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Abstract Ceruloplasmin (CP) is a mammalian blood

plasma ferroxidase. More than 95% of the copper

found in plasma is carried by this protein, which is a

member of the multicopper oxidase family. Proteins

from this group are able to oxidize substrates through

the transfer of four electrons to oxygen. The essential

role of CP in iron metabolism in humans is particularly

evident in the case of loss-of-function mutations in the

CP gene resulting in a neurodegenerative syndrome

known as aceruloplasminaemia. However, the func-

tions of CP are not limited to the oxidation of ferrous

iron to ferric iron, which allows loading of the ferric

iron into transferrin and prevents the deleterious

reactions of Fenton chemistry. In recent years, a

number of novel CP functions have been reported, and

many of these functions depend on the ability of CP to

form stable complexes with a number of proteins.

Keywords Ceruloplasmin � Protein–protein
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Introduction

Ceruloplasmin (CP), which was described for the first

time almost 75 years ago (Holmberg 1944), was

subsequently characterized in detail (Holmberg and

Laurell 1948, 1951) and named according to its blue

colour and the biological fluid (i.e., blood plasma)

where it is usually present as a component of the alpha-

2-globulin fraction. When the capacity of CP to

oxidize Fe2? to Fe3? was discovered and the physi-

ological role of this reaction was established (Osaki

et al. 1966), the protein received a systematic name

and number from the Enzyme Commission, ferro-O2-

oxidoreductase (EC 1.16.3.1). An abbreviated term,

ferroxidase, is commonly used. CP is one of the so-

called ‘‘blue proteins’’ that have a common evolution-

ary history. These proteins include a small group of

‘‘blue oxidases’’ (comprising CP). Solutions of these

proteins have intense blue colour due to the presence

of type I copper with an intense absorption at 610 nm

(see below). The blue oxidases display considerable

amino acid sequence homology and have a similar

polypeptide chain folding pattern, a so-called ‘‘cupre-

doxin’’ structure.

CP is found in the blood plasma of virtually all

mammals; however, to date, the human protein has

been studied the most. Hence, a large portion of the

data presented in this manuscript refers to human CP.
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Basic structural features of ceruloplasmin

A controversy concerning the number of polypeptide

chains in CP arose from early studies that proposed

dimeric (Shokeir 1973), tetrameric (Simons and Bearn

1969; Freeman and Daniel 1973; McCombs and

Bowman 1976) and octameric (Poulik 1962, 1968;

Kasper and Deutsch 1963; Poillon and Bearn 1966)

structures of CP. The hypothesis of a single-chain

structure, first proposed by Rydén (1972), was

confirmed by sequencing a polypeptide composed of

1046 amino acids (Takahashi et al. 1984). N-glycoside

bonds link oligosaccharides to Asn residues in the

polypeptide chain. The predominant species (CP-I)

contains four oligosaccharides shaped as two or three

antennas, and the minor form (CP-II) has only three

sugar-binding sites (ibid.). Soon after these findings,

the gene encoding single-chain CP was characterized

(Koschinsky et al. 1986; Royle et al. 1987).

The molecular mass of fully glycosylated CP was

determined in a crystallographic study as

132 ± 4 kDa (Magdoff-Fairchild et al. 1969).

Approximately 120 kDa of that molecular mass

accounts for the protein, while approximately

12 kDa accounts for the carbohydrates.

An important feature of CP is its internal homology.

The polypeptide chain consists of three homologous

cupredoxin domains (Ortel et al. 1984). Each of the

domains contains two structurally different parts.

Hence, CP comprises six domains, of which the

plastocyanin-like even units differ from the odd units

that are also homologous to one another but have no

similarity with domains 2, 4, and 6 (Fig. 1a).

An X-ray study of human CP crystals at 3.1 Å

resolution revealed six tightly bound copper ions

(Zaitseva et al. 1996) (Fig. 2) classified into three

types according to their spectral features (Fee 1975).

The copper ion ligands are the same as those in other

multicopper oxidases (laccase and ascorbate oxidase),

i.e., His or a combination of His ? Cys/Met residues.

The three copper ions in CP belong to type I with

strong absorption at 610 nm (‘‘blue’’ copper). These

copper ions are coordinated by two nitrogen atoms

from His imidazole rings, one sulfur atom from Cys,

and another sulfur atom from Met, providing a

distorted tetrahedral geometry. This structure may be

considered intermediate between the shape of a

regular tetrahedron and the square-planar coordination

of Cu2? in low-molecular complexes and in non-blue

copper proteins (Lu et al. 1993). The square-planar

structure is typical of the binding site for type II Cu2?

in CP. The remaining two type III Cu2? ions are

located in close proximity to one another; the uncou-

pled electrons in their outer orbitals are compensated

for, which forms a diamagnetic centre in CP. These

diamagnetic ions together with type II Cu2? form a

trinuclear cluster (Figs. 1c, 3) that stabilizes the spatial

structure of CP by buckling the holo-protein N- and C-

termini (Vachette et al. 2002), which sustains the

compact folding of the molecule (ca. 214 9 85 Å).

The distribution of the copper ions among the CP

domains is shown in Fig. 1a and c. In blood plasma,

the tightly bound copper ions are not easily released
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Fig. 1 Schematic

representation of the six-

domain structure of CP, the

location of type I, II and III

copper ions in its molecule,

and the peptide bonds most

susceptible to proteolysis
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from CP. To leave the protein, Cu2? must usually be

reduced through the interaction of CP with another

protein or with the cell surface. Extraction of the

copper ions in vitro requires strong reducing agents

(Vassiliev et al. 1997), and after the extraction, the

overall conformation of CP becomes less compact

(Fig. 1d).

