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Abstract Tuberculosis (TB) caused by Mycobac-

terium tuberculosis (MTB) is a global threat to human

health hence better understanding of the MTB patho-

genesis for improved therapeutics requires immediate

attention. Emergence of drug-resistant strains has

stimulated an urgent need for adopting new strategies

that could be implemented to control TB. One of the

contributing mechanisms by which MTB evades drug

doses is overexpression of drug efflux pumps. Thus

blocking or modulating the functionality of efflux

pumps represents an attractive approach to combat

drug resistance. Iron is a critical micronutrient

required for MTB survival and not freely available

inside the host. In this study, we demonstrated that iron

deprivation impairs drug efflux pump activity and

confers synergism for anti-TB drugs in presence of

efflux pump inhibitors against MTB. Mechanistic

insights revealed that iron deprivation inhibit resis-

tance nodulation division superfamily transporter

activity. This was evident from enhanced Nile red

accumulation and reduced expression of MmpL3, a

transmembrane promising target involved in mycolic

acid transport across membrane. Furthermore, iron

deprivation led to abrogated MA transport particularly

of class methoxy-MA which was confirmed by TLC

and mass spectrometry based lipidome analysis.

Additionally, iron deprivation leads to enhanced

membrane fluidity in MTB. Together, MmpL3 being

a promiscuous anti-TB target, metal chelation strategy

could be adopted to boost the effectiveness of current

anti-TB drug regimes to combat drug resistance TB.
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Introduction

Tuberculosis (TB) caused by Mycobacterium tuber-

culosis (MTB) remains one of the important underly-

ing causes of mortality worldwide. Widespread and

prolonged deployment of anti-TB agents has led to

emergence of drug resistance in MTB, which poses a

serious threat to available therapy. Multidrug resistant

tuberculosis (MDR-TB) results due to simultaneous

resistance towards two frontline anti-TB drugs, isoni-

azid and rifampicin (Mezwa et al. 2018). Similarly,

extensively drug resistant TB (XDR-TB) is caused by

MTB strains which are resistant to isoniazid, rifampi-

cin, a fluoroquinolone and one of the three second line
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injectables: amikacin, kanamycin, or capreomycin

(WHO 2016). Therefore, it is imperative to understand

effective strategies to cope with the challenges of drug

resistance.

Among major mechanisms of MDR which includes

alteration in membrane permeability and mutations in

genes, overexpression of drug efflux pumps is a

significant contributor that helps MTB to counter the

adverse effects of antibiotics (Tanwar et al. 2014;

Hegeto et al. 2018). Rapid efflux in resistant strains

ensures that the drug does not get accumulated to

lethal levels. Thus much attention has been focused on

the search of efflux pumps inhibitors which may act as

adjuvants of TB therapy therefore identification of

strategies capable to block the function or overex-

pression of efflux pumps remains an area of immense

significance. Efflux pumps are transmembrane pro-

teins which expel the incoming drugs thereby prevent

toxic intracellular accumulation of drugs resulting in

development of MDR (Machado et al. 2012; Schmal-

stieg et al. 2012). Based on the utilization of energy

from ATP or proton motive force (PMF) there are five

main classes of transport proteins which are mainly

responsible for the development of resistance;

(i) ATP-binding cassette (ABC) superfamily, (ii) the

major facilitator superfamily (MFS); (iii) the mul-

tidrug and toxic compound extrusion (MATE) family,

(iv) the small multidrug resistance (SMR) family; and

(v) the resistance nodulation division (RND) super-

family (Balganesh et al. 2012; Pal et al. 2014).

Host’s sequestration of essential micronutrients to

arrest the growth and development of MTB during an

active infection, is termed as nutritional immunity.

Iron is one of the most significant micronutrient

required for both host and pathogen. It is estimated

that 25-30% of all enzymes require metals as cofactor;

among which iron is critical for cellular events like

DNA biosynthesis, TCA cycle and oxidative stress

defense (Conor 2007). However, iron being a transi-

tion metal is not readily available inside the host hence

there is constant struggle between the host and MTB

for the limited amount of iron. Siderophore driven iron

acquisition in MTB is required for virulence and

establishment of infection (Sritharan 2016). Targeting

iron-dependent processes thus represents a viable anti-

TB strategy. Indeed, there are a growing number of

evidences which suggests that targeting iron home-

ostasis is a new approach that enhances the efficiency

of known anti-TB drugs (Hameed et al. 2015;

Kurthkoti et al. 2017; Patel et al. 2018). The

previously we have established the effect of iron

deprivation on drug susceptibilities of known anti-TB

drugs where disruption of membrane homeostasis (Pal

et al. 2015) and virulence traits (Pal et al. 2016) were

demonstrated. The present study was therefore

designed for addition in the existing literature and to

evaluate the impact of iron deprivation on drug efflux

transporter activity in not only Mycobacterium smeg-

matis but pathogenic MTB. To the best of our

knowledge, this is the first report elaborating the

effect of iron deprivation on efflux pump activities.

