivered to the chaper-

ones or metallothioneins (MTs) (Freedman et al.

1989).

Table 1 Key genes involved in copper metabolism

Gene Functions and natures in copper metabolism

Fre1 &
Fre2

Ferric / cupric reductases; reduce siderophore-bound iron and oxidized copper prior to uptake by transporters;

expression induced by low copper and iron levels (Dancis et al. 1990; Georgatsou and Alexandraki 1999; Yun et al.

2001)

Ctr1 &
Ctr3

High-affinity copper transporters of plasma membrane; mediate nearly all copper uptake under low copper conditions;

act as trimers; transcriptionally induced at low copper levels and degraded at high copper levels (Dancis et al. 1994b;

Knight et al. 1996; Pena et al. 2000; Yonkovich et al. 2002)

Fet4 Low-affinity Fe(II) transporter of the plasma membrane, which can also import Cu(II) (Dix et al. 1994; Hassett et al.

2000); induced by the addition of Cu when Fet3 is deleted (Li and Kaplan 1998)

Atx1 Cu chaperone; transports Cu? to the secretory vesicle copper transporter Ccc2 for eventual insertion into Fet3;

expression is induced by oxygen and Fe, but not by copper (Lin et al. 1997)

Ccc2 P-type Cu-transporting ATPase (Fu et al. 1995); receives Cu? from Atx1 and transports them into a late or post-

Golgi compartment (Banci et al. 2001; Huffman and O’Halloran 2000)

Fet3 Multicopper oxidase that oxidizes Fe2? to ferric iron Fe3? for subsequent cellular uptake by transmembrane permease

Ftr1 (Askwith et al. 1994); acquires copper from Ccc2 in a post-Golgi compartment (Yuan et al. 1995)

Cox17 Copper metallochaperone that transfers copper to Sco1 and Cox11; eventual delivery to cytochrome c oxidase (CcO,
complex IV) (Glerum et al. 1996a; Horng et al. 2004)

Sco1 &
Sco2

Cu-binding proteins of mitochondrial inner membrane; required for CcO activity and respiration; deliver Cu? from

Cox17 to subunit II of CcO (Cox2) (Balatri et al. 2003; Glerum et al. 1996b; Lode et al. 2002; Nittis et al. 2001)

Cox2 Subunit II of CcO involved in aerobic respiration and cytochrome c-to-oxygen transport; acquires Cu?, which is

required for its oxidase activity, from Sco1 or Sco2 (Glerum et al. 1996b; Schulze and Rodel 1988)

Cox11 Mitochondrial inner membrane protein delivering Cu? from Cox17 to Cox1 (Hiser et al. 2000; Tzagoloff et al. 1990)

Cox1 Subunit I of CcO (Hensgens et al. 1984); acquires Cu?, which is required for its oxidase activity, from Cox11 (Hiser

et al. 2000)

Pic2 &
Mrs3

Mitochondrial carrier proteins importing Cu into mitochondria (Vest et al. 2013, 2016)

Ccs1 Copper chaperone for superoxide dismutase Sod1 (Culotta et al. 1997; Lamb et al. 2000)

Sod1 Cytosolic Cu/Zn superoxide dismutase detoxifying superoxide (Slekar et al. 1996); also found in mitochondria and

nucleus (Sturtz et al. 2001; Tsang et al. 2014; Wood and Thiele 2009); induced by copper (Mehta et al. 2018)

Cup1&
Crs5

Metallothioneins binding copper and mediating resistance to high concentrations of copper and cadmium (Culotta et al.

1994; Fogel and Welch 1982; Jensen et al. 1996; Karin et al. 1984; Winge et al. 1998); induced by copper (Mehta

et al. 2018)

Ctr2 Low-affinity Cu transporter mobilizing vacuolar copper (Rees et al. 2004); induced by Cu deficiency (Liu et al. 2012;

Qi et al. 2012)

Mac1 Cu-sensing transcription factor mediating expression of genes required for high affinity Cu transport (Fre1/2, Ctr1/3)
upon Cu deficiency (Labbe et al. 1997; Martins et al. 1998); undergoes degradation (Zhu et al. 1998), as well as

mediates degradation of Ctr1 (Yonkovich et al. 2002), upon Cu repletion

Ace1 Cu-sensing transcription factor repressing expression of genes required for Cu detoxification (Cup1,Crs5, Sod1) upon
Cu repletion (Buchman et al. 1989; Mehta et al. 2018; Thiele 1988)
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In addition to the high-affinity copper transport

systems, yeast has a ‘‘backup’’ mechanism for obtain-

ing copper (Lee et al. 2002). When the environmental

concentration of copper is high, low-affinity copper

proteins on cell surfaces, such as iron transporter 4

(Fet4), can mediate the influx of cupric ions (Dix et al.