Copper ions are incorporated into plasma CP during

its biosynthesis in hepatocytes (Sato and Gitlin 1991;

Terada et al. 1995; Hellman et al. 2002). The ‘‘copper

pump’’ ATP7B (the Wilson disease protein) within the

trans-Golgi complex acquires Cu from the metal-

lochaperone ATOX1 and loads it into CP (Lutsenko

et al. 2007). The liver is the principal producer of CP,

though some other organs synthesize the protein, e.g.,

the mammary glands, placenta, brain (plexus chor-

oideus), and kidneys (Thomas et al. 1989; Wooten

et al. 1996; Donley et al. 2002; Linder 2010). In

addition, mononuclear cells and macrophages produce

CP under inflammatory conditions (Bielli and Cal-

abrese 2002; Banha et al. 2008; Qi et al. 2016).

However, extrahepatic CP species are mostly mem-

brane-linked, anchored to the cell surface by the

glycosylphosphatidylinositol (GPI) moiety, and have

an extra stretch of 30 amino acids at the anchored

protein C-terminus that replace five C-terminal amino

acids from plasma CP due to alternative splicing (Patel

and David 1997; Patel et al. 2000). A peculiar form of

GPI-CP with 4 extra amino acids was found in the

placenta (Yang et al. 1990). Overall, GPI-linked CP is

present in quite a few organs, including the liver,

where it is exposed on the surface of hepatocytes

(Mostad and Prohaska 2011; Marques et al. 2012).

Once purified, GPI-CP has ferroxidase activity

(Mostad and Prohaska 2011) and is assumed to carry

all 6 tightly bound copper atoms.

A number of studies have identified binding sites

for loosely bound Cu2? (‘‘labile’’ copper) (Zaitseva

et al. 1996; Lindley et al. 1997; Mukhopadhyay et al.

1997; Bento et al. 2007). The binding sites for labile

copper differ from those in which Cu2? is tightly

bound and can be occupied by various metals, such as

Fe, Co, and Ni (Lindley et al. 1997; Samygina et al.

2008). A recent paper by Samygina et al. (2017)

presented data on rat CP and revealed a novel binding

site for labile copper. Amino acid sequences of human

and rat CP are highly homologous; however, the newly

found binding site for labile copper appears to be a

specific feature of the rat protein and makes rat CP

more resistant to limited proteolysis.

Human CP is quite vulnerable to proteolytic

enzymes (Moshkov et al. 1979; Sang 1995). For

several years, the products of proteolytic cleavage

isolated from human plasma were considered CP

subunits, and obtaining proof of the single-chain

structure of CP required considerable efforts (Rydén,

1971; Kingston et al. 1977). The limited proteolysis of

CP always follows the same (or very similar) pattern,

where the first cleavage occurs within the peptide loop

between domains 5 and 6 (aa 885-892) which is

Fig. 2 A cartoon representation of human CP domain structure

and the six copper ions, with TNC as ‘trinuclear centre’.

(Modified from Samygina et al. 2017)

Fig. 3 The trinuclear centre of human CP formed by His

residues, in which nitrogen atoms are coloured blue; copper ions

are light-brown and dioxygen is pictured as red stick. (Modified

from Samygina et al. 2017)
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exposed outward from the compact protein globule,

thus serving a perfect target for trypsin-like proteases.

After this first proteolytic damage, the globule may

become partially unfolded, at least to an extent that

allows several other peptide bonds to become exposed

and cleaved, thus producing a certain number of

peptide fragments that vary in size (Fig. 4). If certain

precautions are taken, non-proteolysed human CP can

be purified from fresh serum (Sokolov et al.

2005a, 2012). The majority of the data on CP

proteolysis is based on in vitro experiments with

highly purified non-fragmented protein. It should be

noted that CP subjected to limited proteolysis does not

dissociate into fragments and maintains a relatively

compact structure while retaining its copper. Separa-

tion of the fragments in vitro requires disulfide bond

reduction and treatment with denaturing agents (Pro-

zorovski et al. 1982). Until recently, no specific

protease had been identified as the CP cleavage

effector; hence, the cleavage was assumed to occur

due to a coagulation factor, e.g., plasmin, which

attacks CP during the purification process (Moshkov

et al. 1979). The most convincing data so far were

obtained in 2015, indicating that thrombin is the

protease that causes the limited proteolysis of CP both

in vitro during purification and in vivo, at least at

inflammatory foci (Sokolov et al. 2015a). Limited

proteolysis was shown to abrogate the inhibitory

effects of CP on various proinflammatory enzymes

including myeloperoxidase (Panasenko et al. 2008;

Sokolov et al. 2008; Samygina et al. 2013), eosinophil

peroxidase (Sokolov et al. 2015b), and 5-lipoxygenase

(Sokolov et al. 2010).

Functions of ceruloplasmin

Bielli and Calabrese (2002) had every reason to term

CP a ‘‘moonlighting protein’’ because of its multi-

functionality. Indeed, presently, this protein has a

number of known functions, and some of the functions

have been revealed in the last two decades. The

physiological role of CP is not limited to Fe2?

oxidation (Fig. 5), even though a deficiency in the

CP gene in humans (aceruloplasminaemia) provokes

oxidative stress from the accumulation of ferrous iron

in tissues (Vassiliev et al. 2005). The details of CP

participation in iron metabolism are discussed below.

CP has activities of ferroxidase (Osaki 1966),

cuproxidase, which catalyses Cu? oxidation (Stoj and

Kosman 2003), superoxide dismutase (Vasilyev et al.

1988), glutathione-linked peroxidase (Kim and Park

1998) and NO-oxidase (Shiva et al. 2006); accord-

ingly, CP actively precludes the formation and

persistence of free radicals. These properties make

CP an effective antioxidant that prevents oxidative

damage to proteins and lipids (Samokyszyn et al.