Understanding the underlying mechanisms could

provide an important insight into TB pathogenesis

and predict the future strategies to combat MDR-TB.

Materials and methods

Material

All Media chemicals Middlebrook 7H9 broth, Mid-

dlebrook 7H10 agar, albumin/dextrose/catalase

(ADC), oleic acid/albumin/dextrose/catalase (OADC)

supplements were purchased from BD Biosciences

(USA). Tween-80, Ethambutol (EMB), Isonizid

(INH), 1,6 diphenyl hexatriene (DPH) were purchased

from Sigma-Aldrich (St. Louis, MO, USA). 2,2,

Bipyridyl (2,2 BP), ethidium bromide (EtBr), dinitro-

phenol (2,4, DNP), rifampicin (RIF) and Nile red (NR)

were purchased from Himedia (Mumbai, India).

Dimethyl sulfoxide (DMSO), potassium chloride

(KCl), sodium chloride (NaCl), di-sodium hydrogen

orthophosphate (Na2HPO4), potassium di-hydrogen

orthophosphate (KH2PO4), sodium dodecyl sulphate

(SDS), glycerol and D-glucose were obtained from

Fischer Scientific.

Bacterial strains and culture conditions

MTB (H37Rv) and DPknG (mutant of Protein kinase

G) along with M. smegmatis mc2155 (wild type) and

siderophore mutant D011-14 were used in this study.

Mycobacterium cells were grown in 7H9Middlebrook

(BD Biosciences) broth supplemented with 0.05%

Tween-80, 0.2% glycerol and 10% ADC in 100 ml

flasks (Schott Duran) and cultures were incubated at

37 �C at 150 rpm till the exponential phase reaches.
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Establishment of iron deprived condition

Iron restricted condition was established by the use of

2,2, BP, a well known specific iron chelator, as

described previously (Pal et al. 2015). M. smegmatis

cells were exposed with different concentrations of

2,2, BP. Growth curve was performed for 72 h with

0.1 OD600 of cells in the presence of 2,2, BP (25, 30

and 35 lg/ml) and found that 35 lg/ml was subin-

hibitory enough for growth of M. smegmatis

(Fig. S1A). Similarly, the sub-inhibitory concentration

of 2,2, BP against MTB was standardized and

subsequent growth curve experiment was performed

for 21 days with 0.1 OD600 cells in the presence of 2,2,

BP (40, 50 and 60 lg/ml) and found that 40 lg/ml was

sub-inhibitory for MTB (Fig. S1B). Sub-inhibitory

concentration is defined as concentration at which 2,2

BP was sufficient to chelate iron without causing

noticeable growth defect. Concentration higher than

35 lg/ml in M. smegmatis and 40 lg/ml in MTB

trigger growth inhibition and hence cannot be used for

further experiments (Table 1). Each experiment was

performed three times, and growth curves were

generated using Microsoft Excel (Microsoft, USA).

Additionally, the specificity of 2,2, BP was further

confirmed by supplementation of growth inhibition by

2,2, BP with various metals that could only be reverted

by iron (Fig. S1C).

Checkerboard assay

Two-dimensional broth microdilution checkerboard

assay was performed as described earlier (Jin et al.

2010). Two hundred microliters of sterile deionized

water was added to all outer-perimeter wells of the

plates. The plates were prepared by dispensing the

serially diluted antibiotics (INH, EMB, RIF) in the

y-axis and 2,4, DNP in the x-axis in a iron sufficient or

deprived media. Aliquots of 0.1 ml of inoculum

adjusted to OD600 0.1 and diluted 1:100 were trans-

ferred to each well of the 96-well plate and incubated

at 37 �C. The inoculated plates were sealed in plastic

bags and incubated at 37 �C for 7 days and the results

were interpreted by taking absorbance at 600 nm. The

fractional inhibitory concentration index (FICI) was

calculated and interpreted as follows: FICI B 0.5,

synergism; FICI[ 0.5\ 4, indifference and FICI

C 4, antagonism (Odds 2003).

