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Abstract The study of innovative biodegradable

implant materials is one of the most interesting

research topics at the forefront in the area of bioma-

terials. Biodegradable implant materials in the human

body can be gradually dissolved, absorbed, consumed

or excreted, so there is no need for the secondary

surgery to remove implants after the surgery regions

have healed. However, most of the biodegradable

materials, usually polymers, do not have good

mechanical properties to be reliable for bearing the

load of the body. Magnesium and its alloys due to the

excellent biodegradability and biocompatibility as

well as the suitable mechanical compatibility with

human bone are very promising candidates for the

development of temporary, degradable implants in

load-bearing applications. However, Mg alloys are

corrosion susceptible in a biological environment.

Besides, the high corrosion rate and the low bioactiv-

ity of magnesium implants are the challenging prob-

lems, which need to be resolved before employing

them in clinical applications. This paper provides a

review of state-of-the-art of magnesium alloy implants

for orthopedic and tissue engineering applications and

describes recent progress in the design of novel

structure design Mg alloys and potential approaches

to improve their biodegradation performance.
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Introduction

To allow healing, broken bones must be firmly

stabilized to avoid even micro-movements under the

influence of considerable forces. Since inflammation

may irritate bone repair, the implant must be highly

biocompatible. Metallic implants are preferred for

load-bearing applications because of their superior

mechanical strength and fracture toughness. Currently

approved and commonly used metallic biomaterials

include stainless steels, titanium and cobalt-chro-

mium-based alloys. They have good corrosion resis-

tance to maintain long-term structural stability in the

body. However, if these implants stay in the body for a

long time, they may cause permanent physical irrita-

tion, a chronic inflammatory response, or they may

release toxic elements. All of these interactions impair

health (Jacobs et al. 1998; Lhotka et al. 2003; Jacobs

et al. 2003). Moreover, the materials exhibit distinctly

different mechanical properties as compared to the

biological tissues they replace. Specifically, the elastic

modulus difference between the traditional implants
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and the natural bone induces stress shielding of the

bone, interfering with bone turnover, leading to bone

loss and possibly inducing secondary bone fracture

(Bostman et al. 2000; Nagels et al. 2003). Further-

more, the materials listed above are non-degradable.

For short-term applications, such as bone fracture

fixation or scaffolds that need to support bones during

regeneration, the implant has to be removed by

secondary surgery after recovery of the tissue func-

tion. This second surgery increases pain for the

patients, surgery risk and medical costs. Thus, the

development of biodegradable implants for treatment

of complex bone fractures has become one of the

priority areas in biomedical materials research. These

implants should degrade at a rate adapted to tissue

healing, ideally decreasing their strength and stiffness

in a way matching the increase in load bearing

capacity of the supported tissue, and maintaining

some mechanical integrity until the tissue has healed

completely.

Magnesium as degradable implants

Current biodegradable implants are mainly made of

resorbable polymers and bioceramics. However, poor

mechanical strength of the polymers and brittleness of

the ceramics often limit their application as load-

bearing devices (Hou et al. 2014). Here, degradable

metal implants, made from magnesium (Mg) or iron

(Fe) and their alloys, have a great potential as

materials for temporary implants. However,

biodegradable metals with better mechanical proper-

ties, good biocompatibility, no biotoxicity, and suit-

able degradation properties matching the tissue

healing are still lacking and need to be developed.

Recently, Mg and its alloys have been presented as

a new class of biodegradable metallic materials and

gained more and more attention as a potential matrix

material for orthopedic applications (Razavi et al.

2010a; Sharma et al. 2012; Witte 2010; Staiger et al.

2006). For a variety of reasons, they have attracted

special interest for temporary implant applications

such as bone plates and screws in orthopedics and as

stents in cardiovascular implantology:

(i) Most importantly, Mg and its alloys have a

natural ability to biodegrade due to their

corrosion susceptibility in aqueous solutions,

especially if these contain chloride ions

(Witte et al. 2006; Kraus et al. 2012). As

compared to Fe and its alloys, Mg alloy

implants degrade faster in physiological

environments.

