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Abstract Adequate zinc nutriture is necessary for

normal bone growth and development, though the

precise mechanisms for zinc-mediated bone growth

remain poorly defined. A key transcription factor

activated by zinc is metal response element-binding

transcription factor 1 (MTF-1), which binds to the

metal regulatory element (MRE). We hypothesize that

MREs will be found upstream of miRNA genes as well

as miRNA target genes in the following bone growth

and development signaling pathways: TGF-b, MAPK,

and Wnt. A Bioconductor-based workflow in R was

designed to identify interactions between MREs,

miRNAs, and target genes. MRE sequences were

found upstream from 64 mature miRNAs that interact

with 213 genes which have MRE sequences in their

own promoter regions. MAPK1 exhibited the most

miRNA–target interactions (MTIs) in the TGF-b and

MAPK signaling pathways; CCND2 exhibited the

most interactions in the Wnt signaling pathway. Hsa-

miR-124-3p exhibited the most MTIs in the TGF-b
and MAPK signaling pathways; hsa-miR-20b-5p

exhibited the most MTIs in the Wnt signaling

pathway. MYC and hsa-miR-34a-5p were shared

between all three signaling pathways, also forming

an MTI unit. JUN exhibited the most protein–protein

interactions, followed byMAPK8. These in silico data

support the hypothesis that intracellular zinc status

plays a role in osteogenesis through the transcriptional

regulation of miRNA genes via the zinc/MTF-1/MRE

complex.
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Introduction

Zinc (Zn) is an essential trace element involved in

fundamental biochemical and physiological pathways.

It is necessary for enzyme catalysis, protein structure,

and various regulatory functions as approximately

2800 enzymes and proteins bind Zn (10% of the

human genome) (Andreini et al. 2006), and approx-

imately 3% of our genome encodes zinc finger

transcription factors (Klug 2010). Approximately 4%

of the worldwide population is Zn deficient (Wuehler

et al. 2005), and children are the most affected

(Hambidge and Krebs 2007; Tuerk and Fazel 2009).

Proper Zn nutriture is necessary for normal growth and

development in animals and humans. Consumption of

Electronic supplementary material The online version of
this article (https://doi.org/10.1007/s10534-018-00162-4) con-
tains supplementary material, which is available to authorized
users.

M. Francis � A. Grider (&)

Department of Foods and Nutrition, University of

Georgia, Athens, GA, USA

e-mail: agrider1@uga.edu

123

Biometals (2019) 32:111–121

https://doi.org/10.1007/s10534-018-00162-4(0123456789().,-volV)( 0123456789().,-volV)

http://orcid.org/0000-0002-1320-7161
http://orcid.org/0000-0002-7531-1730
https://doi.org/10.1007/s10534-018-00162-4
http://crossmark.crossref.org/dialog/?doi=10.1007/s10534-018-00162-4&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10534-018-00162-4&amp;domain=pdf
https://doi.org/10.1007/s10534-018-00162-4


a Zn-depleted diet resulted in reduced bone Zn and

growth in rodent animal models (Chu et al. 2003;

Grider et al. 2007; Keller et al. 2000). Manipulation of

the Zn nutritional environment affects osteogenic

biomarkers (Berger et al. 2015; Cho et al. 2007; Seo

et al. 2010). Current recommendations for assessing

the risk of Zn deficiency in populations includes the

functional assessment of length- or height-for-age

measurements (Hess et al. 2009; International Zinc

Nutrition Consultative Group et al. 2004).

The molecular mechanisms associated with the

effect of Zn on bone growth and metabolism are the

focus of ongoing research. Circulating levels of

insulin-like growth factor-1 (IGF-1) correlate with

dietary Zn levels and Zn status in children in some

studies (Bougle et al. 2004; Cesur et al. 2009; Hamza

et al. 2012; Imamoglu et al. 2005) but not others (Park

et al. 2017). Zn supplementation increases the synthe-

sis of IGF-1 in bone (Igarashi and Yamaguchi 2001)

and the binding of IGF-1 to its receptor (McCusker

1998; McCusker et al. 1998; Sackett and McCusker

1998a; Sackett and McCusker 1998b). Signaling

pathways that are also involved with bone formation

include transforming growth factor b/bone mor-

phogenic protein (TGF-b/BMP), wingless-type

(Wnt), p38 mitogen-activated protein kinase (MAPK),

Hedgehog, Notch, and fibroblast growth factor (FGF).