1994; Hassett et al. 2000; Li and Kaplan 1998). In

general, these low-affinity transporters incorporate not

only copper but also a variety of divalent metal ions.

Saccharomyces cerevisiae Fet4, for example, can

nonspecifically transport Cu2?, Fe2? and other diva-

lent metal ions into cells (Hassett et al. 2000; Portnoy

et al. 2001).

Detoxification of copper ions

After incorporation, a large proportion of the copper

ions go through a detoxification pathway to prevent

the accumulation of toxic free copper ions in the cell. It

has been reported that the concentration of free copper

ions within the cytoplasm is as low as 10–18 M (about

one molecule of free Cu? per cell) (Rae et al. 1999).

The excess cytosolic copper ions are sequestered by

scavengers such as metallothioneins (MTs) (Hamer

1986; Krezel and Maret 2017; Niederwanger et al.

2017). MTs are a family of low molecular weight

proteins rich in cysteine residues, which can bind

excess ions of copper and other heavy metals in the

Fig. 1 Schematic representation of copper metabolism in a

yeast cell. Extracellular cupric ions (Cu2?) are reduced into

cuprous ions (Cu?) by Fre1 or Fre2, prior to Ctr1-mediated

incorporation. Cu2? can be incorporated by Fet4. After

incorporation by Ctr1, Cu? ions bind to GSH in the cytosol.

Then, GSH dispenses Cu? to a series of chaperones, which

deliver Cu? to different utilization pathways: (1) Ccs1 escorts

Cu? to Sod1 in cytoplasm; (2) Atx1 passes Cu? to Ccc2, which

loads copper onto diverse secretory cuproproteins (CuPrs) at the

Golgi body; (3) Pic2 or Mrs3 imports cuprous ions from cytosol

into mitochondria, where they are loaded to CcO directly or via

several chaperones including Cox17, Cox11, and Sco1/2.

Excessive copper ions are sequestered by metallothioneins

(Cup1 and Crs5) or separated in vacuoles. Vacuolar copper can

be exported and mobilized by Ctr2. How Cu? ions are

transported into the vacuole and nucleus remains obscure.

Genes involved in copper homeostasis are regulated by the

copper sensing transcription factors Ace1 and Mac1: Cu?

promotes Ace1-mediated transactivation of copper scavenger

genes (Cup1, Crs5, Sod1, etc.) and inhibits Mac1-mediated

transactivation of genes responsible for copper uptake (Ctr1,
Fre1, Fre2, etc.)
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cell (Fogel and Welch 1982; Winge et al. 1985). MTs

are encoded by multiple genes, including CRS5,

CUP1-1 and CUP1-2 (Culotta et al. 1994; Karin

et al. 1984). Expression of these genes is responsible

for mediating copper resistance in yeast (Butt et al.

1984; Katju et al. 2009). This is because these MTs

bear multiple thiol groups organized as clusters and

can store high amounts of nonexchangeable copper

(Calderone et al. 2005; Jensen et al. 1996). GSH is

another natural chelator of transition metals. It is

composed of three amino acids—glutamate, cysteine,

and glycine—among which cysteine can directly bind

to copper via its thiol group. GSH is not encoded by a

gene but is synthesized in two steps by c-glutamyl-

cysteine synthetase (GSH1) and GSH synthetase

(GSH2) in the cell (Grant et al. 1996). GSH can also

be assimilated from the extracellular environment by

specific transporters (Bourbouloux et al. 2000; Miyake

et al. 1998). Besides its function in dispensing Cu?

from Ctr1 to other cuproprotiens, GSH can also act as

a copper reservoir by forming complexes with

Cu(I) (Freedman et al. 1989). Due to its copper

buffering function, GSH can lower copper sensitivity

and increase yeast vitality (Zimdars et al. 2019).

Cu(I) complexes of GSH have been found in

organelles such as the nucleus (Carroll et al. 2004).