(ii) Mg exhibits excellent biocompatibility (Li

et al. 2004; Maguire and Cowan 2002): Mg

ions (Mg2?) that are released during implan-

tation and degradation are used in the regular

metabolism and, to date, no critical toxic

limits or side effects have been reported for

Mg2? ions.

(iii) The elastic modulus of Mg (40–45 GPa)

better matches the stiffness of natural bone

(3–20 GPa) as compared to conventional

metallic materials such as stainless steel

(* 200 GPa), cobalt-based alloys (* 230

GPa), and titanium alloys (* 115 GPa), thus

reducing the stress shielding effect (Niinomi

et al. 2012; Davies 2003).

(iv) Mg alloys are exceptionally light weight

metals with density ranging from 1.74 to

2.0 g/cm3, which is much less than that of,

e.g. biomedical titanium alloys (4.4–4.5 g/

cm3) and close to that of natural bone

(1.8–2.1 g/cm3) (Gu et al. 2010a), thereby

leading to lighter implants as compared to

other metallic biomaterials.

Magnesium biodegradation in body environments

Mg corrosion in aqueous solution is an electrochem-

ical phenomenon. The electrochemical degradation

mechanism of Mg in aqueous solution occurs accord-

ing to (Mueller et al. 2010; Chen et al. 2015):

Mgþ 2H2O ! Mg OHð Þ2þ H2

producing magnesium hydroxide (Mg(OH)2) and

hydrogen gas. The soluble magnesium hydroxide film

forms a slightly effective protective layer on the

surface of Mg which prevents further corrosion in

water. However, if the corrosive medium contains any

chlorides with concentrations above 30 mmol/L (Sha

2003); magnesium hydroxide is converted to magne-

sium chloride (MgCl2) (Staiger et al. 2006):

Mg OHð Þ2þ 2Cl� ! MgCl2 þ 2 OH�ð Þ
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In the physiological environment, high chloride con-

centrations in the range of * 150 mmol/L are pre-

sent, resulting in the production of highly soluble

magnesium chloride which does not provide an

effective protection from further corrosion. Therefore,

corrosion progresses as the bare Mg surface is exposed

to the aggressive environment again and again (Witte

et al. 2006, 2008). The release of hydroxide ions from

magnesium hydroxide upon the reaction with chlorine

ions results in a local increase in pH value near the host

tissue (Gu et al. 2010b; Wong et al. 2010).

Besides chlorine ions, the body fluid contains

calcium and phosphate ions which triggers the

production of MgxCay(PO4)z(OH)n compounds, such

as calcium phosphate and/or calcium magnesium

phosphate, by the interaction between Mg2?, Ca2?

and PO4
3-. These complex bioactive mineral products

form a deposition layer on the Mg surface and inhibit

further corrosion and increase in pH value (Jang et al.

2013). Furthermore, in addition to the variety of

inorganic components, body fluids contain organic

components, such as biomolecules, proteins, cells, or

even bacteria, which may adsorb or adhere to the Mg

surface and thereby affect the dissolution behavior.

The presence of proteins and other organic molecules

in blood which create a protective coating around Mg

implants slowing down corrosion (Wagener et al.

2015; Yamamoto and Hiromoto 2009). However, the

influence of proteins on Mg dissolution rate can

change with time such that they may first inhibit and

later accelerate degradation. The nature of the degra-

dation products strongly influences the subsequent

degradation steps on the Mg surface as well as the

biological response of the bone tissue. The formation

of corrosion products that serve as protective layers

may explain to some extent the lower degradation

rates observed in vivo as compared to in vitro tests,

and reveal the importance of both proteins and

different cell interactions with/nearby the implant on

the degradation behavior (Willumeit-Römer et al.

2014). However, all these interactions may disturb the

local physiological equilibrium at the implantation

site.

As outlined above, there is a variety of interactions

with the corroding Mg alloy surface and between the

processes taking place at the implantation site, making

the corrosion scenario in body environments highly

complex as compared to that in a simple salt solution.