Significant cross-talk occurs between these pathways

(Chen et al. 2012). The TGF-b/BMP, Wnt, MAPK,

and Hedgehog pathways also intersect with the IGF-1

pathway (Guntur and Rosen 2013; Longobardi et al.

2006; Tahimic et al. 2013).

We hypothesize that the Zn-dependent regulation

of bone growth and development involves microRNAs

(miRNAs) and metal regulatory elements (MREs),

ultimately forming complex and precise regulatory

cascades of gene expression (Arora et al. 2013).

MiRNAs are small, noncoding RNAs involved in the

posttranslational regulation of gene expression

through binding to seed sequences in the 30 untrans-
lated regions (UTR) of mRNA, resulting in transcrip-

tional repression (Lee et al. 1993), or in the 50 terminal

oligopyrimidine tracts of ribosomal protein mRNA,

resulting in translational activation (Orom et al. 2008).

MiRNAs have also been shown to form complexes

with certain regulatory proteins resulting in transla-

tional activation (Eiring et al. 2010; Vasudevan et al.

2007). The MRE is a conserved 7-base motif (50-
TGCRCNC-30; R = A or G, N = any nucleotide) that

is bound by metal transcription factor-1 (MTF-1), a

72.5 kDa Zn-finger (ZF) protein in the Cys2His2
family of transcription factors (Stuart et al. 1984;

Langmade et al. 2000; O’Halloran 1993; Saydam et al.

2002). MTF-1 contains six ZFs and exhibits Zn-

dependent binding to the MRE, with ZF1 and possibly

ZF3 and ZF6 responsible for its Zn-sensing and MRE

binding properties (Bittel et al. 2000; Chen et al. 1999;

Chen et al. 1998; Guerrerio and Berg 2004).

Results from in vivo and in vitro studies indicate

Zn-dependent differential miRNA expression (Grider

et al. 2015; Liuzzi 2014; Ryu et al. 2011). MTF-1 has

been proposed as a master regulator for miRNA

expression (Lee et al. 2007). The results of in silico

studies from this laboratory support the hypothesis that

genes within osteogenic signaling pathways are reg-

ulated by Zn mediated by MTF-1/MRE/miRNA

interactions (Grider et al. 2017). The purpose of this

investigation is to identify the locations of MREs

upstream genes of miRNAs which then target genes

within the TGF-b, MAPK, and Wnt signaling path-

ways. It must be noted, however, that previous results

indicate that the presence of an MRE upstream from

the transcriptional start site (TSS) of a gene does not

necessitate its Zn-dependent or MTF-1 dependent

regulation. The results presented here show that both

miRNAs and their target genes contain MREs

upstream from their TSSs, suggesting that the regu-

lation of osteogenesis by Zn involves complex inter-

actions between Zn, MRE/gene, and MRE/

miRNA/gene associations. A model of feed-forward

loops is proposed.

Materials and methods

All analyses were performed using the human hg38

genome assembly (Dec. 2017, Genome Reference

Consortium GRCh38.p12). Bioconductor packages

were run using R Studio (Huber et al. 2015; Team

2016). A summary of the workflow is shown in Fig. 1.

Positions of the MRE consensus sequence 50-
TGCRCNC-30 in GRCh38.p12 were recorded using

Biostrings (v2.48.0) (Pagès et al. 2018). BiomaRt

(v2.36.0) was used to find the genomic coordinates of

all HUGO Gene Nomenclature Committee (HGNC)-

named genes (Durinck et al. 2005, 2009). Pre-

miRNAs with TSSs predicted in human embryonic

stem cells (hESC) by the microTSS algorithm
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(Georgakilas et al. 2014) were queried in the range of -

7Kbp upstream and ?1Kbp downstream, based on

previous analysis, (Francis and Grider 2018) using

GenomicRanges (v1.32.3) (Lawrence et al. 2013).

microTSS genomic coordinates were batch converted

from hg19 to hg38 using liftOver (Kent et al. 2002).

