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Abstract Bacterial infections cause severe medical
problems worldwide, resulting in considerable death
and loss of capital. With the ever-increasing rise of
antibiotic-resistant bacteria and the lack of develop-
ment of new antibiotics, research on metal-based
antimicrobial therapy has now gained pace. Metal ions
are essential for survival, but can be highly toxic to
organisms if their concentrations are not strictly
controlled. Through evolution, bacteria have acquired
complex metal-management systems that allow them
to acquire metals that they need for survival in
different challenging environments while evading
metal toxicity. Metalloproteins that controls these
elaborate systems in the cell, and linked to key
virulence factors, are promising targets for the anti-
bacterial drug development. Among several metal-
sensory transcriptional regulators, the ArsR—SmtB
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family displays greatest diversity with several distinct
metal-binding and nonmetal-binding motifs that have
been characterized. These prokaryotic metolloregula-
tory transcriptional repressors represses the expression
of operons linked to stress-inducing concentrations of
metal ions by directly binding to the regulatory regions
of DNA, while derepression results from direct
binding of metal ions by these homodimeric proteins.
Many bacteria, e.g., Mycobacterium tuberculosis,
Bacillus anthracis, etc., have evolved to acquire
multiple metal-sensory motifs which clearly demon-
strate the importance of regulating concentrations of
multiple metal ions. Here, we discussed the mecha-
nisms of how ArsR-SmtB family regulates the
intracellular bioavailability of metal ions both inside
and outside of the host. Knowledge of the metal-
challenges faced by bacterial pathogens and their
survival strategies will enable us to develop the next
generation drugs.

Keywords ArsR-SmtB family - Metalloprotein -
Transcriptional repressor - Allostery - Redox switch -
Antibiotic-resistant bacteria

Abbreviations

O/P Operator/promoter

CDF Cation diffusion facilitator
MD Molecular dynamics
wHTH Winged helix-turn-helix
ORF Open reading frame
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aa Amino acids
nt Nucleotides
bp Base pairs

HGT Horizontal gene transfer

Introduction

ArsR-SmtB family members possess a highly con-
served DNA recognition helix-turn-helix (HTH) motif
and bind as homodimers to their operator/promoter
(O/P) region, repressing the expression of operons, in
absence of metal ions, associated with the metal ion
sequestration or efflux in both gram-negative and
gram-positive bacteria, while derepresses the operons
in presence of toxic concentrations of heavy metal
ions, allowing these organisms to survive in challeng-
ing environments (Shi et al. 1994; Busenlehner et al.
2003; Osman and Cavet 2010) (Fig. 1). Some of the
members also found to control virulence factors (Saha
and Chakrabarti 2006; Zhao et al. 2010), sulfur
oxidation (Mandal et al. 2007), hypoxia (Guimardes
et al. 2011), prodigiosin biosynthesis (Gristwood et al.
2011), oxidative stress response (Ehira et al. 2010),
bioluminescence (Gueuné et al. 2008), biofilm forma-
tion (Mac Aogain et al. 2012), etc.

Seven major families of soluble metal-sensing
transcriptional regulators have been identified in
bacteria (Waldron and Robinson 2009), and are
designated based upon their founding member(s):
ArsR-SmtB (Huckle et al. 1993; Eicken et al. 2003),
MerR (Brocklehurst et al. 1999; Outten et al. 2000),
CsoR-RcnR (Liu et al. 2007a; Smaldone and Helmann
2007), CopY (Strausak and Solioz 1997), DtxR
(Guedon and Helmann 2003), Fur (Gaballa and
Helmann 1998; Ahn et al. 2006) and NikR (Dosanjh
and Michel 2006; Wang et al. 2009a). The ArsR-
SmtB family displays the greatest diversity among
others, with thirteen distinct metal-sensing and two

