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Abstract Cadmium (Cd2?) is a toxic and non-

essential divalent metal ion in eukaryotic cells. Cells

can only be targeted by Cd2? if it hijacks physiological

high-affinity entry pathways, which transport essential

divalent metal ions in a process termed ‘‘ionic and

molecular mimicry’’. Hence, ‘‘free’’ Cd2? ions and

Cd2? complexed with small organic molecules are

transported across cellular membranes via ion chan-

nels, carriers and ATP hydrolyzing pumps,

whereas receptor-mediated endocytosis (RME) inter-

nalizes Cd2?-protein complexes. Only Cd2? transport

pathways validated by stringent methodology, namely

electrophysiology, 109Cd2? tracer studies, inductively

coupled plasma mass spectrometry, atomic absorption

spectroscopy, Cd2?-sensitive fluorescent dyes, or

specific ligand binding and internalization assays for

RME are reviewed whereas indirect correlative stud-

ies are excluded. At toxicologically relevant concen-

trations in the submicromolar range, Cd2? permeates

voltage-dependent Ca2? channels (‘‘T-type’’ CaV3.1,

CatSper), transient receptor potential (TRP) channels

(TRPA1, TRPV5/6, TRPML1), solute carriers (SLCs)

(DMT1/SLC11A2, ZIP8/SLC39A8, ZIP14/

SLC39A14), amino acid/cystine transporters

(SLC7A9/SLC3A1, SLC7A9/SLC7A13), and Cd2?-

protein complexes are endocytosed by the lipocalin-2/

NGAL receptor SLC22A17. Cd2? transport via the

mitochondrial Ca2? uniporter, ATPases ABCC1/2/5

and transferrin receptor 1 is likely but requires further

evidence. Cd2? flux occurs through the influx carrier

OCT2/SLC22A2, efflux MATE proteins SLC47A1/

A2, the efflux ATPase ABCB1, and RME of Cd2?-

metallothionein by the receptor megalin (low density

lipoprotein receptor-related protein 2, LRP2):cubilin

albeit at high concentrations thus questioning their

relevance in Cd2? loading. Which Cd2?-protein

complexes are internalized by megalin:cubilin

in vivo still needs to be determined. A stringent

conservative and reductionist approach is mandatory

to verify relevance of transport pathways for Cd2?

toxicity and to overcome dissemination of unsubstan-

tiated conjectures.
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chemical characteristics as essential Me2? (see Mar-

cus 1988; Maret and Moulis 2013), and Cd2?-

complexes with endogenous biological organic mole-

cules may have similar properties as Cd2?-free

molecules. Therefore, the biological behavior of

‘‘free’’ Cd2? and Cd2?-complexes in eukaryotic cells

has been termed ‘‘ionic and molecular mimicry’’,

respectively (Clarkson 1993). Hydrophilic Me2?

necessitate endogenous transport (entry or exit) path-

ways to permeate cellular lipid membranes. Hence,

Cd2? develops toxicity by competing with essential

Me2?, such as Fe2?, Zn2?, Cu2?, Ca2? or Mn2?, for

entry pathways. ‘‘Free’’ Me2? and complexes of Me2?

with small hydrophilic organic molecules (e.g. amino

acids, organic anions or small peptides) are trans-

ported via ion channels, solute carriers or ATP-

requiring pumps whereas Me2?-protein complexes

are internalized by receptor-mediated endocytosis

(RME). This review complements and updates several

previously published reviews from our laboratory

(Thévenod 2010, 2018; Thévenod and Wolff 2016).

Cd2? intake by organism occurs primarily through

inhalation and the oral route (reviewed in Thévenod

and Lee 2013b): Cd2? is more efficiently absorbed

from the lungs than from the gastrointestinal tract,

however the main exposure to Cd2? in the non-

smoking population takes place via contaminated

foodstuffs and fluids. Once Cd2? reaches the blood

circulation, it binds to various plasma proteins,

including albumin and other thiol-containing high-

(HMWP) and low-molecular weight plasma proteins

(LMWP), as well as to blood cells. The blood level of

Cd2? ranges between 0.1 and 2 lg/l (* 2–18 nM)

(Cornelis et al. 1996; Elinder et al. 1983).

Cd2? is stored in various organs with a half-life of

up to several decades (Jarup and Akesson 2009). This

happens because cytosolic Cd2? is chelated by detox-

ifying molecules that are induced by the toxic metal,

thereby lowering its toxicity. The prototypical and

most efficient detoxifying mechanism of Cd2? com-

plexation by the cell is through induction of gene

expression of metallothionein (MT), a cysteine-rich

metal-binding protein that physiologically binds Zn2?

ions and also effectively (KD for Cd2? of* 10-14 M)

(Freisinger and Vasak 2013) chelates up to 7 toxic

Cd2? ions through the thiol groups of typically 20

cysteine residues (Fig. 1).

To determine the involvement of Me2? transporters

in Cd2? flux, some studies rely preferentially on

pharmacological blockers (Saddala et al. 2017; Yang

and Yang 1997), but do not consider limitations due to

overlapping inhibitor specificity. A number of correl-

ative studies claim involvement of Me2? transporters

in Cd2? transport (Ohrvik et al. 2013; Martineau

2010), Cd2?-induced toxicity (Nemmiche and Guir-

aud 2016) or Cd2? resistance (Fujishiro et al. 2011),

which are based on changes in mRNA or protein

expression levels. Especially these studies need to be

interpreted with caution because Cd2? has pleiotropic

effects, affecting multiple regulatory signaling path-

ways, in particular signaling cascades that determine

cell fate (see Thévenod and Lee 2013a). Hence

induction of transcription factors for survival genes

may lead to Cd2? resistance without increased Cd2?

extrusion/transport. We have previously shown that

Cd2? induces expression of the drug resistance pump

ABCB1 (Thévenod et al. 2000), leading to the claim

that ABCB1 extrudes Cd2? from cells, thus decreasing

toxicity (Kimura et al. 2005). In contrast, we proved

that ABCB1 does not extrude 109Cd2?, but rather

decreases pro-apoptotic sphingolipid signaling path-

ways activated by Cd2? (Lee et al. 2011).

Even data obtained with transgenic and/or knock-

out organisms for a particular Me2? transporter, which

may appear to represent the gold standard to prove

Cd2? transport, are not spared fromwrong conclusions

because compensatory up-regulation of other Me2?

transporters may mitigate the results obtained (Jorge-

Nebert et al. 2015).

Preferably, proof of Cd2? ‘‘transport’’ by channels,

solute carriers and pumps can be only demonstrated by

electrophysiological techniques (e.g. patch-clamp),
109Cd2? tracer studies, inductively coupled plasma

mass spectrometry (ICP-MS), atomic absorption spec-

troscopy (AAS), or Cd2?-sensitive fluorescent dyes.

RME of Cd2?-protein complexes is validated by both,

specificity of ligand binding and internalization (using

a combination of techniques, such as microscopy of

fluorescent ligands, cell viability assays and/or RNA

interference, as well as measurements of Cd2? accu-

mulation). Ideally, these methods will be tested in

native tissues and cells, as well as in heterologous

expression systems.
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Channels and pores (see Fig. 1A)

Ca2? channels

One way for Cd2? to enter cells is to diffuse along its

electrochemical gradient through ion channels (Bey-

ersmann and Hechtenberg 1997). Since the hydrated

ion radii of Ca2? and Cd2? are similar (Marcus 1988),

Cd2? might hijack this Ca2? entry route. However,

one has to differentiate between different types of

Ca2? channels, since Cd2? not only mimics Ca2? ions

and permeates distinct channels to enter cells but is

also a potent blocker of certain Ca2? pores (Thévenod

and Jones 1992). Generally, one can classify Ca2?

channels into 5 major groups: (1) voltage-gated Ca2?

channels (VGCC, or Cav), (2) transient receptor

potential (TRP) channels, (3) store-operated channels

(SOC), (4) endogenous ligand-gated channels (LGC)

and (5) intracellular second messenger-gated channels

(SMGC).