Genes that were interrupted between their TSSs and

nearest MRE were excluded from our analysis. The

pre-miRNAs with proximal MREs were converted to

their mature miRNA sequences using miRBase (Grif-

fiths-Jones 2004; Griffiths-Jones et al. 2006, 2008;

Kozomara and Griffiths-Jones 2011; Kozomara and

Griffiths-Jones 2014). TarBase (experimentally veri-

fied) miRNA–target interactions (MTIs) between

these mature miRNAs and genes were identified using

miRTarBase via multiMiR (Database Version: 2.2.0

Updated: 2017-08-08) (Ru et al. 2014). These MTIs

were sorted into their KEGG signaling pathways

(Kanehisa et al. 2017); interactions in the TGF-b,
MAPK, and Wnt pathways were chosen for further

analysis. GenomicRanges was used to find genes in

these pathways that have MRE sequences without

interruption by other genes in their upstream -7Kbp

region (Supplementary Table 1).

Venn diagrams (Oliveros 2007–2015) were pro-

duced from the lists of MTIs from each signaling

pathway to identify those genes and miRNAs that are

shared between pathways (Supplementary Table 2).

The gene cohort with experimentally verified MTIs

was analyzed by the Panther GO-Slim Biological

Process (Panther Overrepresentation Test release

20171205; PANTHER version 13.1 Released

2018-02-02; a = 0.05) (Ashburner et al. 2000; Gene

Ontology Consortium 2015; Tahimic et al. 2013; Zhao

et al. 2017). In addition, genes from osteogenic KEGG

pathways for which there was at least one experimen-

tally verified MTI were subsequently used to query

miRDB via multiMiR for predicted gene interactions

(target scores C 81) (Wang 2016; Wong and Wang

2015). The Panther Overrepresentation Test was

performed on this cohort of predicted gene targets as

well. Fisher’s exact testing with false discovery rate

multiple test correction was used to identify signifi-

cantly overrepresented annotated gene ontologies.

The experimentally verified MTI genes that are

shared between the signaling pathways were analyzed

for their protein–protein interactions using the

STRING database (v10.5) (Szklarczyk et al.

2015, 2017). The interactions were visualized using

the Network viewer. The analysis was performed

using the highest minimum required interaction score

(0.900). Only experimentally derived and database

Fig. 1 In silico experimental pipeline. (1) Biostrings: identified

all metal regulatory element (MRE) motifs (50-TGCRCNC-30)
throughout the human genome. (2) BiomaRt: mapped the

location of all HUGO Gene Nomenclature Committee (HGNC)

named genes in the genome. (3) Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathways used to categorize genes from

osteogenic development pathways TGF-b (hsa04350), MAPK

(hsa04010), and Wnt (hsa04310). (4) Output—460 genes with

an upstream MRE within - 7Kbp were found in these three

KEGG pathways; 413 genes with MREs not interrupted by

another gene (Supplementary Table 2) continued through the

pipeline. (A) 86 pre-miRNAs whose transcriptional start sites

(TSSs) were predicted by the microTSS algorithm. (B) Ge-

nomicRanges: identified the 85/86 pre-miRNAs with one or

more MREs in the range - 7 to ? 1 Kbp from their predicted

TSSs; 44 pre-miRNA genes with MREs not interrupted by

another gene continued through the pipeline. (C) miRBase:

converted the 44 pre-miRNAs into 73 mature miRNAs.

(D) multiMiR: find TarBase-verified miRNA–target gene

interactions (MTIs) of the 73 mature miRNAs. (E) 64/73

mature miRNAs have TarBase-verified MTIs with genes from

the KEGG pathways. (F) 241 gene targets from the miRNAs.

(G) Of the 241 gene targets, 213 also have anMRE. (i) mirdb via

multiMiR: finds all predicted gene targets of the miRNAs. (ii)

Panther GO-Slim biological process for the predicted targets.

(iii) Venn diagram identifies shared genes and miRNA between

signaling pathways. (iv) Protein–protein interactions mapped

using STRING
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interaction sources are reported (Supplementary

Table 3).

Results

The TSSs for 86 pre-miRNA genes were predicted by

the microTSS algorithm; 44 of these pre-miRNAs

contain an MRE within the range specified, without

interruption between theMREmotif and theMIR gene

TSS by the presence of another gene. These 44 pre-

miRNAs equate to 73 mature miRNAs. Within the

TGF-b, MAPK, andWnt signaling pathways, 65 of the

73 mature miRNAs have Tarbase-verified MTIs

(hereafter called ‘‘verified MTIs’’) with 241 genes.