Metal ions Off DNA
DNA-protein

complex o ©

Repression De-repression

Fig. 1 Model of the mechanism of gene regulation in the ArsR—
SmtB family
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non metal-sensing motifs identified so far (Table 1).
These have been designated o3 (Wu and Rosen
1991, 1993; Shi et al. 1994), a3N (Liu et al. 2005),
a5 (Huckle et al. 1993; Kuroda et al. 1999; Singh et al.
1999), a3N-a5 (Thelwell et al. 1998; Sun et al. 2001;
Busenlehner et al. 2002a), a5c (Campbell et al. 2007),
a53 (Cavet et al. 2002), adc (Cavet et al. 2003; Wang
etal. 2005), a4c2 (Wang et al. 2010), a3N-2 (Ordoiiez
et al. 2008), a5—4 (Qin et al. 2007), a55 (Li et al.
2016a), o2—a52 (Slyemi et al. 2013; Moinier et al.
2014), o3-4 (Wang et al. 2006), o33 (non-metal
binding motif) (Ehira et al. 2010) and o2—a5 (non-
metal binding motif) (Saha and Chakrabarti 2006;
Saha et al. 2006) based upon the location of the site
where metal ions bind within the protein fold (Fig. 2;
Table 1). The metal-sensing motif names originated
from the typical structural fold (otl-02—a3—0d—B1—
2—a5) observed in SmtB protein (Cook et al. 1998)
(Fig. 3).

ArsR-SmtB family members sense a wide variety
of metal ions like As, Sb and Bi (ArsR, Escherichia
coli), Zn (SmtB, Synechococcus sp.; ZiaR, Syne-
chocystis sp.), Cd, Pb and Zn (CadC, Staphylococcus
aureus; AztR, Anabaena sp.), Cd and Pb (CmtR,
Mycobacterium tuberculosis), Zn and Co (CzrA,
Bacillus subtilis), Ni and Co (NmtR, KmtR, M.
tuberculosis) or Cu, Ag, Zn and Cd (BxmR, Oscilla-
toria brevis). Among 15 identified motifs in ArsR—
SmtB family, only a2-a5 (HlyU, Vibrio cholerae;
BigR, Xylella fastidiosa and Agrobacterium tumefa-
ciens; PigS, Serratia sp.; SoxR, Pseudaminobacter
salicylatoxidans; YgaV, E. coli) and o33 (CyeR,
Corynebacterium glutamicum) motifs found not to
sense any metal ions, but control transcription via
novel redox switches (Saha and Chakrabarti 2006;
Mandal et al. 2007; Gueuné et al. 2008; Ehira et al.
2010; Guimaraes et al. 2011; Gristwood et al. 2011;
Mukherjee et al. 2014, 2015). Some of the ArsR—-SmtB
family repressors (PagR, Bacillus anthracis; PyeR,
Pseudomonas aeruginosa) do not have apparent
metal-sensory sites yet controls transcription via
unidentified novel methods (Zhao et al. 2010; Mac
Aogdin et al. 2012). More than 82,000 ArsR-SmtB
family members are found in the InterPro database
(Finn et al. 2017), yet only a handful of the proteins
was characterized in this group, indicates the possi-
bility of discovering new and novel metal-sensory
sites in this group. Several pathogenic bacteria (e.g., B.
anthracis, M. tuberculosis, A. tumefaciens, B. cereus,
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Table 1 Summary of known metal- and nonmetal-sensory sites with corresponding sequence patterns found in archaea and bacteria