Voltage gated Ca2? channels (VGCC)

Voltage gated calcium channels are found in a variety

of excitable cells and exhibit high permeability for

Ca2? over Na?. Depending on their voltage activation,

these channels are classified into three groups: low (T-

type, Cav3.1-3), intermediate (R-type) and high volt-

age activated (L-, P-, Q-, and N-type) Ca2? channels.

The strongest evidence, and to our knowledge the

only doubtless proof, for permeation of Ca2? channels

by Cd2? has been obtained for low voltage activated

T-type Ca2? channels. These channels are expressed

in a variety of tissues, including endocrine, skeletal

muscle, smooth muscle, heart and kidney as well as in

neurons and single sperm cells (Perez-Reyes 2003).

Low threshold Ca2? sparks as well as repetitive firing

of Ca2? signals (e.g. pacemaker activity) characterize

the physiological function of T-type channels (Perez-

Reyes 2003; Yunker and McEnery 2003). In contrast

to other VGCCs, all three subtypes (Cav3.1-3) exhibit

rather high open probabilities at resting membrane

potential (Catterall 2000; Perez-Reyes 2003), and

present a wide non-selectivity towards Ca2? (Yunker

and McEnery 2003), indicating a relatively high

chance for other divalent metals, such as Cd2?, to

permeate T-type channels. Using Cav3.1 transfected

human embryonic kidney (HEK293) cells, it has

indeed been shown that T-type channels conduct Cd2?

in whole cell patch clamp experiments (Garza-Lopez

et al. 2016; Lopin et al. 2012). The detected current,

corresponding to Cd2? influx, amounted to 5–17% of

characteristic Ca2? currents. Additionally, 109Cd2?

uptake experiments confirmed these findings (Lopin

et al. 2012). As Lopin et al. (2012) used toxicologi-

cally relevant Cd2? concentrations within a low

nanomolar range, T-type channel expressing cells

are likely to contribute to Cd2? uptake and toxicity

in vivo.

R-type Ca2? channels (Cav3.2) belong to the

intermediate voltage activated channels and are

mainly expressed in brain neurons (Parajuli et al.

2012). In contrast to T-type channels, relatively little is

known about Cd2? conductivity of R-type channels.

However, it has been reported that Cav3.2-dependent

Ca2? currents can be inhibited by 200 lM Cd2?

(Rozanski et al. 2013; Wennemuth et al. 2000).

Similar to R-type channels, Cd2? permeability of

high voltage activated P/Q-type channels (Cav2.1) is

unknown. Instead, these channels seem to be blocked

by Cd2? in a lower micromolar IC50 range (Cens et al.

2007) compared to the rather high Cd2? IC50 of

* 500 lM for T-type VGCC (Lacinova et al. 2000).

Furthermore, even lower concentrations of Cd2?

were reported to block L- and N-type VGCCs (IC50

0.3–2 lM) (Hirning et al. 1988; Thévenod and Jones

1992). Still, there are some reports describing Cd2?

permeation of L- and N-type Ca2? channels at

physiological membrane voltages. However, most of

these studies provide indirect evidence for Cd2?

uptake, lacking direct proof (Beyersmann and Hecht-

enberg 1997).

Prima facie, the distinct Cd2? permeability of

VGCCs seems to be contradictory, as all channels

include an isoform of the same pore forming a1
subunit. However, a closer look at the selectivity-

determining motif, might explain differences in Cd2?

permeability (Catterall 2000). The majority of VGCCs

exhibit a selectivity filter comprising four glutamates

(i.e. EEEE motif) (Sather and McCleskey 2003),

which, interestingly, is shared by all Cd2? non-

conducting VGCC, i.e. L-, N-, P/Q-, and R-type

channels (Cens et al. 2007). Only T-type channels

differ, as they possess two aspartates instead of

glutamates (EEDD motif) in their Ca2? selectivity

filter. This variation in the selectivity filter domain

renders the T-type channels less selective for Ca2? and

allows Cd2? permeation (Shuba 2014). This is rather
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surprising, as both amino acids are positively charged

and exhibit just a small difference in size. Neverthe-

less, Garza-Lopez et al. were able to validate the

hypothesis of EEDD-motif-dependent Cd2? perme-

ability, by analysis of heterologously expressed T-type

Ca2? channels with three pore mutants (DEDD,

EDDD and DDDD). Cells expressing channels with

aspartate-containing motif exhibited increased Cd2?-

dependent whole cell patch clamp currents compared

to wildtype EEEE (Garza-Lopez et al. 2016). This

hypothesis is supported by the fact, that Cd2? perme-

ates CatSper, a sperm specific VGCC that plays an

essential role in male fertility. This channel displays

four aspartic acids (DDDD) in the Ca2?-selective filter

motif (Cai and Clapham 2008), which would indicate

a rather low selectivity for Ca2?. Fluorescent imaging

of sperm cell loaded with FluoZin-1, a Ca2?-indepen-

dent probe for Zn2? and Cd2?, indicate Cd2? influx in

response to CatSper activation (Garza-Lopez et al.

2016). However, the presence of an EEEE motif

within the selectivity filter does not necessarily render

the channel selective for Ca2?. Other channels, such as

the bacterial voltage-gated sodium channels, also

harbor four glutamic acid residues within the predicted

selectivity pore, but are almost impermeable for Ca2?

ions (Dudev and Lim 2012). The actual pore diameter

of the selectivity filters may account for the contra-

dicting ion permeabilities. This hypothesis is sup-

ported by Cataldi et al. (2002), who presented

calculations of the pore diameter of various VGCCs.

While the Cd2?-impermeable L- and R-type channels

exhibit rather large pore diameters, T-type VGCCs are

predicted to contain the smallest diameter within the

selectivity filter. Since Cd2? ion radii are slightly

smaller compared to Ca2? (Marcus 1988), one may

speculate that Cd2? is excluded from intermediate-

and high-voltage gated channels because the energy

needed to remove the hydration shell of the ion would

be too high. This hypothesis, however, needs to be

further investigated in order to be validated (e.g. by

channel crystal structure).

Transient receptor potential (TRP) channels

TRP channels represent a superfamily of mechano-

and chemosensitive channels, which are mostly

expressed in the plasma membrane (Bouron et al.

2015). A variety of biophysical and biochemical

stimuli, ranging from shear stress and pressure,

heat/coldness to capsaicin and menthol, affect open

probability of TRP channels (Voets et al. 2005).

Furthermore, increasing evidence verifies the expres-

sion of TRP channels in intracellular membranes,

participating in vesicle ion homeostasis, trafficking

and signal transduction (Dong et al. 2010). Currently,

28 TRP channels have been described and are divided

into two groups based on topological and sequence

differences; they are subdivided into the five group 1

subfamilies: TRPA, TRPC, TRPM, TRPN and TRPV,

while group 2 contains TRP channel families TRPML

and TRPP (Venkatachalam and Montell 2007). Gen-

erally, TRP channels are non-selective cation chan-

nels, permeated by a variety of mono- and divalent

cations, including Na?, Ca2? and Mg2? (Bouron et al.

2015). In mammalian cells, Cd2? permeability for four

TRP members has been validated so far: TRPA1,

TRPV5, TRPV6 and TRPML1. TRPM6- and TRPM7-

dependent Cd2? current has been postulated as well,

however rather high Cd2? concentrations (30 mM)

have been used in this study (Li et al. 2006).

TRPA1 is the only documented member of the

TRPA subfamily expressed in human and shows a

rather low Ca2? selectivity (Montell 2005). It is

expressed in sensory cells responsible for nociception,

but it is still controversially discussed whether

TRPA1s are mechano- and/or thermosensitive

(Venkatachalam and Montell 2007). Miura et al.

(2013) provided the first evidence for TRPA1 depen-

dent Cd2? transport, by intraplantar injection of Cd2?

into mouse paws. The induced pain reaction (licking,

biting and flicking) was reduced in TRPA1-/- mice.

Furthermore, they showed Cd2? uptake into cultured

murine dorsal root ganglia neurons by application of

the Ca2?-insensitive fluorescent Cd2?-indicator Lead-

mium Green.