Of the 460 genes in these three signaling pathways,

413 have an MRE in the range specified. Of those 413

genes, 213 have verified MTIs with 64 mature

miRNAs which also have MREs. The TGF-b pathway

contained MTIs consisting of 39 miRNAs/44 genes,

the MAPK pathway contained MTIs consisting of 57

miRNAs/130 genes, and the Wnt pathway contained

MTIs consisting of 43 miRNAs/61 genes. MAPK1

exhibited 10MTIs, the most verifiedMTIs in the TGF-

b and MAPK signaling pathways. CCND2 exhibited 9

MTIs, the most verified MTIs in the Wnt signaling

pathway. Hsa-miR-124-3p targeted the most genes in

the TGF-b (12 genes) and MAPK (32 genes) signaling

pathways. Hsa-miR-20b-5p targeted the most genes,

12, in the Wnt signaling pathway (Table 1; Supple-

mentary Table 1).

Genes withMREs and verifiedMTIs that are shared

between two or more signaling pathways are orga-

nized in Venn diagrams (Fig. 2).MYC is the only gene

that is shared among TGF-b, MAPK, and Wnt

signaling pathways. MAPK and Wnt pathways share

11 other genes; TGF-b andMAPK pathways share five

genes; and TGFb and Wnt pathways share four genes

(Fig. 2a; Supplementary Table 2). There are 28

miRNAs that are shared among the three pathways

(Fig. 2b; Supplementary Table 2). There are seven

miRNAs that are experimentally verified to target

MYC (Table 2); hsa-miR-34a-5p exhibits the most

MTIs within each signaling pathway. The seven

miRNAs targeting MYC are within the cohort of 28

miRNAs that interact with all three pathways (Fig. 2b,

c).

The protein–protein interactions of the genes

shared between the three signaling pathways that are

targets for miRNAs that contain MREs upstream from

their TSSs, and that also contain MREs within their

own promoter regions, were identified using the String

database (v10.5) (Fig. 3; Supplementary Table 3).

JUN exhibits the most protein–protein interactions

(10), and MAPK8 exhibits the second most interac-

tions (9). MYC, though involved with all three

signaling pathways, interacts with just five other

proteins.

There are 21 genes with verified MTIs that are

common to at least two signaling pathways; these were

used to query the Panther GO-Slim Biological Process

database to identify overrepresented gene ontologies

(Fig. 4). Intracellular signal transduction exhibited the

highest enrichment score. This cohort is also signif-

icantly enriched in genes involved with cellular

process, cell proliferation, and transmembrane recep-

tor protein serine/threonine kinase signaling pathway.

The 64 miRNAs with MREs that target genes in the

osteogenic pathways exhibited 6886 predicted MTIs

with 3613 genes (only target scores C 81 were

analyzed). This larger cohort of genes was enriched

most in cellular process, followed by localization,

metabolic process, and cell communication (data not

shown).

Discussion

Zn is crucial for healthy bone growth and develop-

ment, but the mechanism for its effects is complex and

not fully elucidated. There is continued interest in

understanding the translational control of osteogenesis

through the nexus of miRNAs and osteogenic signal-

ing pathway genes (Fushimi et al. 2018; Lian et al.

2012; Liu et al. 2018; Vimalraj and Selvamurugan

2013). Previous in silico analyses support the associ-

ations between Zn, MTF-1/MRE, and miRNAs in

regulating osteogenic signaling pathways (Grider et al.

2017). This investigation serves to expand on the

previous results, further supporting the role Zn plays in

osteogenesis through its interaction with the MTF-1/

MRE complex and miRNAs.

TGF-b, MAPK, and Wnt signaling pathways play

key roles in osteogenesis (Baron and Kneissel 2013;

Chen et al. 2012; Wu et al. 2016b). The data indicate

that 213 genes within these three pathways have

experimentally verified MTIs with 64 miRNAs. The

MTIs in these pathways share a single gene, MYC, a
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proto-oncogene involved in cell cycle progression and

transformation, and apoptosis. Others have shown that

MYC expression is increased with activation ofWnt/b-
catenin, and correlated with reduced terminal differ-

entiation of osteoblasts, increased bone mass through

osteoblast proliferation, and reduced bone strength

(Chen et al. 2015; Li et al. 2017). The addition of

EDTA to cultured HL-60 cells, a model of Zn

deficiency, decreased the expression of MYC and

cellular proliferation; Zn addition reversed these

effects (Morimoto et al. 1992). Our data indicate that

MYC contains several MREs in its promoter, support-

ing the hypothesis that Zn regulates MYC expression

via MTF-1.