EtBr efflux

The efflux of EtBr was determined by using protocol

described previously (Jin et al. 2010; Rodrigues et al.

2011). Approximately 1 9 106 cells were incubated

until exponential phase under iron deprivation condi-

tions. Cells were pelleted, washed twice with phos-

phate buffer saline (PBS) and resuspended in such a

way so as to form 2% cell suspension (0.2 g of cell

pellet weight dissolved in 10 ml PBS). The cells were

then de-energized with an efflux pump inhibitor 2,4

DNP (20 lg/ml) in PBS (without glucose). The de-

energized cells were pelleted, washed, and then

resuspended as a 2% cell suspension (w/v) in PBS to

which EtBr was added at a final concentration of 4 lg/
ml and incubated for 45 min at 30 �C. The equili-

brated cells with EtBr were then washed and resus-

pended in such a way so as to form 2% cell suspension

(w/v) in PBS (with or without glucose 0.4%) for EtBr.

Samples with a volume of 2 ml were withdrawn at the

indicated time points as mentioned in the figure and

centrifuged at 10,000 rpm for 1 min. The supernatant

was collected, and absorption was measured at

285 nm. Glucose-free negative controls were included

in all the experiments.

EtBr and NR influx

The EtBr accumulation was assessed by fluorescence

assay with minor modifications (Rodrigues et al.

2011). Briefly, mid-log-phase cultures were washed

with PBS containing 0.05% Tween-80 (PBST) and

then stained with 4 lg/ml of EtBr. For NR uptake,

mid-log-phase cultures were washed with PBS and

then stained with 1 lg/ml NR (Chuang et al. 2015).

For both assays, cells were incubated in 12-well plates,

and analysis was performed after 30 min at excitation

544 nm and emission 590 nm with fluorescent

Table 1 MICs of 2,2, BP against Mycobacterium strains

Strains 2,2, BP (conc.) (lg/ml)

M. smegmatis 40

MTB 80

MIC of M. smegmatis was adopted from Pal et al. (2015),

whereas MIC of MTB was derived from this study
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microscope (CosLab). All experiments were repeated

at least three times to confirm reproducibility.

RT-PCR

RNA was extracted from the control and iron deprived

(2,2 BP) MTB cells by standard TRIzol protocol (Pal

et al. 2018a). Reverse transcriptase (RT) PCR was

performed as described in the RevertAid H Minus kit

(Invitrogen) (Pal et al. 2018a). Briefly, 5 lg isolated

RNA was DNase treated at 37 �C for 30 min and

reaction was terminated by adding 1 ll of 25 mM

EDTA and incubated at 65 �C for 60 min. RNA was

subsequently primed with oligo (dT)18 for cDNA

synthesis at 42 �C for 60 min. The synthesized cDNA

product (2 ll) was directly used for PCR amplification

reaction (50 ll) using gene specific forward and

reverse primers. The synthesized cDNA product

(2 ll) was directly used for PCR amplification reac-

tion (50 ll) using gene specific forward and reverse

primers (Table S1). The amplified products were gel

electrophoresed and the densities of bands (for gene of

interest) were measured and quantified using GelDoc

by normalizing to that of the constitutively expressed

16 s gene using software.

Cell surface lipid extraction

Cell surface lipids were extracted from Control and

iron restricted (2,2, BP) MTB cells according to

previously described methodology (Minnikin et al.

1975) with few modifications. Briefly, approximately

1 9 106 cells iron deprivation were incubated until

exponential phase, pelleted, washed twice with phos-

phate buffer saline (PBS) and centrifuged at

10,000 rpm for 5 min. Pellet was then mixed with

methanol (5 ml), Toluene (5 ml) and concentrated

sulphuric acid (0.2 ml) in a 20-ml screw cap tube (Poly

Tetra Fluoro Ethylene lined). The contents of the tube

were mixed thoroughly and methanolysis was allowed

to proceed for 12–16 h at 75 �C (stationary incuba-

tion). The reaction mixture was allowed to cool and

mycolic acid (MA) was extracted by adding 1 ml of

hexane. After vigorous shaking the mixture was

allowed to settle and the upper hexane layer containing

MA was collected. MA was spotted on TLC plates

(silica gel G) in solvent system hexane/ethyl acetate

(19:1, v/v) as previously described (Slayden and Barry

2001). For estimation carbol fuchsin dye was added in

the ratio of (1:1) to the extracted hexane layer

containing MA and spectrum was made between the

wavelength 400 and 600 nm range (Khanuja et al.