1989). Plasma concentrations of CP in inflammation

can increase from 3 to 10 lM, suggesting a role for CP

in the regulation of inflammatory reactions. The

N
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N

N
90 kDa R481                               25 kDa 19 kDa

N
64 kDa 25  kDa 25 kDa 19 kDa

N
64 kDa 50 kDa 19 kDa

N
46 kDa 18 kDa 25  kDa 25 kDa 19 kDa

110-116 kDa R481          R701                              19 kDa

Fig. 4 The scheme of

human CP proteolytic

cleavage. Arrows mark the

sites of a protease attack
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proinflammatory activities of certain enzymes are

suppressed when they form complexes with CP. These

enzymes include myeloperoxidase (Sokolov et al.

2008; Samygina et al. 2013), members of the serpro-

cidin family (elastase, cathepsin G, and proteinase 3)

(Sokolov et al. 2007b), matrix metalloproteinases 2

and 12 (Sokolov et al. 2009a), 5-lipoxygenase

(Sokolov et al. 2010), and eosinophil peroxidase

(Sokolov et al. 2015b). Importantly, the inhibition of

the mediators of inflammation listed above is not

directly linked to CP oxidase activity. As specified by

Chapman et al. (2013), ceruloplasmin has both

antioxidant and prooxidant properties. Even the fer-

roxidase activity of CP that has been regarded as an

antioxidant property of CP for a long time, was shown

to evoke its prooxidant effects, at least in some cases,

such as in patients with localized aggressive peri-

odontitis. Neutrophils from patients synthesize CP,

which oxidizes Fe2? to Fe3?, and the ferric ions

activate NADH oxidase, increasing the production of

reactive oxygen species (Iwata et al. 2009).

It is generally assumed that the functions of CP

strongly depend on the presence of copper ions in the

CP molecule (Linder 2016). This assumption appears

to be correct not only in the case of direct participation

of the copper ions in CP functions, such as substrate

oxidation, but also in the case of indirect impacts, e.g.,

the absence of some tightly bound Cu2? or occupancy

of the corresponding sites in CP by labile copper.

These variations in CP structure modify the spectrum

of its functions.

Of the six tightly bound copper atoms, one ‘‘blue’’

and three ‘‘non-blue’’ Cu2? ions form a catalytic

centre typical of blue oxidases (Rydén 1982; Zaitseva

et al. 1996). This centre accomplishes a four-electron

transfer to oxygen (Farver et al. 1999), with two water

molecules as the end products. The precise role of the

two remaining type I ions in the CP molecule should

be explored.

The functions of CP have been generally viewed as

enzymatic based on its capacity to transfer electrons

from various substrates to oxygen (Linder 2016).

Numerous substrates have different chemical struc-

tures and therefore bind to distinct binding sites on the

CP molecule (Zaitseva et al. 1996; Zaitsev et al. 1999;

Bielli and Calabrese 2002; Sokolov et al. 2009b). This

feature is important considering that interactions of CP

with other proteins to form complexes often cause

modifications of its substrate-binding sites, which, in

turn, strongly affect its enzymatic functions. Some-

times, the binding sites may become inaccessible and

substrates are not oxidized; this happens to biogenic

amines when CP forms a complex with lactoferrin

(LF) (Sokolov et al. 2009b). Otherwise, conforma-

tional changes in CP resulting from interactions with

partner proteins can improve the binding and accel-

erate the oxidation of Fe2? or ortho-phenylenediamine

(ibid.). It appears likely that the high-affinity binding

site for LF includes amino acid ligands for the

trinuclear cluster of copper atoms in the CP catalytic

centre (Sokolov et al. 2007a, b), thus explaining the

marked changes in the oxidase activity of CP.

However, CP also causes apparent alterations in the

structure and functions of proteins with which it forms

complexes. The ability of CP to engage in selective

protein–protein interactions resulting in the formation

of somewhat stable complexes should be regarded as

instrumental for the realization of a number of

functions independent of its enzymatic properties

(see below).

The catalytic activity of CP was generally outlined

by the scientists who discovered CP and described its

capacity to oxidize aryldiamines, diphenols, and other

substrates including ascorbate, hydroxylamine, and

thioglycolate (Holmberg and Laurell 1948). Earl

Frieden and co-workers studied the CP-catalysed

oxidation of a number of substances in detail and

proposed the following three major groups of sub-

strates (McDermott et al. 1968):

(1) Fe2? is the substrate with the highest Vmax and

the lowest Km;

(2) a long list of bifunctional aromatic amines and

phenols (including two groups of biogenic

amines, i.e., epinephrine with 5-hydroxyindole

derivatives and phenothiazine-derived

substances);

(3) numerous reductants capable of reducing Fe3?

or the partially oxidized (free radical) interme-

diate forms of the substrates from group 2.

2Fe2+ +  2CP-Cu2+ 2Fe3+ +  2CP-Cu+

2Fe3+ +  Apo-TF  TF-Fe3+ (Holo-TF; absorp�on at 460 nm)

2CP-Cu+ + 1/2O2 +2H+ 2CP-Cu2+ +  H2O (O2 uptake)  

Fig. 5 The ferroxidase reaction catalyzed by CP according to

Osaki (1966)
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These substances are considered

pseudosubstrates.

In principle, any reductant can act as a CP substrate

provided that it is able to donate an electron to the

oxidized enzyme without blocking its own autooxi-

dation (Frieden 1980).

A relatively large spectrum of substrates oxidized

by CP was thoroughly studied by Young and Curzon

(1972). The authors investigated 37 substrates, and the

Vmax values obtained for each of the substrates

differed by less than 8-fold (1.3–10.8 e- Cu-1 min-1

at pH 5.5; Kcat = 0.15 - 1.26 s-1). For 20 substances

in that group, the variability in their Km values was

over 6 9 103. The authors concluded that the rate

limit of the oxidase reaction catalysed by CP does not

depend on the nature of the substrate.