No. Sensory groups Sensory Inter-/intra-subunit ~ Sequence pattern/motif of sensory site(s)?
site(s) association by
metal®
1 Metal binding motifs o2 group o2-052 Intra® C residue in o2 helix and Cx;C in a5 helix
2 a3 group o3 Intra Any one of the following motifs—(a) Cx(.5Cx;3C,
(b) Cx;,C(D/x) or (c) Cx,D in the o3 helix
3 a3N Inter Any one of (b) or (c) motifs shown in No. 2 and one
C or two residues (combinations of C and/H) from
amino-terminal
a3N-2 Inter C between o2 and o3 helix and amino-terminal CC
5 a3—4 Intra® Cx,H in the o3 helix and one C between B1 and 2
strands
o4 group oadc Inter Cx3C in 04 helix and carboxy-terminal C
7 odc2 Inter Site 1 (same as No. 6) and site 2b (C in o2 helix and
CC in carboxy-terminal)
oS group oS Inter DxHx,oHx,(E/H) in a5 helix
aSc Inter DxHx,oHx,(E/H) in a5 helix and also possess
carboxy-terminal H residues
10 aS3 Inter Hx¢DxsEHx,HH spanning the o5 helix and carboxy-
terminal region
11 a5—4 Intra® CC at the a5 helix and carboxy-terminal C (motif—
CCX4_6C or CCX|5C)
12 asS5 Intra® C at the a5 helix and carboxy-terminal CC (motif—
CxcCC)
13 multiple  oa3N-a5 Inter Combination of motifs shown in No. 3 and No. 8
14 non-metal binding motifs 02—a5 NAY One C residue each in o2 and a5 helices
15 a33 NA¢ Cx¢C in and close to o3 helix

Helices are numbered according to those found in the SmtB X-ray crystal structure (Cook et al. 1998)

? ‘x” denotes any amino acid, C cysteine, D aspartic acid, H histidine, E glutamic acid

° Putative
¢ At the metal binding site
4 Not applicable

etc.) and non-pathogenic soil bacteria (e.g., Microbac-
terium oxydans, Amycolatopsis keratiniphila, etc.)
found to possess multiple ArsR—-SmtB members in
their genomes. This clearly indicates that these
bacteria use not only several novel mechanisms to
withstand toxic levels of various metal ions in the
environment, but may also use them to their advantage
to evade host-mediated immunity.

Metals are essential for survival of organisms yet
slight changes in the concentration would make them
toxic to the cells. Understanding the mechanisms of
how bacteria use metals for their advantage would
enable us to better prepare for the attacks of
pathogenic bacteria, especially from antibiotic-resis-
tant strains, by developing novel methods (e.g.,

antibacterial metal-nanoparticles, etc.) that use metals
at our advantage. Therefore, it is essential to identify
new novel metal-sensory sites in ArsR-SmtB family
of transcriptional repressors and discover new mech-
anisms of transcriptional regulation. The knowledge
gathered from these studies would help us to develop
new-age drugs in response to the attacks of pathogenic
microorganisms.

Characteristics of ArsR-SmtB family
of transcriptional regulators

The ArsR-SmtB family of transcriptional metallore-
pressors represses the expression of genes/operons
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Fig. 2 Sensory (metal/nonmetal-binding) sites in ArsR—-SmtB
family repressors. Alignment of representative sequences for the
different sensory sites (highlighted in black) involving oS
(Synechococcus elongatus SmtB, SmtB_SE; Bacillus subtilis
CzrA, CzrA_BS), a3N-a5 (Synechocystis sp. ZiaR, ZiaR_SS;
Oscillatoria brevis BxmR, BxmR_OB), a3N (Staphylococcus
aureus CadC, CadC_SA; Nostoc sp. AztR, AztR_NS), aSc
(Mycobacterium tuberculosis NmtR, NmtR_MT), a53 (M.
tuberculosis KmtR, KmtR_MT), adc (M. tuberculosis CmtR,
CmtR_MT), adc2 (Streptomyces coelicolor CmtR, CmtR_SC),

associated to stress-inducing concentrations of differ-
ent heavy metal ions. Direct binding of metal ions by
this group of homodimeric metal-sensors, remove
them from their cognate O/P DNA, results in the
derepression of the corresponding genes/operons
(Busenlehner et al. 2003; Osman and Cavet 2010)
(Fig. 1).