Moreover, the degradation predictions become diffi-

cult as not only does the implant environment vary

with the region of implantation from one patient to

another and due to individual differences in reaction,

but it can also vary with time (Tang et al. 2006).

Indeed, time-dependent corrosion studies showed that

the degradation process starts with a very high

degradation rate and slows down with increasing

immersion time. This is related to the nature of the

corrosion layer formed on the Mg surface (Witte et al.

2005; Wang and Shi 2011).

In addition to the complex degradation processes,

Mg implants experience considerable mechanical

loading while exposed to the body fluid due to

walking, running and other body movements. For

example, a spine can experience maximum loads

beyond 3500 N, whereas a cardiovascular stent needs

to sustain very high numbers of cyclic loading due to

the heart beats (Raman and Choudhary 2013; Choud-

hary and Raman 2012). The dynamic loading during

normal physical activities, along with the corrosive

physiological environment does pose the threat of

corrosion fatigue (CF, under cyclic loading) and stress

corrosion cracking (SCC, under tensile loading), due

to the dual effect of corrosion and (tensile) stresses

which lead to crack formation and possible fracture of

implants. CF and SCC are a serious concern for

implants made of Mg alloys, for several reasons:

(i) common temporary implants (such as screws, pins

and plates) have sharp contours acting as stress raisers;

(ii) Mg alloys readily suffer of pitting corrosion in

chloride solutions, including body fluids, and pits are

the most common crack initiation sites of CF and SCC

(Kannan and Raman 2008; Kannan et al. 2011); (iii)

hydrogen released from Mg corroding in body fluids

plays a dominant role in corrosion-assisted cracking,

i.e., in SCC and CF, because crack initiation and

propagation are accompanied and supported by

hydrogen adsorption and diffusion into the material

(Jafari et al. 2015; Gu et al. 2010c).

Challenges of magnesium biodegradable implants

The excellent biodegradability and biocompatibility

as well as the suitable mechanical compatibility with

human bone make Mg and its alloys very promising

candidates for the development of temporary, degrad-

able implants in load-bearing applications (Radha and
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Sreekanth 2017; Živić et al. 2014). However, there are

a number of issues currently impeding the develop-

ment. The main obstacle to the clinical use of Mg

alloys is their too high corrosion rate in the complex

physiological environment, containing water, dis-

solved oxygen, proteins, minerals, chloride and

hydrogen ions, besides others (Li et al. 2008; Lopez

et al. 2010). This fast corrosion under physiological

conditions (that is, at pH values of 7.4–7.6 and high

chloride concentration) is due to the rapid conversion

of Mg hydroxide into highly soluble Mg chloride

(Song and Atrens 1999). This leads to several

problems:

(i) The mechanical integrity of the Mg alloy

implant deteriorates too fast, and, hence, the

implant reaches inadequate mechanical prop-

erties before the host tissue has been suffi-

ciently healed. The combination of the

chloride containing environment and the Mg

ions from anodic dissolution species further

accelerates pitting corrosion, inducing local-

ized high stresses which then may lead to the

formation of cracks (González 2013; Choud-

hary and Raman 2013).

(ii) The rapid corrosion of Mg is associated with

the release of hydrogen (H2) gas (Liu and

Schlesinger 2009). In the human body, the

evolved hydrogen bubbles can accumulate in

gas pockets in the vicinity of the implant. This

may delay healing and may lead to necrosis of

the tissues, because the gas pockets can cause

separation of tissues and tissue layers (Seal

et al. 2009; Witte et al. 2005).

(iii) The severe Mg dissolution induces an alka-

lization (pH increase) near the Mg implant

surface (Ng et al. 2010; Song and Song 2007).

Although the human body automatically

strives to adjust the pH value of the body

fluid and the blood, local alkalization will be

inevitable around a rapidly corroding Mg

implant. This can unfavorably affect the pH

dependent physiological reaction balances in

the vicinity of the implant and may even lead

to an alkaline poisoning effect if the regional

in vivo pH value exceeds 7.8.