Compared to other TRP channels, TRPV5 (ECaC1)

and TRPV6 (CaT1) exhibit the highest selectivity for

Ca2? (Mulier et al. 2017). TRPV5 is predominantly

expressed in the distal convoluted tubule as well as in

the collecting duct of the nephron and is responsible

for hormonally regulated Ca2? reabsorption (van de

Graaf et al. 2006). TRPV6 is expressed in the small

intestine and contributes to Ca2? uptake (van Goor

et al. 2017). It has been shown by Kovacs et al. that

TRPV5 and TRPV6 are permeated by low micromolar

Cd2?. Using whole cell patch clamp as well as

fluorescent Me2? indicators in TRPV5 and TRPV6

expressing cells, they have shown a Cd2? current in
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the range of 30–50% of normal Ca2? currents (Kovacs

et al. 2011, 2013). Hence, TRPV5 and TRPV6

represent likely candidates for physiological Cd2?

uptake via the intestine and reuptake in the kidney,

leading to toxicity. Having a close look at the

selectivity filter of TRPV5/6 channels, one may see

a direct correlation to the DDDD-motif hypothesis for

VGCCs. The TRPV5/6 selectivity filter is built of four

aspartate residues similar to T-type channels, but here

the filter is highly selective for Ca2?. Yet again, the

importance of the inner diameter of the pore has to be

considered (Mulier et al. 2017).

TRPML1 (mucolipin-1/MCOLN1) is a non-selective

cation channel that is found in intracellular membranes,

contributing to vesicular transport and intravesicular

Ca2? homeostasis (Di Paola et al. 2018). It is the only

intracellular TRP channel which is permeated by Cd2?

(Dong et al. 2008). Direct patch-clamping of late

endosomal and lysosomal membranes revealed Me2?

currents at acidic pH (pH4.6) byTRPML1with a relative

permeability of Ba2?[Mn2?[Fe2? * Ca2? *
Mg2?[Ni2? * Co2? * Cd2?[Zn2? � Cu2? (Dong

et al. 2008). One has to mention that again relatively

high concentrations of Cd2? were used in this study

(30 mM). However, as Cd2? is taken up as a Cd2?-

protein complex by receptor mediated endocytosis

(Wolff et al. 2006), intravesicular Cd2? concentration

is most likely much higher compared to that in the

extracellular space. Hence TRPML1 mediated Cd2?

uptake may contribute to Cd2? toxicity under (patho-

)physiological conditions (Lee et al. 2017).

Store-operated, ligand-gated and second

messenger-gated channels

Little is known about Cd2? permeability of the

remaining 3 groups of Ca2? channels, i.e. SOC,

LGC and SMGC. Store operated Ca2? channels are the

main source of intracellular Ca2? signals. SOCs are

stimulated by an increase in intracellular Ca2? via

active plasma membrane/ER STIM/Orai complex,

inducing a Ca2? release activated Ca2? current

(ICRAC) and exhibit high selectivity for Ca
2? (Prakriya

and Lewis 2015). The selectivity filter in CRAC

channels is again formed by a ring of four glutamates,

similar to L- and N-type VGCC (Yeung et al. 2017),

which might be the reason for its restricted perme-

ability to Cd2?.

The group of ligand gated ion channels includes a

wide variety of protein families, ranging from extra-

cellular neurotransmitter-dependent channels and

purinoceptors to intracellular phospholipid (PIP2)-

regulated channels. Here the ionotropic NMDA

receptor has been postulated to permeate Cd2?.

Primary rat granule cells, loaded with ratiometric

Me2? indicator Fura-2, were imaged under low Ca2?

(* 1 lM) conditions. Application of Cd2? resulted in

increased fluorescence intensity, which could be

inhibited by the intracellular Cd2? chelator TPEN

(Usai et al. 1999). One has to consider that, although

extracellular Ca2? was reduced, it was still 10-fold

higher compared to intracellular levels and thus the

authors cannot exclude a Cd2?-dependent induction of

calcium entry.

Finally, up until the time of writing, nothing is

known about Cd2? permeability of intracellular sec-

ond messenger-gated ion channels.

Mitochondrial calcium uniporter (MCU)

Under physiological conditions, calcium enters the

mitochondria via unspecific voltage-dependent anion

channels, while it permeates the inner mitochondrial

membrane through the mitochondrial permeability

transition pore as well as the MCU. The MCU, coded

on the ccdc109a gene, forms a complex with the

regulatory subunits MICU1-3 and EMRE (Kamer and

Mootha 2015). Mitochondrial Ca2? functions as a

cellular Ca2? store and influences metabolism as well

as cell survival [reviewed in (Rizzuto et al. 2012)].

Cd2? also affects mitochondrial function, as it binds to

mitochondrial thiol proteins and disrupts respiratory

chain function (Dorta et al. 2003; Wang et al. 2004).

Using the Cd2?-sensitive fluorescent dye FluoZin-1 in

mitoplasts isolated from rat kideny cortex, it has been

shown that Cd2? enters the mitochondrial matrix and

induces swelling as well as release of apoptosis-

inducing cytochrome c (Lee et al. 2005). This effect is

independent of the mitochondrial permeability transi-

tion pore but could be prevented by Ru360-induced

inhibition of the MCU. Furthermore, MCU-dependent

uptake of Cd2? in mitochondria could be verified

using atomic absorption spectrophotometry (Adiele

et al. 2010, 2012).
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Gap junction-forming connexins

Gap junctions form pores, directly linking two adja-

cent cells and thereby facilitate gap junction intercel-

lular communication (GJIC). Gap junctions are built

of two hemi- or homochannels (connexons), each

consisting of 6 subunits (connexins). Up to now, 20

isoforms are known, each of them exhibiting charac-

teristic properties (Beyer and Berthoud 2017; Fiori

et al. 2014). Generally, gap junctions bridge the

membrane barrier and directly connect two neighbor-

ing cells to facilitate exchange of ions and small

molecules such as IP3 (Valiunas et al. 2018). It is

tempting to speculate that Cd2? also permeates gap

junctions. However, the opposite seems to be the case,

as toxic metals, including Cd2?, inhibit GJIC in a

time- and dose-dependent manner (Jeong et al. 2000)

[reviewed in (Vinken et al. 2010)].

Solute carriers (SLCs) (see Fig. 1B)

Divalent metal transporter 1 (DMT1/DCT1/NRAMP2/

SLC11A2)

The divalent metal transporter 1 (DMT1) transports a

broad-range of divalent metal ions, including Fe2?,

Cd2?, Zn2?, Mn2?, Co2?, Cu2?, Ni2? and Pb2?, in a

proton-coupled and cell membrane potential-depen-

dent fashion (Gunshin et al. 1997). DMT1 is ubiqui-

tously expressed, especially in the proximal

duodenum, where it plays a pivotal role in acquiring

iron from dietary sources, as well as in erythroid cells,

macrophages, and kidneys (Gunshin et al. 1997). In

enterocytes, DMT1 spans the apical membrane and

facilitates transferrin (Tf)-independent Fe2? absorp-

tion into the organism [reviewed in (Coffey and Ganz

2017)]. It is unclear how DMT1 mediates Fe2?

transport to the intracellular compartment; though a

pure transport mechanism is the most obvious, mul-

tiple studies have observed endocytosis of DMT1 from

enterocyte brush border membranes after iron feeding

(Nunez et al. 2010; Okazaki et al. 2012). Whether this

internalization into an acidic compartment is required

for release of Fe2? into the cytosol, remains to be

clarified. Alternatively, DMT1 can be located intra-

cellularly, typically in erythrocyte precursors or

macrophages, but also in epithelial cells [reviewed in

(Shawki et al. 2012)]. In these cells, DMT1 is

localized to endosomes and lysosomes, which are

formed during receptor-mediated endocytosis (RME)

of metal-protein complexes [e.g. Tf or metallothionein

(MT)] and are acidified by vacuolar-type H?-

ATPases. The acidic environment promotes dissoci-

ation of the metal ion from the protein complex

permitting enzymatic reduction, where necessary, and

DMT1-mediated co-transport of Me2? along with H?

into the cytosol. Recently, DMT1was evidenced in the

outer mitochondrial membrane, indicating that mito-

chondrial DMT1 is an entry pathway for Fe2? and

other Me2? required for mitochondrial function

(Wolff et al. 2014, 2018).