The ferroxidase reaction is similar in this regard; in

this reaction, CP oxidizes Fe2? to Fe3?, and this

reaction is usually considered separate from the

oxidation of other substrates (Fee 1975). The ferrox-

idase activity of CP was described for the first time in

the early 1960s (Curzon and O’Reilly 1960; Curzon

1961) and was thoroughly studied later in the labora-

tory of Earl Frieden (Osaki et al. 1966; Osaki and

Walaas 1968; McKee and Frieden, 1971). Since then,

this activity has been regarded as the principal feature

of CP and has been described as ‘‘ferro-O2-oxidore-

ductase’’ activity.

The first work by Frieden’s group (Osaki et al.

1966) indicated that CP plays an important role in iron

metabolism. Indeed, the authors showed a consider-

able increase in iron loading into apo-transferrin

accompanied by stoichiometric consumption of oxy-

gen in the presence of pure CP. The impact of CP on

iron metabolism was confirmed by the work of

Miyajima et al. (1987). They were the first to describe

an autosomal recessive neurological disorder in a

52-year-old woman who manifested symptoms resem-

bling Parkinson’s disease and had blepharospasm,

retinal degeneration, and diabetes mellitus. The

patient and two relatives had extremely low plasma

CP levels. Computer tomography revealed high-den-

sity areas in the patient’s basal ganglia and substantia

nigra. A liver scan also suggested the accumulation of

iron, and serum ferritin levels were very high. A

ferrokinetic analysis with 59Fe showed the prolonged

retention of the injected isotope in the liver and spleen.

The authors suggested that iron deposition in the

neurons of the basal ganglia and in other organs was

caused by the lack of CP and resulted in the observed

symptoms.

The involvement of CP in iron metabolism became

more evident when aceruloplasminaemia emerged as a

nosology and patients were thoroughly examined.

Logan et al. (1994) were the first to report an Irish

family in which two brothers had no detectable CP in

their serum; the CP levels were also strongly dimin-

ished in sera from twelve other relatives. Both brothers

had low serum iron levels, while the liver iron content

was increased. The brothers presented with dementia

and diabetes mellitus. The authors determined the

autosomal recessive transmission of the trait and

revealed the genetic linkage between CP deficiency

and specific polymorphic markers flanking the ceru-

loplasmin gene on chromosome 3q25. Treatment with

pure CP significantly increased serum iron in the index

patient.

Then, two papers from Nobuo Yanagisawa’s group

described a Japanese family with extremely low levels

of plasma CP; the family manifested extrapyramidal

disorders, cerebellar ataxia, and diabetes mellitus

(Morita et al. 1995; Yoshida et al. 1995). Excessive

iron deposition was found in post-mortem specimens

from the brain, liver, and pancreas of the proband. The

lack of CP function was most likely caused by a

mutation affecting CP pre-mRNA splicing; the muta-

tion introduced a premature termination codon that led

to subsequent truncation of CP at the C-terminus.

At the same time, Jonathan Gitlin and co-workers

published a detailed molecular analysis of genetic

material obtained from the patient previously studied

by Miyajima et al. in 1987 and her daughter (Harris

et al. 1995). In both cases, DNA sequence analysis

revealed a 5-bp insertion in exon 7 of the CP gene,

resulting in a frame-shift mutation and a truncated

open reading frame. In this work, aceruloplasmi-

naemia was described for the first time as ‘‘an

autosomal recessive disorder of iron metabolism’’.

Gitlin’s group performed molecular analysis on

aceruloplasminaemia using DNA samples from

affected humans (Klomp and Gitlin 1996; Takahashi

et al. 1996; Harris et al. 1996, 1998) and also modelled

the condition in mice (Harris et al. 1999). Having

obtained CP(-/-) mice, the scientists observed

progressive accumulation of iron in the animals by

one year of age and registered a significant increase in

serum ferritin and iron content in the animals’ liver
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and spleen. The animals had abundant stores of iron in

reticuloendothelial cells and hepatocytes, and the

efflux of iron from these cells was strongly reduced;

the condition was efficiently corrected by administra-

tion of CP. Additionally, CP provided for the egress of

iron from duodenal epitheliocytes (Cherukuri et al.

2005) and glial cells (De Domenico et al. 2007). These

results underscored the role of CP in the mobilization

of iron from storage cells, thus validating the primary

data obtained in Earl Frieden’s laboratory (Osaki and

Johnson 1969; Osaki et al. 1971).

At the same time, another facet of CP’s participa-

tion in iron metabolism was studied by Steven Aust

and co-workers, who showed that CP is needed not

only to release the deposited iron but also to secure

iron storage by loading the metal into apo-ferritin (Van

Eden and Aust 2000). The authors also reported a

protein–protein interaction resulting in the formation

of a CP:ferritin complex during iron loading into

ferritin (Reilly et al. 1998).

Protein–protein complexes formed with CP

and their role in pathological processes

Starting from the 1990s, the interactions of CP with

other proteins were described, expanding the list of

possible CP functions to include participation in iron

metabolism by interaction with ferritin (Van Eden and

Aust 2000), ferroportin 1 (Jeong and David 2003), and

lactoferrin (Zakharova et al. 2000); regulation of

neural transmission and inflammation by interaction

with neuropeptide PACAP38 (Tams et al. 1999) and

macrophage migration inhibitory factor (Meyer Sieg-

ler et al. 2006), respectively; inhibition of the proox-

idative properties of myeloperoxidase (MPO) by

forming a complex with MPO (Segelmark et al.