We also observed that seven miRNAs formedMTIs

with MYC; these miRNAs also contain MREs

upstream from their TSSs. Hsa-miR-34a-5p targets

MYC and additionally exhibits the largest number of

experimentally verified MTIs with this gene in each

signaling pathway. The expression of this miRNA is

Table 1 The five highest

miRNA/target gene

interactions (MTIs) within

each signaling pathway

(A) Signaling pathway genes with the highest number of MTIs

TGF-b MAPK Wnt

GENE MTI GENE MTI GENE MTI

MAPK1 10 MAPK1 10 CCND2 9

SMAD4 8 IGFR1 9 SMAD4 8

TGFBR2 8 TAOK1 9 CCND1 7

ACVR1 7 RPS6KA5 8 MYC 7

ACVR1B 7 TGFBR2 8 TP53 7

(B) miRNAs that target most genes in each signaling pathway

TGF-b MAPK Wnt

Mature miRNA MTI Mature miRNA MTI Mature miRNA MTI

hsa-miR-124-3p 12 hsa-miR-124-3p 32 hsa-miR-20b-5p 12

hsa-miR-20b-5p 11 hsa-miR-19b-3p 19 hsa-miR-106a-3p 11

hsa-miR-19b-3p 9 hsa-miR-34a-5p 19 hsa-miR-34a-5p 11

hsa-miR-106a-3p 8 hsa-miR-106a-3p 17 hsa-miR-124-3p 10

hsa-miR-34a-5p 7 hsa-miR-20b-5p 9 hsa-miR-19b-3p 9

Fig. 2 Venn diagrams of shared signaling pathway genes and

miRNAs. a Genes with MREs in their promoter regions that are

targets for miRNAs that contain MREs within their own

promoter regions. b MiRNAs that target the genes in 2A

Table 2 MYC miRNA/target gene interaction

Mature miRNA TGF-b MTI MAPK MTI Wnt MTI

hsa-miR-34a-5p 7 19 11

hsa-miR-148a-3p 5 6 4

hsa-miR-222-3p 4 9 5

hsa-miR-940 3 12 9

hsa-miR-148a-5p 2 2 2

hsa-miR-92a-2-5p 2 7 3

hsa-miR-19b-2-5p 1 4 1

MYC is shared by the TGF-b, MAPK, and Wnt signaling

pathways. The list of mature miRNAs that target MYC. Each of

these miRNAs also target other genes within the signaling

pathways (MTI). Hsa-miR-34a-5p exhibits the most MTIs

within each signaling pathway
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induced in mice by dietary Zn (Liuzzi 2014). This

miRNA has been studied extensively and inhibits

osteoblast differentiation and bone formation. In

models of human stromal (skeletal, mesenchymal)

stem cell (hMSC) differentiation, overexpression of

hsa-miR-34a in hMSCs reduced heterotopic bone

formation by 60%. Conversely, in miR-34a-deficient

hMSC, in vivo bone formation was increased by 200%

(Chen et al. 2014). The available data indicate that

osteoblast differentiation is inhibited by bothMIR34A

and MYC gene products. Others have found that the

deletion ofMYC in osteoclasts increases bone mass in

mice which have undergone ovariectomy (Bae et al.

2017). The results from our in silico analysis suggests

a complex relationship between the MRE, hsa-miR-

34a-5p, and MYC effects on osteogenesis. MTF-1(Zn)
activates gene expression via the MRE in both MYC

and MIR34A; hsa-miR-34a-5p is expected to inhibit

MYC but may act synergistically with the MRE in the

MYC promoter to stimulate MYC transcription; the

result is increased osteoblast proliferation, and

decreased osteoblast differentiation and bone strength.

These data suggest that the role of Zn in osteogenesis

is a complex series of reactions betweenMTF-1/MRE,

and genes in the signaling pathways that remain to be

elucidated.