Studies using a combination of voltage clamp,

radiotracer and fluorescence assays in Xenopus laevis

oocytes or transfected HEK293 cells have clearly

demonstrated that human (h)DMT1 transports Cd2? as

efficiently as Fe2? (Km* 1 lM) (Illing et al. 2012;

Okubo et al. 2003). The relatively high affinity of

DMT1 for Cd2? proposes plasma membrane DMT1 as

a vital facilitator in Cd2? uptake from contaminating

water and foodstuffs from the duodenum as well as

intracellular DMT1 as a key mediator of vesicle-to-

cytosol transfer of Cd2? in various cell types.

Furthermore, a direct link between Cd2? uptake/tox-

icity and body iron status has been proposed (Bressler

et al. 2004; Kippler et al. 2009). Iron deficiency

mitigates competing ion flux for DMT1-mediated

transport and thus bolsters transport of Cd2? as well as

other Me2?. In addition, iron depletion induces DMT1

upregulation (Gunshin et al. 1997), which would

culminate in enhanced uptake of Cd2?.

The kidney, in particular the proximal tubule (PT),

is a key site of Cd2? reabsorption in chronic Cd2?

toxicity (Barbier et al. 2004; Jarup and Akesson 2009;

Thévenod and Lee 2013b). In immunohistochemical

analysis of kidney tissue sections, DMT1 is expressed

intracellularly in the PT (Smith and Thévenod 2009),

and possibly in the apical brush border membrane

(Canonne-Hergaux and Gros 2002). Intracellular PT

DMT1 colocalized with markers for late endosomes

and lysosomes (Abouhamed et al. 2006; Smith and

Thévenod 2009), which is in agreement with DMT1-

mediated release of Cd2? from late endosomes/

lysosomes to elicit toxicity (Abouhamed et al. 2007)

(see, however, ‘‘Megalin (low density lipoprotein

receptor-related protein 2, LRP2):cubilin’’ for a crit-

ical discussion of the data). Micropuncture of rat

kidneys revealed that Cd2? is almost completely

reabsorbed by the PT and the distal nephron has little
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to no role in Cd2? reabsorption when Cd2? levels are

low (Barbier et al. 2004). However, there appears to be

uptake of Cd2? in the distal nephron since Cd2?

excretion following microinjection was enhanced in

the presence of competing metal ions (e.g. Fe2?,

Co2?), strongly suggesting DMT1 involvement (Bar-

bier et al. 2004), which would be in line with DMT1

localization in the distal tubule (Smith and Thévenod

2009). The localization of DMT1 in endosomes,

lysosomes and mitochondria also suggests that

DMT1 may contribute to Cd2? uptake and subsequent

disruption of the function of these organelles.

ZIP8/ZIP14 (SLC39A8/A14)

Together with mercury, cadmium and zinc belong to

group 12/IIb of the periodic table and due to their ionic

similarities, they compete for Zn2?-binding sites on

macromolecules, including enzymes and transporters,

resulting in ion displacement and leading to perturbed

function through agonist or antagonist action. The zinc

transporters ZnT (ZnT1-ZnT10; SLC30A) and Zrt, Irt-

related proteins (ZIP, ZIP1-ZIP14; SLC39A) are

responsible for regulating zinc homeostasis. ZnT

transporters are primarily located in the membranes

of intracellular organelles and mediate the transfer of

zinc from cytosol to the lumen of the Golgi apparatus,

synaptic vesicles and pancreatic granules [reviewed in

(Kambe et al. 2015)]. In contrast, ZIP transporters are

mainly found in the plasma membrane and are

therefore responsible for zinc uptake from extracellu-

lar fluids to replenish intracellular zinc stores and to

meet the cell’s zinc demands. Some ZIP transporters

are localized to the Golgi apparatus (ZIP9, ZIP11,

ZIP13), endoplasmic reticulum (ZIP7) and endo-

somes/lysosomes (ZIP8) where they transport zinc

into the cytosol (Wang et al. 2012) (reviewed in

Kambe et al. 2015).

While ZnT transporters exhibit clear selectivity for

Zn2? over Cd2? (Hoch et al. 2012), ZIP8 and ZIP14 are

permeable to other metals, including Cd2?, whose

transport is dependent on extracellular bicarbonate.

ZIP8 and ZIP14 exhibit a high degree of similarity

amongst the ZIP family members and both harbor a

replacement of histidine by glutamic acid in the zinc-

bindingmotif, which has been suggested to account for

the broad specificity of ZIP8 and ZIP14. Initially

described as zinc transporters, ZIP8 andZIP14mediate

the uptake of a number of essential Me2? (e.g. Zn2?,

Fe2?, Mn2?) with affinities varying between 0.5 and

20 lM(Girijashanker et al. 2008;He et al. 2006;Wang

et al. 2012). ZIP8 (SLC39A8) is abundantly expressed

in lung, placenta, testis and kidney whereas ZIP14

(SLC39A14) is predominantly found in liver, heart,

duodenum and pancreas (Wang et al. 2012) (reviewed

in Jenkitkasemwong et al. 2012).

The abundant expression of ZIP8 in tissues that are

targeted by Cd2? suggests that it is an important

contributor to the transfer of Cd2? from inhaled

contaminated air, from the bloodstream in the testis

and from the primary filtrate in the kidney (Wang et al.

2007). Several studies demonstrated that heterologous

expression of ZIP8 mediates accumulation and toxi-

city of Cd2? (Km of * 0.5–0.6 lM) (He et al. 2006;

Liu et al. 2008b; Wang et al. 2012). Expectedly, Cd2?

competitively inhibits Zn2? transport (Ki 55.5 lM) in

mouse ZIP8 overexpressing HEK293 cells (Koike

et al. 2017). Similarly, in a heterologous expression

system, apical ZIP14 transports Cd2? with high

affinity (Km * 0.14–1.1 lM depending on the splice

variant), which can be competitively inhibited with

Zn2?, and Cd2?-induced cytotoxicity was propor-

tional to Cd2? uptake (Girijashanker et al. 2008).

Hence, ZIP8 and ZIP14 are two likely candidate

transporters for uptake of sub-micromolar Cd2?

culminating in cell lethality consequent of increased

Cd2? uptake at the expense of Zn2?.

Organic cation transporter 2 (SLC22A2) and multi-

antimicrobial extrusion (MATE) proteins (SLC47A1/

A2)

Poly-specific organic cation transporters (OCT/

SLC22A) are expressed in the liver, kidney, brain

and small intestine where they have essential functions

in the disposition of endogenous compounds, such as

monoamine neurotransmitters, as well as in determin-

ing drug–drug interactions and drug pharmacokinetics

(Koepsell et al. 2003). OCT2 is primarily expressed in

the basolateral membrane (BLM) of the renal PT and

represents the first step in renal clearance of various

organic cations by transport between the interstitial

space and intracellular compartment of PT cells

(Koepsell 2013). It has long been known that Cd2?

is transported across the BLM of PT cells (Bruggeman

et al. 1992), however, the molecular identity of the

transporter has remained elusive. OCT2’s localization,

cationic substrate specificity and implication in
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cisplatin metal toxicity (Ciarimboli et al. 2010)

propose a favorable candidate for basolateral Cd2?

uptake. Indeed, radioactive Cd2? influx has recently

been shown in human OCT2-overexpressing cells

(Thévenod et al. 2013) and rabbit OCT2 (Soodvilai

et al. 2011). However, with a Km of * 50 lM for

Cd2? transport by hOCT2 (Thévenod et al. 2013), the

in vivo toxicological relevance of this transporter is

limited to high local Cd2? concentrations.

The second step of organic cation renal clearance

from the intracellular compartment into the urine is

mediated by multi-antimicrobial extrusion proteins,

also known as multidrug and toxin extrusion/mul-

tidrug and toxic compound extrusion (MATE/

SLC47A) proteins. Electroneutral MATEs are highly

expressed in the apical membrane of hepatocytes and

renal PT cells, effluxing drugs and organic cations in

antiport with sodium ions or protons for their excretion

into bile or urine and final elimination from the body

[reviewed in (Nies et al. 2016)]. OCT2 and MATEs

have overlapping substrate specificity and appear to

form a functional unit, working in tandem to clear the

blood of metabolic waste products, excretory com-

pounds and potentially harmful xenobiotics.