These GSH-bound Cu? can directly metalize MTs and

SOD1 (Carroll et al. 2004; Ferreira et al. 1993). Sur-

plus copper ions can also be separated in vacuoles by

an unknown mechanism (Miner et al. 2019). When

necessary, vacuolar copper can be mobilized by Ctr2,

which is a low-affinity copper transporter located at

the vacuolar membrane and provides copper for

cytosolic metallochaperones from vacuoles (Rees

et al. 2004).

Copper utilization pathway

Another portion of copper ions is targeted to different

destinations by multiple copper chaperones for the

following uses (Festa and Thiele 2011): (a) Ccs1

mediates the assembly of Cu? to Sod1 in cytosome;

(b) Atx1 targets Cu? to the Golgi body for various

cuproproteins; (c) Cox17 passes Cu? to mitochondrial

cytochrome c oxidase (CcO) (Luk et al. 2003); and

(d) Cu? can also be delivered to the nucleus via an

unknown mechanism.

Cytosolic pathway

Superoxide dismutase 1 (Sod1 or Cu/Zn SOD) is the

most important copper protein in cytoplasm (Slekar

et al. 1996). Each molecule of Sod1 also combines

with a zinc atom, but the way that it obtains the zinc

ion remains unknown. In contrast, it is well known that

copper is targeted to Sod1 by its specific copper

chaperone Ccs1 (copper chaperon for Sod1, also

named Lys7) (Culotta et al. 1997). Ccs1 can bind to the

cell membrane and directly interact with Ctr1 to obtain

Cu? (Pope et al. 2013). Then, Ccs1 can associate with

Sod1 to deliver Cu? to the latter molecule (Lamb et al.

2000). On the other hand, it has been reported that a

small fraction of Sod1 molecules can acquire free Cu?

directly from the cytoplasm to maintain Sod1 activity

in the absence of Ccs1 (Rae et al. 1999). Our previous

data are consistent with this concept since we found

that supplementation with copper endows yeast that is

lacking Ccs1 with Sod1 activity (Li et al. 2010). This

Ccs1-independent activation of Sod1 likely involves

GSH, as it does in mammals (Carroll et al. 2004).

Recently, Winkler’s group discovered a multifunc-

tional chaperoning role for Ccs1 during Sod1 activa-

tion: Ccs1 delivers Cu? to an entry site at the

Sod1�Ccs1 interface upon binding, and then to the

Sod1 active site by a thermodynamically-driven

affinity gradient. The Sod1�Ccs1 interaction also

promotes high-affinity Zn2? binding in Sod1; as a

result, Sod1 is fully activated (Boyd et al. 2019;

Fetherolf et al. 2017). It has been reported that a

fraction of active Sod1, along with Ccs1, localizes at

the mitochondrial intermembrane space (IMS) and

nucleus, where it protects yeast cells against oxidative

damage (Sturtz et al. 2001), mediates copper-sensing

activation of Mac1 (Wood and Thiele 2009), and

functions as a transcription factor to regulate the

expression of oxidative stress-responsive genes

(Tsang et al. 2014).

Golgi pathway

All copper-dependent enzymes from the secretory

pathway are loaded with copper ions on the Golgi

apparatus and thus activated. The copper-transporting

P-type ATPases translocate cuprous ions from cyto-

plasm to the lumen of the Golgi body, making them

available for enzyme assembly (Yuan et al. 1995). In

yeast cells, this P-type ATPase is called Ccc2, which
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cannot directly obtain free cuprous ions from cyto-

plasm, but accepts them through a copper chaperone,

Atx1 (antioxidant 1) (Banci et al. 2001; Huffman and

O’Halloran 2000). Atx1 was originally identified as a

multi-copy suppressor of oxidative damage in yeast

lacking SOD (Lin et al. 1997). The crystal structures

demonstrate that Atx1 proteins dimerize to bind Cu?

(Lee et al. 2017). Though it was conventionally

assumed that Ctr1 passes Cu? to Atx1 via direct

interaction between both proteins (Xiao et al. 2004), it

has been reported that in the presence of copper, GSH

induces dimerization of Atx1 and formation of a

complex containing two Atx1, two Cu(I), and two

GSH (Miras et al. 2008). This indicates that Cu?

incorporated by Ctr1 associates with GSH, which

further delivers the metal ion to chaperon Atx1. In

Golgi compartments, the secretory cuproproteins are

loaded with Cu? before they are targeted to specific

organelles or secreted out of the cell (Fu et al. 1995;

Lin et al. 1997; Pufahl et al. 1997; Yuan et al. 1995).