1997); and regulation of blood clotting by interaction

with protein C (Walker and Fay 1990). The assump-

tion of the latter interaction was supported by the fact

that activation of CP-like coagulation factors FV and

FVIII via limited proteolysis allows these proteins to

adopt conformations that favour the formation of their

complexes with FIXa and FXa; these complexes

participate in the subsequent activation of the coag-

ulation cascade. Anticoagulant protein C is able to

inhibit coagulation through FVa and FVIIIa proteol-

ysis. Hence, it was suggested that CP, which has

regions of amino acid homology to the protein

C-binding sites of FVa and FVIII (Church et al.

1984; Pemberton et al. 1997; Shen et al. 2008),

competes with these factors for binding with protein C

and thus participates in the regulation of blood

clotting. Indeed, the complex formed by protein C

and CP increases the ferroxidase activity of CP by

fivefold and is uncoupled by the HAGMETTYTV

decapeptide that mimics the sequence between amino

acids 1028 and 1037 in CP. Concomitantly, the

elevated ferroxidase activity of CP was abrogated.

The possibility of direct involvement of CP in the

regulation of blood coagulation should be thoroughly

explored, even though the data on the formation of the

CP:protein C complex appear quite reliable.

The first report describing CP interactions with LF

was published in 2000; LF is a protein in the

transferrin family detected in milk and other secretions

as well as in neutrophilic leukocytes (Zakharova et al.

2000). The authors observed an unusual retardation in

CP mobility when breast milk proteins were subjected

to electrophoresis. This and subsequent studies

detected a strong complex formed in vitro by CP and

LF isolated either from breast milk or lacrimal fluid

(Pulina et al. 2002). The latter publication suggested

that CP facilitates iron incorporation into apo-LF; this

was subsequently confirmed in a study of CP ferrox-

idase activity, which was markedly increased by LF

(Sokolov et al. 2005b, 2009b). The study also showed

that loading of iron into apo-LF by CP is much faster

than loading of iron into apo-transferrin from blood

plasma; apparently, this is an important feature of CP

as a well-known participant in the acute phase of

inflammation. It was suggested that LF released from

neutrophils in inflammatory foci mostly as apo-protein

rapidly forms a complex with CP and captures Fe3?

oxidized by CP (Sokolov et al. 2005b).

The stable CP:LF complex was subsequently

isolated from breast milk and its 1:1 stoichiometry

was established (Sokolov et al. 2006). This finding was

confirmed by a small-angle X-ray scattering study

(Sabatucci et al. 2007). The authors also showed that

major conformational rearrangements to either protein

do not occur within the complex (ibid.).

At the same time, the notion that the formation of

the CP:LF complex is a manifestation of an inflam-

matory process was supported by detection of the

complex in sera from 80 patients with various

inflammatory diseases and in 45 samples of serum

and pleural fluid from patients with pleurisy with
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various aetiologies (cancer, tuberculosis, postopera-

tive state, etc.) (Sokolov et al. 2007a).

This finding provided a broader outlook for the role

of CP in inflammation. During the acute phase of

inflammation, neutrophils secrete up to 30 g of LF

daily (predominantly the apo-form of LF), and

approximately 10 g of LF remains in the bloodstream

(Sawatzki 1987). Approximately half of the plasma

iron can be bound by apo-LF, and the binding is

facilitated by formation of a complex with CP,

especially because the ferroxidase activity of the latter

increases (Sokolov et al. 2009b). Iron becomes

sequestered and is cleared from the plasma; addition-

ally, the plasma concentration of iron can be decreased

due to the restriction of circulating iron levels by

hepcidin, a protein that prevents iron efflux from cells

(Kemna et al. 2008). Hence, formation of the CP:LF

complex may be a mechanism that allows an organism

to protect itself against the neutrophil respiratory burst

occurring in a focus of inflammation (Sokolov et al.

2009b). In a subsequent study, CP was proved to be a

factor that opposes respiratory burst by attenuating the

activation of neutrophils (Varfolomeeva et al. 2016).

At approximately the same time of that discovery, a

novel function of CP was reported: its ability to

stabilize ferroportin 1 on the cell surface (De

Domenico et al. 2007). It had been known that a

GPI-anchored species of CP (GPI-CP) can be present

on the surface of astrocytes (Jeong and David 2003),

likely due to the intracellular pathway described by

Polishchuk et al. (2004). Stabilization of ferroportin 1

by CP and colocalization of these two proteins on the

astrocyte membrane suggested an essential role for

GPI-CP in iron egress from these cells. In fact, this

feature of CP led to the suggestion that this protein is

an important factor regulating iron homeostasis.

However, the regulation of iron metabolism by CP

is unlikely to be limited only to this function.

Formation of the stable CP:LF complex was suggested

as another regulatory step in iron metabolism

(Sokolov et al. 2009b). In addition to participation in

the pathway regulating ferroportin-mediated iron

export, the CP:LF complex may play an important

role during the early stages of iron import from the

intestine to the blood (ibid.). Incorporation of Fe2?

into a plasma carrier protein requires Fe2? oxidation

by hephaestin, a homologue of CP tethered to

enterocyte membranes. The carrier role is normally

performed by plasma transferrin, which is unlikely to

form a complex with CP or hephaestin (Hudson et al.

2008). Therefore, in vivo formation of a specific

complex involving CP and LF may be an accessory

link between the iron and copper metabolic pathways

(Sokolov et al. 2009b).

A study in patients with inflammatory diseases

revealed another stable plasma complex formed by CP

and MPO (Sokolov et al. 2007a). The MPO enzyme is

an acute phase reactant released from neutrophils in

inflammation foci (Klebanoff 1970; Kettle and Win-

terbourn 1997). A triple ‘‘CP:LF:MPO’’ complex was

discovered in a number of serum samples obtained from

patients (Sokolov et al. 2007a). The authors investi-

gated this complex under various conditions and

suggested a 1:1:1 stoichiometry. In contrast, photon

correlation spectroscopy results supported a pentameric

arrangement 1MPO:2CP:2LF (Sokolov et al. 2009c).