Using artificial acidified conditions to direct MATE

transport from outside in, intracellular Cd2? levels

were assessed in HEK293 cells overexpressing

hMATE1, hMATE2-K, a splice variant of MATE2,

and mouse Mate1 by ICP-MS (Yang et al. 2017). Cells

overexpressing MATEs showed up to fourfold

increase in Cd2? uptake (Km * 100 lM). Moreover,

Cd2? was extruded from HEK293-hMATE1 cells

preloaded with Cd2? and Cd2?-induced cytotoxicity

was diminished in these cells, suggesting MATEs

protect against Cd2? toxicity. However, similarly to

OCT2, hMATE1 and hMATE2-K are unlikely to be

toxicologically relevant in vivo because of their low

binding affinities for Cd2?.

Amino acid/cystine transporters (SLC7A9/SLC3A1

and SLC7A9/SLC7A13)

Thiol or sulfhydryl (SH) groups, which contain a

sulfur-hydrogen bond, are considered ‘‘soft bases’’

according to the hard-soft acid–base (HSAB) theory,

due to the presence of sulfur, which is large and

harbors a diffuse and strongly polarizable electron

cloud, thus permitting reactivity. Soft bases react

preferentially with soft acids, for example, mercury,

silver and cadmium. The presence of thiol-containing

molecules, such as the amino acids L-cysteine (Cys),

L-homocysteine (Hcy), N-acetylcysteine, the peptide

glutathione (GSH), and proteins, would predict Cd2?

complexation in extracellular fluids. It has been

proposed that low-molecular-weight thiol-S-conju-

gates of Cd2? are taken up by epithelia as mimics of

L-cystine and/or L-homocystine (oxidized dimer

forms of Cys and Hcy, respectively) via specific

amino acid transporters (Zalups and Ahmad 2003),

however, experimental evidence is lacking. A recent

study was performed in isolated perfused rabbit renal

proximal tubules and examined lumen-to-cell trans-

port of 109Cd2?-thiol-S-conjugates (Cys-S-Cd2?-S-

Cys, Hcy-S-Cd2?-S-Hcy) by determining their disap-

pearance rates from the lumen and cellular concen-

trations (Wang et al. 2010). L-cystine, but not L-

glutamine or L-aspartate, effectively reduced lumen

disappearance rate and cellular accumulation of Cys-

S-Cd2?-S-Cys and Hcy-S-Cd2?-S-Hcy at sub-micro-

molar concentrations, suggesting they are substrates of

one or more amino acid transporters. Possible candi-

dates are the heteromeric cationic amino acid trans-

porters rBAT/b0,?AT (SLC7A9/SLC3A1) or rBAT/

AGT1 (SLC7A9/SLC7A13) (Nagamori et al. 2016),

which are expressed in the renal PT and mediate apical

influx of cystine and dibasic amino acids [reviewed in

(Fotiadis et al. 2013)]. Hence uptake of Cd2?-thiol-S-

conjugates via amino acid transporters could con-

tribute to PT Cd2? toxicity.

Ferroportin-1 (FPN1/SLC40A1)

Iron fluxes between iron-accumulating cells and

plasma is regulated solely by ferroportin-1 (FPN1),

the only vertebrate cellular iron exporter known so far

(Drakesmith et al. 2015). Consistent with its function

in total body iron homeostasis, mammalian FPN1 is

expressed in the BLM of duodenal enterocytes and rat

renal PT cells (van Raaij et al. 2018;Wang et al. 2018;

Wolff et al. 2011) as well as in the PM of splenic and

hepatic Kupffer macrophages, where it transports

ferrous iron. FPN1 is also abundant in the BLM of

human placental syncytiotrophoblasts, which implies

a role for FPN1 in iron transfer to the fetal circulation

(Donovan et al. 2000); in fact, FPN1 deficient mice are

embryonically lethal (Donovan et al. 2005). FPN1

abundance is regulated at the transcriptional, post-

transcriptional, translational, and posttranslational
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levels (Drakesmith et al. 2015). In addition, the

hepatocyte-originating hormone, hepcidin, binds to

FPN1 and initiates its endocytosis and degradation

when systemic iron levels are high (Nemeth et al.

2004).

In Xenopus laevis oocytes expressing human FPN1,

transport of various metal ions was investigated.

Microinjected radioactive Fe2?, Co2?, and to some

extent Zn2?, were equally well permeated but not

Cd2?, Cu2? or Mn2? (Mitchell et al. 2014). Thus,

FPN1 could promote Cd2? nephrotoxicity by not

allowing ionic Cd2? efflux from PT cells. Interest-

ingly, Ca2?was recently reported to be an essential co-

factor for transport of radioactive Fe2?, Co2?, Ni2?

and Zn2? by FPN1 without being a substrate itself

(Deshpande et al. 2018). Radioactive Fe2? transport in

Xenopus laevis oocytes was abolished by extracellular

Ca2?-free conditions and mutagenesis of the putative

Ca2?-binding site in the outward-facing N-terminal

domain. Theoretically, circulating Cd2? could mimic

Ca2?’s co-factor function and potentiate FPN1 activ-

ity, resulting in iron/metal depletion in conjunction

with oxidative stress caused by an imbalance in

activities of reactive oxygen species (ROS) generating

and metabolizing enzymes (Srigiridhar and Nair

1998), thus driving the cell to engage an adaptive

response. Depending on insult strength, mild iron

depletion may contribute to carcinogenesis by ROS

signaling or by preventing ferroptosis (Yang and

Stockwell 2016) whereas strong iron depletion would

lead to significant loss of essential enzyme activities

and could culminate in cell death, particularly in iron-

dependent tumor cells (Bystrom et al. 2014). Alterna-

tively, Cd2? could act negatively once bound to the

Ca2? binding site on FPN1 and inhibit its metal

transporting activity. Accumulation of intracellular Fe

could be detrimental for the cell through massive ROS

generation. Despite these findings, it remains unclear

as to how Cd2?, which accumulates following apical

uptake by DMT1, exits the duodenal epithelia to enter

the circulation.

ATP-binding cassette transporters (see Fig. 1C)

ABC (ATP-binding cassette) proteins transport a wide

variety of endogenous and xenobiotic substrates

across cellular membranes against a concentration

gradient at the expense of ATP hydrolysis (Dean and

Allikmets 2001). In eukaryotes, the direction of

transport is usually away from the cytoplasm either

towards the extracellular space or into an intracellular

compartment. Substrates of ABC transporters include

antibiotics, chemotherapeutic agents, fatty acids,

phospholipids, heavy metal ions, GSH conjugates,

polysaccharides, and peptides. The eukaryotic ABC

transporters are organized either as full transporters

consisting of two transmembrane domains (TMD1 and

TMD2) and two nucleotide binding domains (NBD1

and NBD2), or as half transporters, containing one

TMD and one NBD. Since at least two NBDs are

required to form a functional ABC transporter, half

transporters form homo- or heterodimers.

Multidrug resistance P-glycoprotein (MDR1/ABCB1)

P-glycoprotein (ABCB1) is an ATP-powered efflux

pump which transports a vast array of structurally

unrelated hydrophobic, amphiphilic and cationic

compounds (Sharom 2011). Its substrates include

therapeutic drugs, peptides and lipid-like molecules.

Being a drug exporter, ABCB1 is involved in resis-

tance of cancer cells to various cytotoxic drugs, a

phenomenon known as multidrug resistance (MDR).