2004).

Ultra Performance Liquid Chromatography–

Electrospray Ionization and Mass Spectrometry

(UPLC–ESI-MS)

The isolated cell surface lipids under iron deprivation

were qualitatively analyzed on triple quadrupole

tandem mass spectrometer ACQ-TQD#QBB1152.

LC was done on a C18 column (100 mm 9 3 mm,

2.6 lm) and elution was done for 30 min, using 5%

isopropanol, 90% methanol and 5% ammonium

acetate (5 mM, pH 6.5), at a flow rate, 0.1 ml/min.

The source temperature was 120 �C, the desolvation

temperature was 350 �C and the cone voltage was set

at 40 volts (V). The sample was introduced using an

autosampler with 1 lL of sample injection volume.

Capillary voltage was set to 3.50 kV. The data was

recorded in the mass range, m/z 200–2000 and

processing was performed with the Masslynx soft-

ware, where each chromatogram was smoothened and

the background was subtracted. The analysis of the

acquired data was performed by MS-LAMP software

(Sabareesh and Singh 2013; Layre et al. 2011). This

software is a graphical user interface (GUI) standalone

programme built using Perl::Tk. It is a combination of

MTB lipid database (www.mrl.colostate.edu) and

Lipid Metabolites and Pathways Strategy Consortium

(LIPID MAPS; www.lipidmaps.org). The most prob-

able adduct was recognized to be [M–H]? and 0.5

window range was used for analysis (Pal et al.

2017, 2018b). Further, it needs to be noted that the data

herein are analyzed qualitatively only. All the exper-

iments were performed in triplicates to ensure repro-

ducibility and accuracy.

Membrane fluidity

MTB membrane fluidity was estimated using protocol

described earlier with modifications (Bessa et al.

2018). Approximately 1 9 106 cells were grown for

12 days in 37 �C at 225 rpm in the absence (control)

and presence of 2,2, BP. Cells were then harvested and

washed twice with PBS at 13,000 rpm at 4 �C for

10 min, equalize the cells to absorbance 0.5 at

wavelength 600 nm and fixed with 2%
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paraformaldehyde for 15 min. Cells were then washed

with SOE buffer and resuspended in labeling buffer in

such a way that each ml contains 4 9 108 cells. Later

4 lM DPH (in tetrahydrofuran) was added and

incubated for 2 h with continuous shaking. Readings

was recorded using spectrofluorimeter at both excita-

tion wavelength 360 nm in 5 nm slit and emission

wavelength 426 nm in 10 nm slit. Experiment was

performed in replicates to get the mean value.

Statistical analysis

The results were represented by the mean expression

values of three independent experiments run in

triplicate ± SD values and analyzed using Student’s

t test where in P\ 0.05 was considered as statistically

significant denoted by (*).

Results and discussion

Iron deprivation confers synergy to combination

of drug efflux inhibitor and anti-TB drugs

Efflux pump inhibitors can influence drug suscepti-

bility phenotypes in drug-susceptible, drug-tolerant

and clinical isolates, although to varying degrees.

Efflux pump inhibitors such as carbonyl cyanide

m-chlorophenyl hydrazone (CCCP), verapamil and

2,4-dinitro phenol (2,4-DNP) have enhanced the

accumulation of drugs possibly due to hindrance in

active efflux transporter (Banerjee et al. 1996). Efflux

transporter proteins are involved in resistance to anti-

TB drugs, bedaquiline and clofazimine (Almeida et al.

2016; Kaniga et al. 2016). Likewise, there are

numerous studies where combinatorial effect of anti-

TB drugs has been studied with drug efflux pump

inhibitors (Mullin et al. 2004; Gupta et al. 2014;

Caleffi-Ferracioli et al. 2016; Chen et al. 2018).