Subsequently, a specific complex formed by CP and

eosinophil peroxidase (EPO) was described and was

shown to have similar characteristics to those of the

CP:MPO complex (Sokolov et al. 2015b).

The ability of CP to inhibit the production of

hypochlorous acid by MPO was shown quite a while

ago by Taylor and Oey (1982), and several years later,

this ability was designated as another major function

of CP (Segelmark et al. 1997). Later, Park et al. (2000)

showed that CP is able to bind MPO without any major

alterations of the principal properties of both proteins.

This finding was of interest because the formation of

the complex influenced the enzymatic properties of

both proteins (Sokolov et al. 2008). CP strongly

suppresses the peroxidase and chlorinating activities

of MPO when the external peptide loop (amino acids

885–894) connecting domains 5 and 6 of CP enters the

MPO haem pocket, thus creating a barrier for MPO

substrates (Samygina et al. 2013). The mechanism of

EPO inhibition is essentially the same. The entry of the

peptide loop into the haem pocket, monitored by a

shift in the Soret band in the spectra of peroxidases,

provided a secure shielding of the scissile K887–V888

peptide bond within the loop, thus protecting CP from

proteolysis (Sokolov et al. 2008; Samygina et al.

2013).

Formation of the CP complex with MPO and EPO

is likely to change the CP conformation in the vicinity

of the binding site of such substrates as p-phenylene-

diamine so that it is more rapidly oxidized by the CP

123

202 Biometals (2019) 32:195–210



complex. It should be noted that after formation of the

complex with MPO or EPO, CP retains its ferroxidase

activity (Sokolov et al. 2015b). The physiological

importance of these interactions implies the ability of

CP to regulate inflammation by controlling the

production of inflammatory products including HOCl,

HOBr, and HOSCN. HOCl and HOBr are the most

harmful of these products, at least with respect to their

damaging effects on low-density lipoproteins, result-

ing in the accumulation of cholesterol in monocytes or

macrophages (Sokolov et al. 2014). Moreover, the

deleterious effect of MPO on the synovium in the

joints of patients suffering from rheumatoid arthritis is

likely to be due to MPO halogenating activity

(Sokolov et al. 2015a; see below).

These data and earlier reports on the involvement of

CP-MPO interactions in pathological processes (Grif-

fin et al. 1999) stimulated a study on the associations

of CP with other leukocyte proteins apart from LF,

MPO, and EPO. The first report on the interactions of

CP with five cationic proteins, i.e., cathepsin G,

eosinophilic cationic protein, neutrophil elastase,

proteinase 3, and azurocidin, was published by

Sokolov et al. (2007b). The authors suggested that

the interaction of antimicrobial cationic proteins with

CP may reduce their antimicrobial activities and

cytotoxic effects upon their secretion into the blood-

stream. Similar to LF and MPO, the cationic proteins

identified in the study can behave as autoantigens

provoking systemic vasculitis (Malenica et al. 2004;

Jennette et al. 2011). Their selective interaction with

CP may be part of a mechanism regulating disease

pathogenesis, and CP is likely to play the key role in

this regulation. Generally speaking, CP seems to be an

important part of the immune response; as a partner for

a number of neutrophil proteins it behaves as an

immunomodulator (Sokolov et al. 2007b; Var-

folomeeva et al. 2016).

Specific attention was focused on the interactions of

CP with proteases and on the limited proteolysis of the

CP molecule, which affects its functions. As men-

tioned above, early studies proved the crucial role of

proteolytic cleavage in the formation of large frag-

ments previously regarded as CP subunits (Rydén

1971, 1972; Moshkov et al. 1979). Several laborato-

ries detected the same or very similar sets of fragments

due to ‘‘spontaneous’’ proteolysis during purification

of CP from plasma or after storage of apparently pure

protein (Rydén 1971; Kingston et al. 1977;

Prozorovski et al. 1982). The key importance of CP

integrity for its interactions with other enzymes, which

significantly modifies their activity, was documented

much later (Sokolov et al. 2008, 2010).

Meanwhile, in vitro experiments showed that

neither plasmin, nor neutrophil elastase regarded as

enzymes likely to hydrolyze CP would cut this protein

so as to produce the set of large fragments originating

upon ‘spontaneous’ proteolysis. The CP polypeptide

chain is cleaved into fragments that have different

molecular masses from those that ‘‘spontaneously’’

appear. A plausible explanation for this discrepancy

was proposed by Sokolov et al. (2009a) who noted that

CP forms complexes with matrix metalloproteinases

(MMPs) 2 and 12 during purification. These prepara-

tions contained complexes of CP with MMPs and the

19-kDa C-terminal fragment of CP; however, neither

the typical large proteolytic fragments nor, especially,

the products of deep proteolysis, which yields short

amino acid sequences, were detected. As suggested by

the authors, the complex formed by CP with MMP2

and MMP12 results in the detaching of the C-terminal

fragment; however, subsequent cleavage of the

molecule does not occur.

The TLKVFQPRRK loop is composed of amino

acids 885-894 and links domains 5 and 6 in CP; this

loop is the primary target of the proteolytic attack. It

has high mobility and a poorly ordered structure that is

not ‘‘resolved’’ even when highly purified preparations

of non-degraded CP are used for X-ray studies

(Samygina et al. 2008). The role of this loop in

retaining the overall structure of CP should not be

underestimated considering the loss of a number of CP

functions after its cleavage. Indeed, if this loop is

cleaved, CP loses its glutathione-dependent peroxi-

dase activity (Kim and Park 1998), the ability to

efficiently load Fe3? into ferritin (Van Eden and Aust

2000) and the safe inhibition of the prooxidant features

of MPO (Panasenko et al. 2008; Sokolov et al. 2008).