Due to its importance for cancer therapy, ABCB1 is

the most studied and well-understood member of the

ABC superfamily. ABCB1 is also expressed in normal

tissues, especially at the apical surface of epithelial

cells of the gastrointestinal tract, liver, kidney, testes,

ovaries, and capillaries of the brain where it acts as a

barrier against the uptake of xenobiotics. In liver and

kidney, ABCB1 facilitates excretion of drugs and

xenobiotics into the bile and urine, respectively. In the

intestine, ABCB1 reduces absorption of drugs and

thus their bioavailability by extruding them into the

lumen. Cd2? increases expression of ABCB1 in

kidney PT cells, resulting in diminished Cd2?-depen-

dent apoptosis (Thévenod et al. 2000). The most

straightforward explanation for this observation would

be direct Cd2? transport by ABCB1. Indeed, ABCB1-

dependent trans-epithelial Cd2? transport has been

postulated in kidney PT and intestinal cell monolayers

(Carriere et al. 2011; Kimura et al. 2005). In marked
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contrast, Lee et al. reported that 109Cd2? efflux from

PT cells was affected neither by ABCB1 inhibitors nor

by increased ABCB1 expression (Lee et al. 2011).

Since their findings would essentially rule out trans-

port of Cd2? by ABCB1, the authors instead proposed

an indirect mechanism comprising the export of pro-

apoptotic ceramide and glucosylceramide by ABCB1

as an explanation for abrogation of Cd2? toxicity.

There is currently no explanation for the discrepancy

between the different studies (Carriere et al. 2011;

Kimura et al. 2005; Lee et al. 2011) regarding Cd2?

transport.

Multidrug resistance-associated protein 1 (MRP1/

ABCC1)

The multidrug resistance-associated proteins are

members of the C subfamily of ABC transporters. A

total of nine functional MRP genes have been

identified, although the physiological functions of

many of them remain poorly defined. The MRPs

function as organic anion exporters and appear to have

broad and partially overlapping substrate specificity.

The multidrug resistance-associated protein 1 (MRP1)

encoded by ABCC1 was originally discovered as a

cause of MDR in tumor cells (Cole 2014). Despite a

modest degree of sequence similarity, the drug

resistance profile of MRP1 is much like that of

ABCB1 and includes doxorubicin, daunorubicin,

vincristine, colchicine and several other compounds

(Dean and Allikmets 2001). In contrast, the physio-

logical substrate profile differs significantly (Kruh and

Belinsky 2003). While ABCB1 substrates are neutral

or cationic lipophilic compounds, MRP1 can transport

lipophilic anions like leukotriene C4, glucoronate

conjugates and sulfated bile acids. In addition, MRP1

accepts GSH-conjugates as substrates, a property it

shares with most other MRPs (Ballatori et al. 2009).

MRP1 is widely expressed in various tissues including

lung, kidney, small intestine, muscles and skin (Cole

2014). Contrary to ABCB1, MRP1 is localized to the

basolateral membrane in polarized epithelial cells.

The ABC transporter yeast cadmium resistance

factor 1 (YCF1), the yeast orthologue of mammalian

MRP1 and MRP2, mediates transport of GSH and

bis(glutathionato)Cd2? (Li et al. 1997). Human MRP1

has been shown to functionally complement YCF1

(Tommasini et al. 1996). Therefore, it is reasonable to

assume that MRPs are efflux pumps for Cd2?,

transporting it in the form of GSH complexes. This

hypothesis is supported by the observation that

inhibition of MRP1 by MK571 resulted in increased

tissue accumulation of Cd2? in zebrafish exposed to

low micromolar Cd2? concentrations, as did MRP1

knockout (Tian et al. 2017). It should be noted,

however, that no direct proof for the transport of Cd2?-

GSH has been provided so far.

Other multidrug resistance-associated proteins

Like MRP1, some of the other MRP family members

have also been implied in heavy metal resistance. For

instance, MRP2 (ABCC2), a close relative of MRP1

with overlapping substrate specificity but diverse

tissue distribution, has been shown to be capable of

decreasing Cd2? levels in zebrafish cells and embryos

(Long et al. 2011b). Another MRP family member,

MRP5 (ABCC5), was shown to attenuate Cd2?

toxicity to zebrafish embryos (Long et al. 2011a).

This report corroborated earlier findings that MRP5

conferred modest resistance to Cd2? on HEK293 cells

(McAleer et al. 1999).

Cystic fibrosis transmembrane conductance regulator

(CFTR/ABCC7)

The cystic fibrosis transmembrane conductance regu-

lator (CFTR) is unique among ABC proteins in that it

functions as an ion channel, conducting anions down

their electrochemical gradient, whereas most ABC

transporters move their substrates against a chemical

gradient under ATP hydrolysis. CFTR-mediated anion

flow is needed for normal function of secretory

epithelia such as those lining airways, the intestinal

tract, and ducts in the pancreas, testes and sweat glands

(Gadsby et al. 2006). Mutations in the CFTR gene

cause cystic fibrosis (CF), the most common fatal

hereditary lung disease. Similar to other members of

the ABC protein family, CFTR was reported to

mediate GSH export from cells (Kogan et al. 2003).

In fact, since GSH is the major antioxidant in the

extracellular lining fluid of the lung, reduced GSH
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transport due to CFTRmutations may contribute to the

pathology of CF. Regarding a possible interaction of

CFTR with Cd2?, it has been shown that low

micromolar concentrations of Cd2? trigger CFTR-like

Cl- currents and CFTR-mediated GSH efflux

(L’Hoste et al. 2009). Based upon their findings, the

authors hypothesized that CFTR may extrude Cd2?-

GSH as previously described in the case of the yeast

cadmium resistance factor YCF1 (Li et al. 1997).

However, no experimental evidence for CFTR-medi-

ated Cd2? transport has been provided.

Receptors (See Fig. 1C)

Cd2? in food enters the body through the gastroin-

testinal (GI) tract. Cd2? crosses the enterocyte mono-

layer either as free Cd2? through apical transport via

e.g. DMT1-mediated transport (see ‘‘Divalent metal

transporter 1 (DMT1/DCT1/NRAMP2/SLC11A2)’’

and references therein) and basolateral exit through

less well-defined pathways. Alternatively, Cd2? may

be taken up as Cd2? complexed to peptides or proteins,

such as Cd2?-MT or Cd2?-phytochelatin 3 (PC3) in

the distal intestine (ileum and/or colon) via endo- and

transcytosis through the lipocalin-2 receptor (Lip2-R/

SLC22A17) (see ‘‘Lipocalin-2 receptor (Lcn2-R/

SLC22A17)’’ and references therein). In the literature,

a model prevails wherein free Cd2? in the portal

circulation binds with low affinity to albumin or

HMWP, such as Tf (see ‘‘Transferrin receptor 1

(TfR1)’’), or even MT (Sabolic et al. 2010), before

being taken up by hepatocytes (Liu et al. 2008a) or

Kupffer cells (Sabolic et al. 2010). However, the Cd2?

species delivered to the liver and their entry pathways

have been poorly studied (see Sabolic et al. 2010 for a

discussion). The major detoxifying tool of the cell for

Cd2? complexation is MT, a cysteine-rich metal-

binding protein that has the capacity to bind both

physiological Zn2? ions and toxic Cd2? ions through

the thiol group of its cysteine residues with very high

affinity (KD for Cd2? * 10-14 M) (Freisinger and

Vasak 2013). Free Cd2? in the cytosol of liver cells is

thought to induce synthesis of MT, which binds and

detoxifies Cd2?. Cd2?-MT is supposed to be steadily

released into the bloodstream as the cells undergo

necrosis, either through normal turnover or Cd2?

toxicity, and redistributes to the kidney. Although

some experimental evidence exists from animal stud-

ies that Cd2? redistributes from the liver to the kidney

during chronic exposure to high Cd2? concentrations,

this is not the case for low environmentally relevant

concentrations (see Thijssen et al. 2007). Importantly,

despite no evidence for Cd2? shuttling from the liver

to the kidney in the form of Cd2?-MT has been

provided, this hypothesis prevails in the literature

(reviewed in Sabolic et al. 2010).

As a matter of fact, Cd2? in the circulation may be

bound to various proteins and peptides with relatively

high affinity (Freisinger and Vasak 2013; Goumakos

et al. 1991; Harris and Madsen 1988). GSH (MM ca.