Genes that exhibit the most verified MTIs include

MAPK1 and CCND2. MAPK1 exhibited the most

MTIs within the TGF-b and MAPK signaling path-

ways. MAPK1 is a member of a serine/threonine

kinase family of extracellular signal-regulated kinases

that are involved in numerous phosphorylation reac-

tions associated with development and cellular differ-

entiation (Kyosseva 2004;Martin-Blanco 2000). It has

Fig. 3 Protein–protein

interactions between

miRNA–target gene

interactions. The sources for

determining active

interactions were from

experiments and databases.

The minimum interaction

score used to generate the

interactions web was 0.900
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also been reported to function as a transcriptional

repressor (Hu et al. 2009). The interaction thatMAPK1

and MYC exhibit may involve phosphorylation or

transcriptional repression ofMYC byMAPK1.CCND2

encodes cyclin D2, which complexes with cyclin-

dependent kinases at the beginning of the G1 phase of

the cell cycle (Sherr 1994; Vermeulen et al. 2003).

CCND2 is not shared between Wnt and the other

signaling pathways. Nevertheless, it is transcription-

ally upregulated by the MYC gene product (Bouchard

et al. 1999, 2001; Mai et al. 1999). CCND2 and MYC

are also targeted by different sets of miRNAs.

The top five MTI miRNAs are the same among the

three signaling pathways, though in different orders.

Hsa-miR-124-3p is involved in the most MTIs in the

TGF-b and MAPK signaling pathways. The down-

regulation of this miRNA is correlated with increased

tumorigenesis and poor clinical outcomes, whereas

upregulation results in decreased cell proliferation and

tumor suppression (Feng et al. 2016; Yang et al. 2017;

Zhang et al. 2015; Zhou et al. 2017). Hsa-miR-20b-5p

is involved in the most MTIs in the Wnt signaling

pathway. This miRNA also functions as a tumor

suppressor (Xin et al. 2016) and is GO-linked to

apoptosis and autophagy (Wu et al. 2016a). Our data

support a role for Zn, through its binding toMTF-1 and

subsequent MRE activation, in the transcriptional

regulation of these miRNAs. Their specific effects on

osteogenesis, though, remain to be determined.

MAPK8 and JUN exhibit the most protein–protein

interactions among the MTI gene products shared

between the TGF-b, MAPK, and Wnt signaling

pathways. The JUN gene product, c-Jun, is activated

by phosphorylation and is a necessary component of

Fig. 4 Gene ontology enrichment of the MTI genes. The MTI

genes were used to query the PANTHER GO-Slim Biological

Process database. Significance was determined using the

Fisher’s Exact test with the false discovery rate multiple test

correction. All values reported in the graph exhibited a false

discovery rate \ 0.05

Fig. 5 Zn activates MTF-1 and MTF-1 will bind to the MRE in

promoters of genes. These genes include miRNAs, which are

themselves repressors of gene activity. A feed–forward loop can

arise in which MTF-1 and miRNAs impact the expression of

each other and of target genes
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the AP-1 DNA-binding complex (Miller et al. 2010;

Vasilevskaya and O’Dwyer 2003). c-Jun also forms a

complex with b-catenin and TCF4 to upregulateMYC

transcription at the 30 enhancer region (Yochum et al.

2008). Our analysis indicates that several mitogen-

activated protein kinases, also called c-Jun N-terminal

kinases, are responsible for phosphorylating c-Jun,

including the gene product of MAPK8, JNK1 (Bubici

and Papa 2014). We report that JUN, MAPK8, and

MYC are involved in MTIs, and each MTI component

contains one or more MREs upstream from its TSS.

These observations support the hypothesis that the

transcriptional regulation of osteogenesis by Zn occurs

at multiple nodes within osteogenic signaling path-

ways. MREs are located upstream from the TSSs of

both components of the MTI. We propose that feed-

forward loops are involved with the Zn-dependent

transcriptional regulation of osteogenesis through the

MTF-1/MRE/MTI interactions (Fig. 5). The results

from this study support the supposition that Zn

regulation of bone growth and development occurs

at the most fundamental levels. Future studies are

planned to validate these complex Zn-dependent

regulatory interactions as they relate to bone growth

and development.
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