The multicopper oxidase Fet3, which is required for

high-affinity iron uptake, is metalized via this route

(Askwith et al. 1994; Yuan et al. 1995). Thus, this

Golgi pathway of copper delivery is required for iron

uptake (Lin et al. 1997).

Mitochondrial pathway

Cytochrome c oxidase (CcO) is the terminal oxidase in

the mitochondrial respiratory chain, catalyzing the

transfer of electrons to oxygen to form H2O (Kloeck-

ener-Gruissem et al. 1987). According to our previous

study as well as data from other groups, copper

deficiency leads to an impairment of CcO enzymatic

activity (Li et al. 2010). Two copper binding sites were

housed in the core subunits of CcO: Cox1 and Cox2

(Marechal et al. 2012). Incorporation of Cu? into both

sites requires multiple chaperones. Sco1 or Sco2

locates on the inner membrane of mitochondria and

passes copper atoms to the copper A (CuA) site of

Cox2 (Beers et al. 1997; Glerum et al. 1996a, b). It was

traditionally assumed that Cox17 shuttles between

cytoplasm and mitochondrial lumen, delivering

cytosolic cuprous ions to Sco1 or Sco2 (Balatri et al.

2003; Lode et al. 2002; Nittis et al. 2001; Rentzsch

et al. 1999; Schulze and Rodel 1988, 1989). However,

recent reports suggest that Cox17 is imported unfolded

into mitochondrial IMS and receives Cu from the

mitochondrial lumen, not from the cytosol (Banci et al.

2009; Cobine et al. 2006). Cox17 also delivers copper

to Cox11, which acts as a copper donor to the copper B

(CuB) site of Cox1 (Hensgens et al. 1984; Hiser et al.

2000; Horng et al. 2004; Tzagoloff et al. 1990). In

yeast, Cox17 is of great importance for normal growth

and metabolism, since the deletion of Cox17 leads to

defects in the respiratory chain. However, it seems that

copper can partially bypass Cox17 and be loaded to

CcO, given that supplementation with copper in the

culture medium can make Cox17 mutant cells viable

(Giaever et al. 2002).

The finding of a labile copper pool within the

mitochondrial matrix may explain the Cox17-inde-

pendent metallation of CcO (Cobine et al. 2004, 2006;

Dodani et al. 2011; Vest et al. 2016). These IMS

copper ions can be used to metalize CcO and

mitochondrial SOD1 (Cobine et al. 2006). Cobine’s

group also found that the mitochondrial carrier

proteins Pic2 and Mrs3 are implicated in copper

importation into mitochondria: Pic2- or Mrs3-defi-

cient yeast strains exhibit defects in mitochondrial

copper uptake and copper-dependent growth pheno-

types owing to impaired CcO activity. Deletion of

both genes (pic2Dmrs3D) leads to a more severe

respiratory growth defect (Vest et al. 2013, 2016).

However, it is still unclear where Pic2 and Mrs3 get

copper from, since there is virtually no free copper in

the cell, and it has been demonstrated that copper is

associated almost exclusively with chaperones or the

copper-binding proteins/peptides (Rae et al. 1999). In

addition, the identity of the matrix copper ligand is

unknown, since GSH was eliminated by Cobine et al.

Organic acids such as citrate and oxaloacetate may act

as ligands of these Cu? ions (Cobine et al. 2004).

Nuclear pathway

As discussed below and shown in Fig. 1, fluctuation of

the intracellular Cu? concentration regulates copper-

sensing transcription factors Ace1 and Mac1. It has

been reported that metallation of Ace1 and Mac1

occurs independently within the nucleus (Keller et al.

2005). This indicates the presence of a labile nuclear

Cu? pool (Carroll et al. 2004). However, it is unclear

how copper ions are transported into the nucleus. On

the other hand, over-expression of the Crs5 metalloth-

ionein in this subcellular compartment does not

compromise Mac1 Cu-responsive regulation (Keller

et al. 2005), which is indicative of the inability of this
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labile nuclear Cu? pool to promote Mac1 metallation.