0.3 kDa), MT (MM * 3.5–14 kDa), and LMWP,

such as b2- (MM ca. 11 kDa) and a1-microglobulin

(MM ca. 27 kDa) largely cross the glomerular barrier

(cut-off * 80 kDa). In contrast, based on their esti-

mated glomerular sieving coefficients, only a small

percentage of HMWP e.g. albumin and Tf, are found

in the glomerular filtrate [reviewed in (Thévenod and

Wolff 2016)]. All these proteins may be retrieved in

the renal proximal tubule via the multiligand, endo-

cytic-membrane receptor complex megalin:cubilin

(Christensen et al. 2012).

Megalin (low density lipoprotein receptor-related

protein 2, LRP2):cubilin

Both megalin and cubilin are large, multiligand,

endocytic-membrane glycoproteins. Megalin is a

member of the low-density lipoprotein (LDL)-recep-

tor family and is a 600-kDa single transmembrane-

domain receptor protein, which is composed of a large

extracellular domain with several ligand-binding

regions, a transmembrane domain and a short cyto-

plasmic tail with potential signal-activation sequences

(Christensen and Birn 2002). Cubilin is a structurally

very different peripheral membrane protein with no

obvious transmembrane domain. The molecule of

460-kDa is dominated by 27 CUB domains, which are

involved in ligand binding [reviewed in (Christensen

and Birn 2002)]. The megalin:cubilin receptor com-

plex is expressed primarily in luminal PM of polarized

absorptive epithelia, including intestine, lung, pla-

centa and endocrine glands (e.g. thyroid gland)
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(Christensen and Birn 2002). Megalin and cubilin

mediate the endocytic uptake of many ligands,

including lipoproteins, vitamin-binding proteins, hor-

mones, enzymes and drugs, including metal-protein

complexes, such as Tf, MT, NGAL (see ‘‘Lipocalin-2

receptor (Lcn2-R/SLC22A17)’’), and albumin. The

receptors bind and endocytose specific ligands inde-

pendently, but also interact to facilitate the uptake of

further ligands (Christensen and Birn 2002).

In the kidney, the megalin:cubilin complex is

expressed in the PT where it binds and retrieves

multiple filtered proteins from the primary filtrate,

including a1- and b2-microglobulin, albumin, Tf, MT,

NGAL, etc. [reviewed in (Christensen et al. 2012)],

thus preventing protein loss from the body into the

urine. Internalized proteins are trafficked to endo-

somes, and upon acidification the receptors are

recycled to the apical membrane whereas ligands are

delivered to late endosomes/lysosomes for protein

degradation (Christensen et al. 2012), though transcy-

tosis may also occur through involvement of the

neonatal Fc receptor (FcRn) (reviewed in Dickson

et al. 2014).

Chronic renal Cd2? toxicity mainly affects the PT

(Thévenod 2003; Thévenod and Lee 2013b). Accord-

ing to current concepts, Cd2?-MT is the major source

of renal Cd2? because it is easily filtered by the

glomerulus due to its small MM. Furthermore, Cd2?-

MT is a ligand of megalin:cubilin (Klassen et al. 2004)

that is efficiently internalized by PT cells (Wolff et al.

2006), and delivered to acidic late endosomes/lyso-

somes (Erfurt et al. 2003). In lysosomes, MT is

degraded by acidic proteases and Cd2? is transported

into the cytosol via various exit pathways, including

DMT1 (Abouhamed et al. 2006, Abouhamed et al.

2007) (see ‘‘Divalent metal transporter 1 (DMT1/

DCT1/NRAMP2/SLC11A2)’’). This process may

cause immediate damage to the PT if cells acutely

internalize large amounts of Cd2?-MT, which is

normally the case in settings of cell culture or animal

experiments (see for instance Sabolic et al. 2002;

Wolff et al. 2006), and do not reflect ‘‘natural’’ chronic

exposure to low (or ‘‘normal’’) Cd2? concentrations

(discussed in Thévenod and Lee 2013b; Thévenod and

Wolff 2016), where plasma (Cd2?)-MT concentra-

tions are measured in the range of 0.5–5 nM (Akintola

et al. 1995; Milnerowicz and Bizon 2010). This likely

excludes filtered Cd-MT as the major source of Cd2?

accumulation in the PT for the following reasons: (1)

The KD of megalin for its ligand MT (* 100 lM)

(Klassen et al. 2004) is * 105-times higher than the

plasma concentration of (Cd2?-)MT; (2) MT knockout

mice chronically fed with Cd2? also develop PT

toxicity (Liu et al. 1998b); and (3) kidney pathology

from Cd2?-MT injections differs from that induced by

chronic oral Cd2? exposure (Liu et al. 1998a). Hence,

other Cd2?-protein complexes that are filtered by the

glomerulus are more likely to be bound and internal-

ized by megalin to induce Cd2? accumulation and

toxicity in the PT (in addition to other transporters for

Cd2? in the PT; see ‘‘Solute carriers (SLCs’’).

Microglobulins, albumin and Tf also form complexes

with divalent metal ions, including Cd2? (KD * 10-6M)

(Eakin et al. 2002; Goumakos et al. 1991; Harris and

Madsen 1988), and importantly their concentration in

the glomerular filtrate approximates their binding

affinity to megalin:cubilin (reviewed in Thévenod and

Wolff 2016). Although Cd2? exhibits relatively low

affinities to these proteins compared to MT, suggest-

ing that their saturation with Cd2? may be low, the

multiplicative effect of continuous glomerular filtra-

tion makes them likely candidates as a source of

chronic Cd2? accumulation and toxicity via

megalin:cubilin in the PT. Although megalin:cubilin

likely contributes to uptake of metal-protein com-

plexes, its significance for Cd2? toxicity has to be put

into perspective because of two intriguing recent

in vivo studies in rats showing that chronic low or

moderate Cd2? exposure disrupts the endocytic func-

tion of megalin:cubilin in the PT without causing

toxicity (Prozialeck et al. 2016; Santoyo-Sanchez et al.

2013). This may also be relevant for the mechanisms

underlying Cd2? toxicity in other tissues expressing

megalin:cubilin (e.g. intestine and placenta) (Chris-

tensen and Birn 2002).

Although the divalent metal efflux transporter

FPN1 is exclusively basolaterally expressed in the

PT (van Raaij et al. 2018; Wang et al. 2018; Wolff

et al. 2011), it does not transport Cd2? (Mitchell et al.

2014). Hence Cd2? accumulation in the PT may be

further enhanced by the virtual absence of an efflux
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pathway for cytosolic Cd2? into the extracellular

space (see ‘‘Ferroportin-1 (FPN1/SLC40A1)’’).

Lipocalin-2 receptor (Lcn2-R/SLC22A17)

Neutrophil gelatinase-associated lipocalin (NGAL

[human]/siderocalin/24p3 [rodent]) or lipocalin-2

(Lcn2) is a member of the lipocalin family of small

glycoproteins (Flower 1996). Lcn2 is secreted by

neutrophils (Kjeldsen et al. 1993) and epithelia

[reviewed in (Kjeldsen et al. 2000)]. NGAL binds

catecholate-type bacterial siderophores, which com-

plex Fe3?, hence Lcn2 contributes to antibacterial

innate immunity (‘‘bacteriostasis’’) (Abergel et al.

2008; Borregaard and Cowland 2006). In epithelia, the

function of Lcn2 is less clear. Lcn2 may promote

normal epithelial growth and differentiation as well as

repair and regeneration of damaged epithelia, e.g.

during acute kidney injury (Paragas et al. 2011), via

mammalian siderophores (Bao et al. 2010; Devireddy

et al. 2010). The role of Lcn2 in affecting cell fate is

complicated even more by the observation that apo

(Fe3?-free)-Lcn2 may augment cell death whereas

holo (Fe3?-containing)-Lcn2 may increase cell sur-

vival, in particular in the context of cancer where Lcn2

has paradoxical (i.e., both beneficial and detrimental)

effects on cellular processes associated with tumor

development (Devireddy et al. 2005) [reviewed in

(Bolignano et al. 2010; Richardson 2005; Schmidt-Ott

et al. 2007)].

The current dogma assumes that distal tubule and

collecting duct (CD) cells have no specific features for

receptor-mediated endocytosis (Christensen and Birn

2002). Yet micropuncture studies showed that the

distal nephron reabsorbs 2–25% of filtered proteins

(e.g. Galaske et al. 1979; Madsen et al. 1982), which

may increase further upon glomerular or PT damage.