Hence, we sought to examine the effect of iron

deprivation on FICI for the combination of anti-TB

drugs (INH, RIF, EMB) with 2,4, DNP (efflux pump

inhibitor). Using the two dimensional checkerboard

method we studied the interaction profiles of various

anti-TB drugs and drug efflux inhibitor firstly in

surrogate of MTB i.e. M. smegmatis under iron

deprivation. We observed that the FICI for anti-TB

drugs and efflux pump inhibitor which was higher than

0.5 under iron sufficient condition became less than

0.5 under iron deprivation thus depicting synergy

(Table 2). To confirm whether the observed synergy is

the effect of iron deprivation only, we used M.

Table 2 Synergistic activity of the anti-TB drugs (INH, RIF, EMB) in combination with efflux pump inhibitor (2,4 DNP) under iron

deprivation against Mycobacterium strains

Anti-

TB

DNP 2,2,

BP

M. smegmatis D011-014 MTB DPknG

MIC

(lg/
ml)

RFICI Fold

change

MIC

(lg/
ml)

RFICI Fold

change

MIC

(lg/
ml)

RFICI Fold

change

MIC

(lg/
ml)

RFICI Fold

change

EMB - - 0.25 - - 0.12 - - 1 - - 0.5 - -

? - 0.25 2 0 0.062 1 2 0.5 1 2 0.5 2 0

- ? 0.062 - - - - - 0.007 - - - - -

? ? 0.015 1.24 4 - - - 0.003 1 2 - - -

INH - - 4 - - 2 - - 2 - - 0.003 - -

? - 2 1 2 0.25 0.375 8 1 1 2 0.001 0.98 2

- ? 1 - - - - - 0.007 - - - - -

? ? 0.125 0.375 4 - - - 0.001 0.37 4 - - -

RIF - - 2 - - 0.062 - - 0.5 - - 0.007 - -

? - 2 2 0 0.015 0.499 4 0.125 0.75 4 0.001 0.74 4

- ? 0.062 - - - - - 0.015 - - - - -

? ? 0.015 0.50 4 - - - 0.003 0.5 4 - - -

Values defined above were derived from the checkerboard assay. Concentration of DNP used varies according to synergism whereas

concentration of 2,2, BP used forM. smegmatis and MTB were 35 lg/ml and 40 lg/ml respectively. RIF: rifampicin, INH: isoniazid,

EMB: ethambutol, DNP: dinitrophenol, MIC: minimum inhibitory concentration, FICI: fractional inhibitory concentration index
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smegmatis siderophore mutant (D011-014). Sidero-
phores are strong iron chelators synthesized by

mycobacteria under iron deprivation to scavenge iron

(Rodriguez and Smith 2003; Ojha and Hatfull 2007).

Thus any defect of iron–exochelin siderophore uptake

mutant results in inherent iron deprived condition

without adding 2,2, BP. We observed that D011-014
corresponded with the results using iron chelator 2,2

BP (Table 2). Specifically, we could detect synergism

with INH and RIF in comparison to EMB. To

substantiate our findings in the pathogenic context,

we performed checkerboard assay and to our expec-

tation, we explored similar synergies with INH and

RIF under iron deprivation inMTB (Fig. S2). This was

further supported by use of MTB serine threonine

protein kinase G mutant (DpknG) which is known to

govern nutrient utilization (Khan et al. 2017). We

found that kinase mutant also displayed synergy albeit

of low grade (Table 2). The degree of synergy was

however variable for each drug and in the following

order INH[RIF[EMB. Thus either pharmacolog-

ical or genetic inhibition of iron availability renders

synergistic response in MTB towards combination of

anti-TB drugs and efflux pump inhibitor.

Iron deprivation leads to enhanced EtBr

accumulation

Taking clue from above observations, we examined

the effect of iron deprivation on efflux pump activities

by monitoring the intracellular accumulation of EtBr

which is a widely used model substrate to measure the

influx and efflux in MTB (Mullin et al. 2004). We

estimated the EtBr accumulation through fluorescence

imaging in M. smegmatis and MTB and found that

most EtBr is accumulated in both de-energized

controls in absence of glucose depicted by high

fluorescence (Fig. 1). As expected, in energized cells
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Fig. 1 Effect of iron deprivation on accumulation of EtBr.