Among different families of metal-sensing tran-
scriptional regulators that have so far been identified in
archaea and bacteria (Wang et al. 2004; Waldron and
Robinson 2009; Osman and Cavet 2010), the ArsR—
SmtB family displays most diversity with as many as
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a5—4 (Acidithiobacillus ferrooxidans ArsR, ArsR_AF), a55
(Bacteroides vulgatus ArsR, ArsR_BV), a3N-2 (Corynebac-
terium glutamicum ArsR, ArsR_CG), o3 (Escherichia coli
ArsR, ArsR_EC), o33 (C. glutamicum CyeR, CyeR_CG), 02—
aS (Vibrio cholerae HlyU, HlyU_VC), o2-052 (Thiomonas
arsenitoxydans AioF, AioF_TA) and a3—4 (Streptomyces sp.
ArsR1, ArsR_SS) sites are shown. The o3N site in SmtB and the
a5 site in CadC are not required for metal-responsiveness
(highlighted in grey). The secondary structure determined for
SmtB is shown on top

thirteen metal-sensing and two nonmetal-sensing
motifs that have been identified till date (end of
2016). These metal-sensing motifs have been desig-
nated as a3, a3N, a3N-2, o33, a3—4, a5, adSc, oS53,
o5—4, a55, a3N—-aS, adc, adc2, a2—a5 and o2—o52
(Table 1), based upon the locations of sensory amino
acids within the known secondary structures of the
proteins of the ArsR-SmtB family (Table 1; Fig. 3).

Several studies found that, in both metal-bound and
metal-free states, ArsR—-SmtB metallorepressors are
weakly dissociable homodimers (Kar et al. 1997;
Busenlehner et al. 2001, 2002a; Pennella et al. 2003)
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Fig. 3 a Typical structural fold (a.1-02—03-04—f1-2-0a5) of
an ArsR-SmtB family homodimeric repressor (structure of
Synechococcus elongatus SmtB shown here). Two sub-units are
shown in black and grey colors respectively. Secondary
structural elements are indicated in numbers. b 90° rotated
image of the above SmtB structure. The position of a3N and o5
sites are indicated by arrows. The figures were created with
PyMOL (DeLano 2002)

and each homodimer binds two metal ions either in the
dimeric interface (inter) or within each monomer
(intra) (Table 1).

o3 motif

One of the founding members of the ArsR-SmtB
family is the plasmid-borne (Gladysheva et al. 1994;
Bruhn et al. 1996) or chromosomally encoded (Diorio
et al. 1995) ArsR that senses As(III), Sb(IIT) or Bi(III)
(Wu and Rosen 1991; Gladysheva et al. 1994; Oden
et al. 1994), with the sensory motif CxCx,C in a3
helix, and represses transcription of the ars operon in
E. coli (Wu and Rosen 1991, 1993; Shi et al. 1994).
The ars operon in E. coli plasmids R46 and R773
contain arsR, arsD, arsA, arsB and arsC genes, while
the chromosomally encodes ars operon has all these
except arsD and arsA genes (Rosen 1990; Busen-
lehner et al. 2003). The ArsC protein catalyzes
reduction of arsenate As(V) to arsenite As(III) (Gla-
dysheva et al. 1994) and the metallochaperone ArsD
transports As(II) to ArsAB for extrusion (Lin et al.
2006). ArsAB encodes an arsenite-efflux system

composed of secondary carrier protein ArsB and an
anion-translocating ATPase ArsA (Rosen 1999). ArsA
and ArsD proteins are always found together in
bacterial and archaeal ars operons, which indicates
the possibility that arsRDABC operon may have
evolved from arsRBC operon by acquiring arsA and
arsD genes together as a unit (Rosen 1999; Lin et al.
2006). E. coli plasmid R773 has three cysteines
(Cys32, Cys34 and Cys37) in o3 helix that comprises
the CxCx,C metal-sensory motif and form the trigonal
metal-coordination complex (O’Halloran 1993). Only
two cysteines (Cys32 and Cys34) are essential to
produce the conformational changes, upon metal
binding, that help to release the repressor from its
cognate DNA and start transcription by RNA poly-
merase (Shi et al. 1996). Interestingly, the E. coli
plasmid R773 ars operon found to show increased
resistance to tellurite (Turner et al. 1992), which is not
observed with the chromosomal ars operon (Cai et al.
1998), but whether this was due to the failure of
tellurite to induce ars operon is not clear.