A receptor for Lcn2 (Lcn2-R/SLC22a17/BOCT [brain

organic cation transporter]) has been cloned in rodents

(Devireddy et al. 2005) (MM * 60 kDa) whose

affinity for Lcn2 is * 10009 higher (KD * 90 pM)

(Devireddy et al. 2001) than that of megalin (KD-

* 60 nM) (Hvidberg et al. 2005) (see above).

SLC22A17 belongs to the SLC22 family of organic

anion and cation transporters (Koepsell 2013), but

does not show any SLC22 transporter activity (Bennett

et al. 2011). Lcn2-R protein is expressed in many

epithelial tissues, including the lung, liver, kidney,

intestine and placenta (Devireddy et al. 2005). In the

rodent kidney, Lcn2-R is expressed apically in the

distal nephron, in particular in the distal convoluted

tubule (DCT) and CD (mainly inner medullary CD)

(Langelueddecke et al. 2012). In Chinese hamster

ovary cells transiently expressing Lcn2-R as well as in

a cultured mouse DCT cell line (DCT209) that

endogenously expresses Lcn2-R, Lcn2-R internalized

sub-micromolar concentrations of fluorescence-la-

belled Tf, albumin, and MT (KD * 100 nM) whose

uptake was abolished by 500 pM Lcn2 (Langelued-

decke et al. 2012). Exposure of both cell lines

expressing Lcn2-R to 700 nM Cd2?-MT induced cell

death that could be reduced by 500 pM Lip2 (Lan-

gelueddecke et al. 2012). This indicates that Cd2?-MT

is a high-affinity ligand of Lcn2-R that mediates

uptake and toxicity of Cd2?-MT in the distal nephron.

Hence, although Cd2?-MT may not be directly

relevant in Cd2?-induced PT damage (see ‘‘Megalin

(low density lipoprotein receptor-related protein 2,

LRP2):cubilin’’), it is likely relevant in DCT/CD/

medulla Cd2? toxicity. Indeed, the renal medulla

accumulates significant amounts of both Cd2? and

(Cd2?-)MT in humans and concentrations of both

Cd2? compounds can reach * 50% of the levels

found in the cortex (Torra et al. 1994; Yoshida et al.

1998). MT was detected by immunohistochemistry in

distal nephron segments of rodent and human kidney

(although no nephron segment-specific markers were

used) (Garrett et al. 1999; Nagamine et al. 2007;Wang

et al. 2009) and the expression of MT was induced by

exposure to Cd2? (Nagamine et al. 2007; Wang et al.

2009).

In human and rodent GI tract, Lcn2-R was found

expressed in the distal intestine (ileum, colon) (Lan-

gelueddecke et al. 2013). Lcn2-R is responsible for

uptake, toxicity and transcytosis of Cd2?-MT, Cd2?-

phytochelatins (e.g. PC3) and Tf (Langelueddecke

et al. 2013, 2014) in cultured human Caco-2 BBE

intestinal cells.

In summary, whereas megalin:cubilin may repre-

sent a high capacity low-affinity receptor for uptake of

Cd2?-MT and other Cd2?-protein complexes in the

PT, Lcn2-R may operate as a low capacity high-
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affinity receptor for RME in the distal nephron and

thereby initiate or amplify nephrotoxicity in the PT or

other nephron segments. In the intestine, Lip2-R may

contribute to absorption and transcytosis of plant or

animal Cd2?-loaded proteins and peptides (e.g. Cd2?-

MT and Cd2?-PC3), thus contributing to systemic

Cd2? toxicity.

Transferrin receptor 1 (TfR1)

In the blood circulation, plasma iron is mainly bound

to Tf, which has two specific high-affinity binding

sites for Fe3?. Plasma holo-Tf is internalized by a

ubiquitous cell-surface Tf receptor (TfR1), thus it

represents a major source of Fe for cells (Frazer and

Anderson 2014). TfR1 is a transmembrane glycopro-

tein composed of two disulfide-linked monomers.

Each monomer binds one holo-Tf molecule generating

a holo-Tf-TfR1 complex that is internalized by the cell

via RME. When the Tf-TfR1 complex reaches endo-

somes, Fe3? is enzymatically reduced to Fe2? by the

oxidoreductase ‘‘Steap’’ (six transmembrane epithelial

antigen of the prostate), which together with low

endosomal pH facilitates dissociation of Fe2? from Tf.

Apo-Tf and TfR1 are recycled to the cell surface for

reuse (Frazer and Anderson 2014), whereas Fe2? may

be effluxed from endosomes and/or lysosomes into the

cytosol through DMT1 and/or TRPML1 (see ‘‘Diva-

lent metal transporter 1 (DMT1/DCT1/NRAMP2/

SLC11A2)’’ and ‘‘Ca2? channels’’).

In normal plasma, Tf is * 30% saturated with

Fe3? (Chasteen 1977), which provides Tf with a

substantial capability to bind other metal ions in the

bloodstream and to deliver them into tissues. This

includes Cd2?, where sequential binding of two Cd2?

to Tf was observed with a KD of * 10-6 M for the

first Cd2? ion and a KD of * 10-5 M for the second

Cd2? ion (De Smet et al. 2001; Harris and Madsen

1988; Wang et al. 2016). Thus, TfR1 is a likely

candidate that mediates Cd2? accumulation from the

circulation to cause cellular toxicity through the Tf-

TfR1 pathway of cellular iron delivery. However,

cellular Cd2? uptake and toxicity via TfR1 still

requires experimental proof.

Summary, conclusions and outlook

At submicromolar or low micromolar concentrations,

Cd2? is taken up by cells via ion channels and solute

carriers (SLC) for essential metal ions. Cd2? is carried

by T-type Ca2? channels, the TRP channels TRPA1,

TRPV5/6 and endosomal/lysosomal TRPML1, the

Fe2? transporter DMT1 (SLC11A2) in plasma mem-

branes, lysosomes and mitochondria, as well as by the

Zn2? transporter ZIP8/14 (SLC39A8/A14) and the

amino acid transporter b0, ? AT (SLC7A9/SLC3A1

and SLC7A9/SLC7A13) that are both targeted to the

plasma membrane. Cd2? protein/peptide complexes

are internalized via receptors for receptor-mediated

endocytosis of proteins and peptides, such as the Lcn2

receptor (SLC22A17) that is expressed in the distal

nephron and intestine and binds and endocytoses

Cd2?-MT and Cd-PC3 with a KD of * 100 nM (see

Fig. 1).

Independently of the entry pathways for Cd2? or

Cd2?-protein complexes, chronic low Cd2? exposure

of the kidney PT will not interfere with initiation of

adaptive processes, in particular upregulation of

detoxifying MT for long-term storage of cytosolic

Cd2?. Considering that more than 60% of the Cd2?

body burden accumulates in the kidneys in the age

range of 30–60 years (Salmela et al. 1983), this

seemingly protective measure turns out to be a double-

edged sword because significant stores of ‘‘inert’’

Cd2? are created that represent an endogenous source

of putatively toxic Cd2? that may be released acutely

into the organism under particular circumstances, e.g.

following kidney injury.

The influx transporter OCT2 (SLC22A2), the efflux

transporters MATE1/2-K (SLC47A1/A2) and the

efflux pump ABCB1 transport high micromolar con-

centrations of Cd2? that are too high to have in vivo

significance in the context of Cd2? exposure. The

same reasoning applies to the protein receptor

megalin:cubilin for its ligand Cd2?-MT (KD-

* 100 lM). Thus, in vivo relevant Cd2?-protein

ligands of megalin:cubilin remain unknown. Cd2?

influx through theMCU into the mitochondrial matrix,

Cd2?-Tf internalization via the TfR1 receptor, and

efflux of Cd2?-GSH via MRP1 require further proof

by additional studies that should also identify putative

transporters mediating Cd2? toxicity (see Fig. 1).
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Thévenod F, Lee WK (2013b) Toxicology of cadmium and its

damage to Mammalian organs. Metal Ions Life Sci

11:415–490. https://doi.org/10.1007/978-94-007-5179-8_

14
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