Fluorescence microscopy images depicting EtBr (4 lg/ml)

accumulation under different iron deprived conditions in the

absence and presence of glucose. Left panel depict EtBr

accumulation inM. smegmatis whereas right panel depicts EtBr

accumulation in MTB. Images were taken at 9 100 magnifica-

tion. Scale bar depicts 50 lm length. Bar graphs represent

fluorescence integrated intensity of left and right panels. Error

bar was calculated by taking the average of intensities measured

using Image J software
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with glucose, the efflux pumps are active hence

negligible fluorescence is observed since most EtBr is

effluxed out of the cell (Fig. 1). Contrary, under iron

deprivation, despite the presence of glucose, the

fluorescence is observed in both the mycobacterial

strains (Fig. 1). These observations confirm that iron

deprivation causes EtBr accumulation possibly due to

some defect in efflux pump activities and/or

expression.

Iron deprivation leads to abrogated EtBr efflux

Next, we studied the effect of iron deprivation on drug

efflux activity more closely. Firstly, we monitored the

extracellular EtBr efflux in time dependent manner in

M. smegmatis and found that EtBr efflux was consid-

erably inhibited under iron deprivation (Fig. 2a).

Similarly, when EtBr efflux was monitored in MTB,

we observed that extracellular concentration of EtBr

was diminished in both iron deprived and DPknG
mutant cells (Fig. 2b). These observations suggested

that iron deprivation affects efflux pump activities.

Further we accessed the efflux activity of My-

cobacterium cells under iron deprivation in the

presence of anti-TB drugs (INH, RIF and EMB). In

M. smegmatis, we observed that in comparison to the

EtBr efflux in presence of anti-TB drugs alone, EtBr

efflux in presence of same anti-TB drugs were

considerably reduced under iron deprivation and in

D011-14 cells (Fig. 3a). Similar results could be

observed in MTB depicting that EtBr efflux in

presence of same anti-TB drugs were considerably

reduced under iron deprivation and in DPknG mutant

(Fig. 3b). The decrease in EtBr efflux was however

variable for each drug and were in the following order

INH[RIF[EMB.

Iron deprivation affects MmpL3 transporter

of RND superfamily

Although mutations in KatG and InhA genes are the

principal mechanism for the development of resis-

tance against INH drug, there are reports (Machado

et al. 2012; Jaiswal et al. 2017) which suggests that

about 20–30% of the INH resistance in MTB isolates
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0

0.1

0.2

0.3

0.4

0.5

0.6

Ab
s 2

85
nm

Posi�ve

2,2, BP

∆11-14

Nega�ve

0

0.1

0.2

0.3

0.4

0.5

0.6

Ab
s 2

85
nm

Posi�ve

2,2 BP

∆PknG

Nega�ve

- 2,2, BP + GLU

+ 2,2, BP + GLU

Δ011-14  + GLU

- 2,2, BP  - GLU 

- 2,2, BP + GLU

+ 2,2, BP + GLU
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Fig. 2 EtBr efflux under iron deprivation. a EtBr efflux

displayed by extracellular concentrations of EtBr for M.

smegmatis cells grown in the absence (control), presence of

2,2, BP (35 lg/ml) and D011-14. Mean of OD285 ± SD of three

independent sets of experiments are depicted on y-axis with

respect to time (minutes) on x-axis (*depicts significant

difference with P\ 0.05). b EtBr efflux displayed by extracel-

lular concentrations of EtBr for MTB cells grown in the absence

(control), presence of 2,2, BP (40 lg/ml) and DPknG. Mean of

OD285 ± SD of three independent sets of experiments are

depicted on y-axis with respect to time (minutes) on x-axis

(*depicts significant difference with P\ 0.05)
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do not have mutation in any of the gene associated

with INH resistance instead demonstrates efflux

pumps as the causal reason of INH resistance

(Rodrigues et al. 2012; Garima et al. 2015; Li et al.

2015; Narang et al. 2017; Unissa et al. 2017). The

present study showed greater retardation of EtBr efflux

under iron deprivation for INH in comparison to other

anti-TB drugs. Moreover, resistance against INH is

mainly attributed to RND superfamily being its

substrate (Pasca et al. 2005; Silva and Palomino

2011; Sarathy et al. 2012). Hence, we studied the

effect of iron deprivation on RND superfamily intri-

cately. NR is a specific substrate of RND superfamily

of transporters (Bohnert et al. 2010) and strong

lipophilic fluorescent dye which is retained in phos-

pholipid layer showing weak fluorescence in aqueous

solutions and strong fluorescence in non-polar

environment. We estimated the NR accumulation

through fluorescence imaging in M. smegmatis and

MTB and found that iron deprived cells showed more

NR accumulation as compared to control cells

(Fig. 4a). These observations indicated that iron

deprivation causes some defect in RND superfamily

efflux pump activity. Efflux-mediated drug resistance

in MTB could be due to one or more efflux pumps

working alone or in coordination. This is possible

because of the redundancy of their functions, which

may overlap extensively (Poole 2005). Hence, the fact

that efflux pumps belonging to other superfamilies

(MFS, SMR and MATE) are not affected cannot be

ruled out and needs further validation.