Hence, limited CP proteolysis can be regarded as

one of the biochemical mechanisms reducing the

antioxidant defence of the body. This hypothesis is

supported by the fact that increased proteolytic

activity of blood plasma in haemophilic patients

results in a decrease in antioxidant indices and

pronounced oxidative stress (Brummel-Ziedins et al.

2009; Chen et al. 2013). In these plasma samples, CP

is subjected to considerable proteolytic degradation.
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The importance of limited CP proteolysis in the

regulation of pathological processes was confirmed in

a study of the interrelations of CP, MPO, and thrombin

(Sokolov et al. 2015a). The authors studied synovial

fluid samples from the affected joints of patients with

rheumatoid arthritis, a systemic autoimmune disease

characterized by synovial inflammation leading to

progressive cartilage and bone destruction (Scott et al.

2010). It was shown that the ability of CP to inhibit

MPO depends on the thrombin activity that cleaves CP

(Sokolov et al. 2015a). The activity of this coagulation

factor (also known as FIIa) was expected because

thrombin concentrations are increased by 11-fold in

the synovium of patients with rheumatoid arthritis, as

has been documented previously (So et al. 2003;

Gerster and Busso 2003). However, FIIa has not been

regarded as a protease that cleaves CP in vivo since the

sequence of amino acids susceptible to proteolysis in

CP only partially conforms to the sequence considered

optimal for thrombin cleavage of substrates (Gallwitz

et al. 2012). Nevertheless, in the synovial fluid of the

patients with severe rheumatoid arthritis, CP was

cleaved into typical fragments produced by ‘‘sponta-

neous’’ limited proteolysis, and the same fragments

were detected after in vitro treatment of intact CP with

FIIa (Sokolov et al. 2015a). MPO activity was also

increased in the synovium samples from the patients.

However, intact CP (132 kDa) was detected in the

joints of patients with a relatively mild form of the

disease, and MPO was clearly inhibited in these

samples.

These effects may be directly connected with the

structure of the CP:MPO complex described above; in

the complex, the CP peptide loop covers the channel

leading to the catalytic site within the MPO haem

pocket (see above). Hence, cleavage of interdomain

loop 885–894 in CP by thrombin can abrogate the

inhibition of MPO by opening the substrate entrance

into the MPO active site while the MPO–CP interac-

tion itself is not compromised (Sokolov et al. 2007a).

Limited proteolysis of CP by FIIa results in the loss

of its ability to inhibit the prooxidant functions of

MPO or EPO; however, this form of CP retains its

ferroxidase activity (Sokolov et al. 2015b). This result

can be explained by the 45–50 Å distance of the CP

R481–S482 and K887–V888 scissile bonds from the

ferroxidase site according to the crystal structure of CP

(Bento et al. 2007). Therefore, local perturbations,

possibly evoked by peptide bond cleavage, are

unlikely to be transmitted over the long range to the

ferroxidase site (Sokolov et al. 2015b).

These results further underscored the crucial role of

CP as an MPO inhibitor in pathology and delineated

the structural basis of the interactions among CP,

thrombin, and MPO. In particular, it was suggested

that FIIa not only cleaves CP into large fragments, but

can form a complex with CP due to its high binding

affinity. Having formed a complex with CP, FIIa

covers the ferroxidase catalytic site and inhibits the

conversion of Fe2? to Fe3? (Sokolov et al. 2015a).

Therefore, thrombin can interfere with two CP

antioxidant activity mechanisms, i.e., CP suppression

of MPO and the decrease in toxic Fe2? levels. The

ability of hirudin, a specific FIIa inhibitor contained in

an ointment used in rheumatoid arthritis therapy, to

suppress thrombin and MPO activity by 40-fold

supports the notion that MPO inhibition by CP in the

synovium of the patients strongly depends on FIIa.

However, essentially all thrombin and MPO in the

samples from hirudin-untreated patients or placebo

controls existed in their active forms (ibid.).

It should be noted that the functional relation

between CP and FIIa had been previously suggested

and confirmed to an extent in connection with their

participation in inflammatory reactions. A study of

experimental cerebral oedema induced by the injec-

tion of iron-containing compounds into the rat brain to

mimic cerebral haemorrhage showed that small

amounts of thrombin significantly attenuated brain

swelling (Yang et al. 2006). In the experiments, CP

was tested as a treatment against injury caused by

ferrous iron. Interestingly, administration of FIIa

enhanced CP gene expression. The authors suggested

that thrombin-mediated production of CP increases

the tolerance of the brain to oedema by inhibiting the

prooxidant effects of Fe2? that are abundant in

haematomas after erythrocyte decomposition.

The effects of CP in inflammation foci are not

limited to the formation of complexes with iron-

containing proteins, such as LF, MPO, and EPO, or to

the conversion of Fe2? to Fe3?, which prevents the

Fenton reaction (Floris et al. 2000). In severe

rheumatoid arthritis, proteolysed CP loses its ability

to inhibit MPO, and MPO increases the production of

oxidant species that can chemically modify CP and

trigger conformational changes, leading to copper

release (Swain et al. 1994; Panasenko et al. 2013). The

same effect is observed after CP proteolysis; in turn,
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elevated levels of free copper can catalyse and amplify

the production of reactive oxygen species. This

observation is supported by the findings of Naughton

et al. (1995), who documented the presence of higher

levels of free copper in patients with rheumatoid

arthritis and by the beneficial effects of the copper

chelator penicillamine (Aaseth et al. 1998).

Another possible regulative effect of CP in inflam-

mation concerns its interaction with 5-lipoxygenase (5-

LO), which also strongly depends on the integrity of CP

and the presence of copper ions within the protein.