Wood et al. reported that Sod1 and Ccs1 partially

localize to the yeast nucleus, and both molecules are

required for the activation of Mac1 (Wood and Thiele

2009). This indicates that copper chaperone Ccs1 may

deliver copper into the nucleus and activate Sod1,

whose activity is involved in copper deficiency-

induced Mac1 DNA binding. Furthermore, they found

that C. elegans Sod1, which is copper-metalized and

activated independently of Ccs1, can also rescueMac1

activation and metallation in a Ccs1-independent

manner in Saccharomyces cerevisiae (Wood and

Thiele 2009). Currently, the ways that Mac1 and

Ace1 are metalized remain unclear. In addition, the

nature or mechanism of Cu transport into the nucleus

remains obscure, in contrast to the existing body of

knowledge on the routing of Cu by cytosolic chaper-

ones and transporters between the secretory compart-

ment, vacuole and mitochondria.

Copper homeostasis in yeast

Due to the dual effects of copper ions in cells, it is

crucial to maintain a relatively constant concentration

of cellular copper. On the one hand, there should be

enough copper ions in the cell to execute normal

physiological metabolism; on the other hand, over-

intake of copper ions should be prevented to avoid

toxicity. Organisms from yeast to humansmaintain the

cellular homeostasis of copper mainly by regulating

the gene expressions of the transport and detoxifica-

tion systems (Winge et al. 1998).

Genes involved in copper homeostasis in yeast are

regulated mostly through two transcription factors,

Ace1 and Mac1, which are positively and negatively

regulated by copper ions, respectively. When a cell is

abundant in copper, Ace1 (also called Cup2) is loaded

with cuprous ions and subsequently activated (Buch-

man et al. 1989; Thiele 1988). As a consequence,

proteins responsible for copper detoxification, such as

metallothioneins (encoded by CUP1-1, CUP1-2 and

CRS5) and Sod1 are up-regulated to neutralize the

excess metal ions and remove harmful free radicals

(Mehta et al. 2018; Rae et al. 1999). Mac1 contains an

amino-terminal DNA binding domain and a carboxyl-

terminal activation domain and is localized to the

nucleus (Serpe et al. 1999). A high concentration of

copper ions can inactivate Mac1, whose activity is

essential to the expression of copper transporter genes

including Ctr1, Ctr3, Fre1, Fre2, and Fre7. Without

Cu? binding to Mac1, this transcription factor occu-

pies copper responsive elements (CuREs) in the

promoters of its target genes and promotes their

expression, facilitating the uptake of copper ions

(Labbe et al. 1997; Martins et al. 1998). As mentioned

above, Sod1 activity is essential to Mac1-mediated

copper sensing: Mac1 is transcriptionally inactive in

mutants that lack Sod1 or its copper chaperone Ccs1

(Wood and Thiele 2009). In response to mild DNA

damage, Mac1 is activated via reduction of cysteine

residues in its trans-activation domain, while severe

DNA damage induces reversible oxidation of these

residues and a consequent repression of Mac1 trans-

activity. Both Sod1 and checkpoint kinase Rad53 are

required for an unknown aspect of Mac1-medi-

ated Ctr1 expression in response to mild DNA dam-

age. Increased Ctr1 proteins can enhance copper

influx, which can ensure Sod1 activity and Rad53

signaling in response to DNA damage in yeast (Dong

et al. 2013). Recently, Alexandraki’s group found that

another checkpoint protein, Rad9, directly binds with

Mac1 under non-DNA-damaging conditions, sup-

pressing its DNA binding and trans-activation func-

tions. On the other hand, Rad53 also localizes to the

Ctr1 coding region in a Rad9-dependent manner

(Gkouskou et al. 2020). These data suggest a connec-

tion between copper-responsive transcription

and the DNA repair pathway. The underlying mech-

anism remains obscure.

Mobilization of stored cuprous ions is another

aspect of copper homeostasis (Rees et al. 2004; Rees

and Thiele 2007). According to our investigation, the

metal-sensing transcription factors Mac1 and Aft1

cooperatively activate the expression of vacuolar

copper transporter Ctr2 upon deficiency of cytosolic

Cu?, making yeast resistant to copper starvation (Liu

et al. 2012; Qi et al. 2012).