To resolve these drawbacks and develop clinically

viable, degradable implant solutions, it is critical to

slow down and control the biodegradation of Mg

alloys. Thus, biocompatible Mg-based implants are

needed that maintain their mechanical integrity

longer, for the whole reparative phase of 4–16 weeks,

depending on fracture configuration and location,

status of the adjacent soft tissues, and patient charac-

teristics (species, age, health status, concurrent

injuries/diseases) (Frost 1989), to ensure sufficient

healing of the fractured bone. Afterwards the implants

should degrade entirely within a short period of time.

Novel structure design for Mg-based

biodegradable metals

Based on research of literatures, many kinds of Mg-

based metals with novel structure have been specially

developed for the biomedical applications. Advances

have been made on the design of porous structure,

phase structure, grains, and amorphous structure to

adjust the implant performance.

Porous structure

Porous implants, so-called scaffolds, with an inter-

connected pore structure are of particular interest for

orthopedic implants as they allow tissue ingrowth,

thereby improving implant fixation (Li et al. 2002;

Wang et al. 2016, 2017; Jasmawati et al. 2015;

Zardiackas et al. 2001; Clemow et al. 1981; Zou et al.

2004). The interconnected pore networks also support

ingrowth and survival of the vascular system required

for continuing bone development (Murray and Semple

1981; Li et al. 2005), as they facilitate the delivery of

oxygen and nutrients to the cells and the removal of

waste products stemming from cell metabolism and

from degradation of the scaffold (Pamula et al.

2008, 2009). In addition, by adjusting the porosity,

the modulus of materials can be controlled which

offers the opportunity to design materials with a

modulus close to that of natural bone (Lefebvre et al.

2008). These unique features make porous Mg with-

bone mimicking characteristics an ideal scaffold for

bone tissue regeneration. Mg scaffolds with an

adjusted degree of porosity can provide appropriate

mechanical support, can serve as templates for bone

regeneration, and they offer excellent biocompatibility

and biodegradability. Therefore, porous Mg scaffolds

cannot only provide sufficient initial mechanical

stability but they can also foster good bone ingrowth,
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which is necessary for biological fixation (Zhuang

et al. 2008; Zreiqat et al. 2002; Persaud-Sharma and

McGoron 2012). However, the already high corrosion

rate may be increased by porosity, due to the increase

in surface area accessible to the body fluids, together

with a better transport of body fluids, both of which

accelerate the rate of the bio-chemical reactions

(Zreiqat et al. 2002).

Fine grained structure

A fine grain structure with increased grain boundary

area reduces the structural discontinuity between the

oxide layer and Mg and compensates the mismatch,

thus decreases the degree of oxide cracking (Birbilis

et al. 2010; Orlov et al. 2011; Ralston and Birbilis

2010). It might therefore be expected that a fine grain

structure is more corrosion resistant in Mg alloys. A

significant number of research showed that grain

refinement after alloying and further treatment such as

rolling and extrusion could affect the morphology and

distribution of the primary or secondary phase, and the

second phase could influence the anodic and cathodic

polarization behaviors in electrochemical test (Witte

2010; Rosalbino et al. 2013; Pu et al. 2011). Subse-

quently, the yield strength (YS), ultimate tensile

strength (UTS), elongation and corrosion properties

of materials could be affected grain refinement.

Composite structure

The development of composite structure may repre-

sent an alternative method to achieve the desired

improvements of Mg-based biomaterials. Mg matrix

composites exhibit adjustable mechanical and corro-

sion properties as determined by the selection of the

reinforcement material. The content, distribution, and

size of the reinforcements are of major importance for

mechanical and degradation properties of Mg com-

posites. High flexibility in component design and

reinforcement material in composites also can rectify

the biocompatibility of Mg (Daoud et al. 2007;

Mabuchi et al. 1995; Feng and Han 2011). In

consideration of biocompatibility, reinforcements in

Mg composites are usually HA (Gu et al. 2010d;

Khanra et al. 2010;Witte et al. 2007), FA (Razavi et al.

2010b), calcium polyphosphate (Feng and Han 2010)

and calcium (Razavi et al. 2010b).