Formation of the CP:5-LO complex reduces leuko-

triene synthesis in leukocytes in a dose-dependent

manner (Sokolov et al. 2010). It should be noted that

the concentration of CP sufficient to cause this effect is

much lower than the normal CP content in plasma

(50 lg/ml versus 300–400 lg/ml). An important

observation of the authors included abrogation of the

inhibitory effect of CP on 5-LO through the limited

proteolysis of CP or copper ion loss. Copper depletion

of CP converts CP into its apo-form, which acquires a

peculiar conformation known as a ‘‘molten globule’’

(De Filippis et al. 1996). Apparently, this conformation

of CP cannot interact with 5-LO. Unexpectedly, very

low concentrations of CP caused the opposite effect on

5-LO, stimulating its activity (Sokolov et al. 2010).

The authors suggested that low concentrations of CP

are sufficient for the oxidation of NO (Shiva et al.

2006), an endogenous inhibitor of 5-LO activity

(Coffey et al. 2000; Zagryazhskaya et al. 2010), but

are insufficient to form significant amounts of CP:5-

LO complex and to reduce leukotriene synthesis. These

results provide evidence for the dual role of CP in the

regulation of leukocyte cellular response in inflamma-

tion. The ability of neutrophils to synthesize CP and to

provoke its degradation by proteinases secreted upon

activation of these cells may represent an important

feature of this regulation (Sokolov et al. 2010).

The question regarding the damaging effects of

copper ions released from CP under pathological

conditions was raised in the paper by Kostevich et al.

(2015). The authors studied the inhibition of macro-

phage migration inhibitory factor (MIF) by CP that

occurs when the two proteins form a specific complex.

This work highlighted the utmost importance of the

copper ions at the labile binding sites in CP for its

interaction with MIF. This proinflammatory factor lost

its tautomerase activity when CP was treated by

chelators or cobalt and nickel ions, which can replace

the loosely bound copper in the labile sites (Samygina

et al. 2008). However, CP-Cu2? behaved as an

efficient uncompetitive inhibitor of MIF (Kostevich

et al. 2015). Importantly, binding of a MIF substrate,

p-hydroxyphenylpyruvate, was required for the for-

mation of the CP:MIF complex (ibid.). Participation of

copper ions loosely bound to CP in the transduction of

the proinflammatory signal suggests a larger spectrum

of capacities inherent in this protein, which are used to

regulate various components associated with inflam-

mation. The beneficial effects of penicillamine

(Aaseth et al. 1998; Suarez-Almazor et al. 2000) and

apo-lactoferrin (Guillen et al. 2000) in the treatment of

rheumatoid arthritis can be attributed, at least partially,

to the chelation of copper released from the CP labile

binding sites (Kostevich et al. 2015).

The present discussion was focused on the ‘‘free’’

or ‘‘soluble’’ CP circulating in the plasma an appearing

in inflammatory foci, copper-saturated, and synthe-

sized predominantly in the liver; however, extrahep-

atic synthesis of CP is also possible (Bakhautdin et al.

2013). Other forms of CP described in several studies,

e.g., apo-CP (copper-free) or membrane-bound GPI-

CP, are somewhat less explored.

At present, the role of GPI-CP in iron homeostasis

is the only well-documented function of that species,

partly due to the relatively long history of its

investigations. Indeed, this species has been detected

in Sertoli cells (Fortna et al. 1999), leptomeningeal

cells (Mittal et al. 2003), and immune cells, i.e.,

lymphocytes/monocytes and macrophages (Banha

et al. 2008; Marques et al. 2012). The molecular

mechanism of CP-mediated control of cellular iron

efflux includes its functional antagonism with hep-

cidin that suppresses iron egress from the cells (Kono

et al. 2010). In cultured glioma cells, free and

membrane-bound CP behaved as efficient antagonists

of hepcidin (Kono 2013), suppressing its ability to

induce ferroportin degradation in the lysosomes (Ward

and Kaplan 2012). A crucial role of CP in ferroportin

stabilization was observed in experiments in CP-

depleted macrophages (Kono 2013) where GPI-CP is

normally colocalized with ferroportin 1 in plasma

membrane lipid rafts (Marques et al. 2012). Currently,

the close proximity of GPI-CP and ferroportin is not

considered evidence of the formation of a complex by

these two proteins. However, it appears likely that

ferroportin receives iron from the cytoplasm as Fe2?

and that GPI-CP is needed to oxidize Fe2? to provide
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Fe3? for incorporation into transferrin [for details, see

(Linder 2016)]. To meet these requirements, a direct

protein–protein interaction might be the best choice;

this issue deserves a thorough investigation. In CP-

depleted macrophages, ferroportin was rapidly

degraded through a hepcidin-mediated mechanism

and did not appear on the cell surface. Meanwhile,

apo-CP did not have any anti-hepcidin effects (Kono

et al. 2010). This effect may be regarded as an inability

of ferroportin to form a complex with GPI-CP, taking

into account that apo-CP is as efficient as the copper-

saturated protein for the formation of complexes with

other proteins such as the CP:LF complex (Pulina et al.

2002). This result requires a more thorough investi-

gation; however, it should be noted that protein–

protein interactions may exhibit considerable variabil-

ity in the stability and longevity of the complexes

formed with the partners. Currently, there is no

evidence supporting the formation of a stable CP:fer-

roportin complex; however, this does not mean that

the two proteins do not form a transient complex and

such short-term interaction favours the regulation of

very important biochemical processes.

Thus, various forms of CP function as important

and sometimes crucial regulatory factors in physio-

logical and pathological processes in organisms. The

ability of CP to form complexes with other proteins

has been known for a number of years; however, a

noticeable increase in the functional versatility of CP

complexes was only recently acknowledged (Vasilyev

2010). The present study is not a comprehensive guide

for the sophisticated and ramified interactions of the

‘‘moonlighting’’ protein but is rather a demonstration

of a few directions for further studies aimed to

discover novel roles of CP multifunctionality.
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