Regulation of the key factors in copper homeostasis

can also occur at a post-translational level. It has been

reported that Ctr1 proteins are stable under a low level

of intracellular copper and unstable at a high concen-

tration of copper ions (Ooi et al. 1996). The copper

sensing function of Mac1 is required in the degrada-

tion of Ctr1 at an elevated copper level (Yonkovich

et al. 2002). Recently, Bodiga’s group found that the

protein level of Ctr1 may be positively regulated by

mitochondrial cuprochaperone Sco1. In Sco1-
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deficient yeast strains, copper restriction failed to

increase the Ctr1 protein level, though Ctr1 mRNA

was upregulated (Bodiga et al. 2018). This indicates

that mitochondrial utilization of copper, which is

mediated by Sco1, may up-regulate Ctr1 at the protein

level via an as-yet-unknown mechanism. More impor-

tantly, this Sco1-dependent Ctr1 expression and

consequential copper influx have also been found in

humans (Hlynialuk et al. 2015; Leary et al. 2007). On

the other hand, the stability of Mac1 itself is also

regulated by the concentration of copper ions; when

the intracellular copper concentration goes up, Mac1

protein is prone to degradation (Zhu et al. 1998).

Taken together, yeast cells evolve into a delicate

system to maintain copper homeostasis (Fig. 1). In the

presence of a high level of copper ions, genes involved

in copper detoxification are switched on, while

proteins responsible for copper incorporation are

down-regulated at either the transcriptional or post-

translational level. (Jungmann et al. 1993). On the

contrary, upon deficiency of this metal, copper sensing

transcription factors will down-regulate genes for

copper detoxification and enhance the expression of

proteins involved in copper intake or mobilization

(Georgatsou et al. 1997; Hassett and Kosman 1995;

Labbe et al. 1997; Yamaguchi-Iwai et al. 1997).

Conclusions

In summary, Saccharomyces cerevisiae has evolved

delicate mechanisms for reaching copper homeostasis.

Membrane proteins Fre1 and Fre2 mediate the reduc-

tion of extracellular Cu2? into Cu?, which can be

incorporated by the high-affinity transporters Ctr1 or

Ctr3. Cu2? can be directly transported by Fet4 in a

low-affinity manner. Recent studies suggest that

glutathione (GSH) is the first acceptor of Cu? after it

enters into the cell. Due to the sequestration effect of

GSH, MTs, and vacuoles, there are almost no free

copper ions present in the cell. Cu? incorporated by

Ctr1/3 can be targeted to different pathways. In

cytosol, superoxide dismutase Sod1 is metalized and

activated by Cu? via its chaperone Ccs1. This process

has recently been elucidated by studies revealing that

Sod1 and Ccs1 also reside in mitochondria and nuclei

to scavenge free radicals and that both proteins are

involved in Mac1-dependent transcription. Atx1 is a

chaperone targeting Cu? into the Golgi body. GSH

induces dimerization of Atx1 and passes Cu? to it via

direct interaction. Then, P-type ATPase Ccc2 obtains

Cu? from Atx1 and pumps Cu? into the Golgi body,

where various cuproproteins, including Fet3, are

loaded with Cu?. Copper chaperone Cox17 shuttles

between cytoplasm and mitochondrial lumen, deliv-

ering Cu? to Sco1/2 or Cox11 on the inner mitochon-

drial membrane. Cox11 and Sco1/2 present Cu? to

different subunits of cytochrome c oxidase (CcO) to

activate this essential enzyme in the respiratory chain.

It was recently reported that Pic2 and Mrs3 mediate

copper importation into mitochondria to generate a

labile copper pool within the mitochondrial matrix,

which may account for Cox17-independent metalla-

tion of CcO. However, the details remain obscure. It is

unclear how copper ions are imported into the nucleus

and how they are sensed by the copper-responsive

transcription factors Mac1 and Ace1. Ace1 can

mediate the transcription of MT-encoding genes and

Sod1 in response to increased cellular Cu?. Copper

deficiency induces Mac1-dependent transcription of

copper transport components including Fre1/2 and

Ctr1/3. A high concentration of Cu? inactivates Mac1

or induces degradation of Mac1 and Ctr1. Mac1 is also

involved in the transactivation of Ctr2 to mobilize

vacuolar copper upon copper deficiency. On the other

hand, several new pieces of data reveal that Mac1-

dependent transcription is not only involved in copper

uptake but also DNA damage and checkpoints. In

future, these unresolved issues should be explored to

thoroughly unravel the mechanism of copper metabo-

lism in yeast. This will undoubtedly be helpful in

elucidating the corresponding mechanism in mam-

mals and unveiling the mechanisms of copper-related

human disease.
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