MmpL3 (Mycobacterium membrane protein Large

3) is a significant transporter belonging to RND family

and is a common target for various small molecules
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Fig. 3 EtBr Efflux in presence of anti-TB drugs (INH, RIF,

EMB) under iron deprivation. a EtBr efflux displayed by

extracellular concentrations of EtBr for M. smegmatis cells

grown with INH, RIF, EMB alone (control), presence of 2,2, BP

(35 lg/ml) and D011-14. Mean of OD285 ± SD of three

independent sets of experiments are depicted on y-axis with

respect to time (minutes) on x-axis (*depicts significant

difference with P\ 0.05). b EtBr efflux displayed by extracel-

lular concentrations of EtBr for MTB cells grown with INH, RIF

and EMB alone (control), presence of 2,2, BP (40 lg/ml) and

DPknG. Mean of OD285 ± SD of three independent sets of

experiments are depicted on y-axis with respect to time

(minutes) on x-axis (*depicts significant difference with

P\ 0.05)
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(inhibitors) identified by high throughput screens

against MTB. It is crucial for MA (Belardinelli et al.

2016) and flippase that transport trehalose monomy-

colate (TMM) to the periplasmic space and then to

membrane (Xu et al. 2017; Zheng et al. 2018). MmpL3

also contributes to a number of significant mycobac-

terial phenotypes such as membrane potential, cell

wall composition and antibiotic susceptibility

(McNeil et al. 2017). In fact MmpL3 is also involved

in iron acquisition through heme uptake pathway

(Owens et al. 2013). These phenotypic properties of

MmpL3 make it an attractive target for TB treatment

(Kozikowski et al. 2017; Degiacomi et al. 2017).

Hence, we examined the gene expression of MmpL3

in MTB and found that the transcript level of MmpL3

gene was diminished under iron deprivation (Fig. 4b).

This confirms that enhanced NR accumulation

observed above could be at least due to reduced

expression of MmpL3, however, other members of

RND transporters being not affected could not be ruled

out in the present study. Since MmpL3 is a promising

target for novel anti-TB agents, hence vulnerability of

MmpL3 expression under iron deprivation needs to be

exploited further.

Iron deprivation blocks MmpL3 driven mycolic

acid transport

MmpL3 inMTB is crucial inner membrane transporter

involved in the export of MA which is required for the

maintenance and formation of membrane integrity of

all mycobacteria and the possible reason underlying

the excellent promiscuity of this target. The defining

feature of the mycobacterial outer membrane is the
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Fig. 4 Effect of iron deprivation on NR accumulation. a Flu-

orescence microscopy images depicting NR (1 lg/ml) accumu-

lation under different iron deprived conditions. Left panel depict

NR accumulation in M. smegmatis whereas right panel depicts

NR accumulation in MTB. Images were taken at 9 40

magnification. Scale bar depicts 50 lm length. b RT-PCR of
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deprivation. Bar graph depicts the quantitation (density

expressed as Intensity/mm2) of transcript normalized with 16S

constitutively expressed gene. Experiment was replicated to

calculate the mean Intensity of gene

123

Biometals (2019) 32:49–63 57



presence of MAs, which in part provides hydropho-

bicity to the lipid bilayer and impermeability to

external insults, including many anti-TB drugs. As a

known fact of matter, out of 13 MmpL proteins

encoded by MTB genome, only MmpL3 is needed for

the transport of TMM to the outer membrane for the

formation of trehalose dimycolate (TDM) which

forms MA. MA is synthesized inside the cell in the

form of TMM and transported by MmpL3 to outer

membrane to form the precursor of TDM and myco-

lates bound to arabinogalactan (Degiacomi et al.