Glassy structure

Investigations were also carried out recently for Mg-

based metallic glasses due to their single-phase,

chemically homogeneous alloy system and the

absence of second-phase, which could impair the

mechanical properties and corrosion resistance. How-

ever, one of the unsolved problems for the manufac-

turability and the applications of bulk metallic glasses

is that their glass-forming ability is very sensitive to

the preparation techniques and impurity of compo-

nents since oxygen in the environment would

markedly deteriorate the glass-forming ability. More-

over, intrinsic brittleness and/or embrittlement due to

structural relaxation are a primary negative concern

for the future clinical application ofMg-based metallic

glasses.

Approaches to improve magnesium

biodegradation

Efforts to control the corrosion rate of Mg have

comprised various strategies such as purification,

alloying, and surface modification. Purification of

Mg reduces the corrosion rate considerably; however,

due to the low yield strength of pure Mg, its

application in orthopedics and other load bearing

applications is limited (Song 2007). In contrast,

certain alloying elements can be added to improve

the corrosion resistance of pure Mg. Using suitable al-

loying elements mechanical strength and corrosion

resistance of Mg-alloys can be enhanced but cytotox-

icity and long term inflammatory consequences of

these elements are the major concern. Hence, alloying

elements need to be selected carefully to maintain

biocompatibility, because they will also be dissolved

in the body fluid during degradation (Zhang et al.

2013). Furthermore, most Mg alloys are susceptible to

localized degradation due to their inhomogeneous

microstructure which may impair the mechanical

integrity during service (Kannan 2010). In addition,

the high electronegative potential of Mg (- 2.4 V)

makes it difficult to achieve a significantly lower

degradation rate just by alloying.

Surface modification is one of the most effective

ways not only to reduce and control the degradation

behavior but also to improve the surface biocompat-

ibility of Mg. Compared to changing the bulk structure
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and composition, surface modification is simpler and

more conveniently implemented onMg alloys to tailor

the surface corrosion resistance while preserving the

favorable bulk attributes. Surface modification has

recently been shown to provide excellent improve-

ments in the corrosion performance of Mg alloy

implants, through a treatment process that provides a

resistive barrier against the body environment (Wan

et al. 2016; Liu et al. 2014; Razavi et al. 2013; Jai

Poinern et al. 2012). In comparison with alloy design,

it is less costly, flexible to construct multi-functional

surfaces and the addition of potentially toxic alloying

elements is eliminated. In the case of biodegradable

Mg-based implants, the aim of the surface modifica-

tion is just to control their degradation rate and to

improve their surface biocompatibility, but not to

permanently change the surface properties, which

might involve loss of degradability or toxicity to

surrounding tissues. Hence, a biodegradable dynamic

interface is the goal, in order to endow the implants

with desirable corrosion resistance and surface bio-

compatibility as well as maintain the mechanical

strength of the substrate during service (Wu et al.

2013). Various surface modification strategies have

been proposed such as conversion coatings (Mao et al.

2013; Zomorodian et al. 2012), sol–gel coatings

(Rojaee et al. 2013), chemical deposition (Hiromoto

et al. 2013; Wang et al. 2010), plasma electrolytic

oxidation (PEO) (Lin et al. 2013, 2014; Pan et al.

2013), hydroxyapatite coatings (Tomozawa and Hiro-

moto 2011; Wang et al. 2011) and organic coatings

(Zomorodian et al. 2013). The details of various

surface modification methods and their importance for

biomedical applications of Mg alloys are addressed in

recent reviews (Yang et al. 2011; Hornberger et al.

2012; Wang et al. 2012).

Conclusion

Mg is a promising biomaterial for bone substitution

due to its excellent set of properties, comprising a

relatively low Young’s modulus comparable with that

of natural bone, sufficient strength, excellent biocom-

patibility and biodegradability. These unique features

make Mg with-bone mimicking characteristics an

ideal scaffold for bone tissue regeneration. However,

the use of Mg under physiological conditions remains

problematic. Therefore, a strategically designed Mg

scaffold that retains its mechanical strength over a

sufficient time span and corrodes at a controlled rate is

necessary.
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