2017). Previously we have showed that iron depriva-

tion alters the membrane permeability and cell surface

properties (Pal et al. 2015, 2016). Hence we speculated

that MA levels may also be affected under iron

deprivation. To confirm this hypothesis, we isolated

cell surface lipids and performed TLC which depicted

that bands at respective positions corresponding to

methoxy-MA were missing under iron deprivation

(Fig. 5a). We also estimated the MA levels using

carbol-fuchsin stain and found that MA content is

decreased under iron deprivation (Fig. 5a). Therefore

we adopted lipidomics approach for better assessment

of the changes in the cell surface lipids from MTB

under iron deprivation. The chromatogram showed m/

z peaks for theMA spectra obtained (Figs. 5b, S3–S6).

This was then analyzed using MS-LAMP software

(Table S2) with window range 0.5 in [M–H]? mode

where we detected 7 m/z values in control and 3 m/z

values under iron deprivation (Fig. 5b). These 7 m/z
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values encoded seven lipid molecules: alpha-MA,

Keto-MA, methoxy-MA, GMM (alpha-MA), two

GMM (methoxy-MA), and TMM (methoxy-MA)

whereas 3 m/z values under iron deprivation encoded

three lipid molecules: alpha-MA, Keto-MA and GMM

(alpha-MA) (Fig. 5c). Thus, all these observations

specify that iron deprivation affects the TMM translo-

cation to the surface of MTB. Furthermore TLC

analyses and lipidomic analyses confirm the probabil-

ity of reduced expression of MmpL3 leading to

abrogated transport of TMM and accumulation of

TDM to cell surface. This is also commensurate with

the fact that MmpL3 has been tipped as TMM flippase

which got impaired in presence of MmpL3 inhibitor

(Xu et al. 2017).

Iron deprivation alters membrane fluidity

The cellular membrane serves as a sensor of its

organism’s environment. MTB cell membrane is the

major barrier due to its lipid complexity hence a

foremost crucial drug target. Its lipid structure is a key

to determine the physicochemical environment of the

membrane, where the molecular packing of lipids acts

as a direct determinant of membrane fluidity. Thus any

alteration in fluidity signifies the disturbance in the

lipid composition of MTB. Moreover, it is already

been established that alteration of membrane fluidity is

directly linked to the MA levels (Barkan et al. 2009).

Notably, previously we have showed that iron depri-

vation led to enhanced membrane permeability (Pal

et al. 2015). Therefore we estimated the membrane

fluidity under iron deprivation by spectrofluoremetric

analysis using fluorescent probe DPH. The binding of

DPH is based on the environment where it exhibits no

0

20

40

60

80

100

120

140

a.
u.

 

Abs (nm)

MTB

MTB + 2,2, BP

∆PknG

0

50

100

150

200

250

a.
u.

Abs (nm)

M. smegma�s

M. smegma�s + 2,2, BP

∆011-014

(A)

(B)

Fig. 6 Effect of iron

deprivation membrane

fluidity. a Line graph of

DPH fluorescence intensity

scanned between the

wavelengths 420–498 nm

under iron deprived

conditions in M. smegmatis.

b Line graph of DPH

fluorescence intensity

scanned between the

wavelengths 420–498 nm

under iron deprived

conditions in MTB

123

Biometals (2019) 32:49–63 59



fluorescence in aqueous solutions however when

adhering to the hydrophobic region of the mycobac-

terial membrane which gets exposed only during

alterations in fluidity, the fluorescence intensity

increases (do Canto et al. 2016). We found that

membrane fluidity was enhanced under iron depriva-

tion in both M. smegmatis (Fig. 6a) and MTB

(Fig. 6b). This could be attributed to diminished MA

levels under iron deprivation rendering the cell

envelope more vulnerable and fluid. Moreover, dis-

ruption of MmpL3 leading to enhance cell envelope

permeability (Xiong et al. 2017) corroborates with

present observations.

Conclusion

Drug resistance arising out of efflux pump overex-

pression has been an issue in clinical settings posing

serious problems in the treatment of TB. This study

establishes that iron deprivation affects efflux pump

activity particularly of RND superfamily. Addition-

ally, iron is indispensable for growth and maintenance

of its membrane integrity due to inhibition of MmpL3

expression and subsequent MA transport blockage

leading to altered membrane fluidity (Fig. 7). Consid-

ering the promiscuity of MmpL3 as target, this study

could be helpful to fulfill the unmet demand for

development of novel therapeutic strategy. Together,

targeting the iron homeostasis in MTB could be a

potential approach to combat MDR-TB infections.
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