Like E. coli, several other bacteria and archaea
found to encode ArsR protein (Table 2), e.g., ArsR
proteins from S. aureus Plasmid pI258 (Ji and Silver
1992), Staphylococcus xylosus Plasmid pSX267
(Rosenstein et al. 1992), Yersinia enterocolitica
Plasmid pYVe227 (Neyt et al. 1997), B. subtilis 168
(Sato and Kobayashi 1998), Pseudomonas aeruginosa
(Cai et al. 1998), Acidiphilium multivorum AIU 301
Plasmid pKW301 (Suzuki et al. 1998), Synechocystis
sp. PCC 6803 (Lépez-Maury et al. 2003), Serratia
marcescens Plasmid R478 (Ryan and Colleran 2002),
Shigella flexneri 2457T (Vorontsov et al. 2007),
Lactobacillus plantarum Plasmid pWCFS103 (van
Kranenburg et al. 2005), Bacillus sp. CDB3 (Yu et al.
2015), Ferroplasma acidarmanus Ferl (Gihring et al.
2003; Baker-Austin et al. 2007), Campylobacter coli
(Noormohamed and Fakhr 2013), C. jejuni (Wang
et al. 2009b), C. lari (Matsuda et al. 2016), ArsR1 and
ArsR2 proteins from Pantoea sp. IMH (Wang et al.
2016), ArsR2 from Pseudomonas putida KT2440
(Fernandez et al. 2016), ArsR1 and ArsR2 from
Geobacillus kaustophilus HTA426 (Cuebas et al.
2011), ArsRC protein from Leptospirillum ferriphilum
(Tuffin et al. 2006) and ArsR1 from Ochrobactrum
tritici SCII24™ (Branco et al. 2008). While most of
these proteins have CxCx,C sensory motif at a3, some
show variations (Table 2). Interestingly, the archaeal
protein ArsR from F. acidarmanus found to have

@ Springer
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CxCx,C sensory motif in the C-terminal region
instead of usual o3 helix (Gihring et al. 2003; Baker-
Austin et al. 2007). L. ferriphilum arsRC genes are
unusual in that they form one continuous ORF and
encodes a 297 aa long fusion protein (Tuffin et al.
2006).

o5 motif

Another founding member of the ArsR—SmtB family,
Synechococcus sp. PCC 7942 SmtB, functions as a
transcriptional repressor that in the absence of Zn(II)
represses transcription of smtA gene, which encodes a
class II metallothionein protein SmtA involved in
sequestering excess metal ions inside the cell (Huckle
et al. 1993; Turner and Robinson 1995). Although
Zn(Il) is the preferred metal ion for SmtB, it also
senses Cd(II), Cu(II), Co(II), Hg(IT), Ni(Il), Au(II) and
Ag(I) with variable affinities (Turner and Robinson
1995). SmtB has two metal-sensory motifs (3N and
a5; Fig. 3) that binds metal ions, although a5 site is the
regulatory one and a3N is the non-regulatory site
(VanZile et al. 2002a, b). The a5 site binds Zn(II) ion
tightly via Asp104 and His106 residues of one subunit
and, His117 and Glul20 from other subunit in a
tetrahedral symmetry with a consensus ‘DxHx;oHx,(-
E/H)’ sensory motif in a5 (VanZile et al. 2000). The
non-regulatory o3N site binds metal ions by Cys61
and Asp64 residues from the a3 helix (Cx,D) of one
subunit and, Cys14 and His18 residues (VanZile et al.
2002a) with the motif ‘Cx3H’ in N-terminal region
(Table 1). Another well studied member of the a5
group (Table 2) is CzrA from S. aureus 912 (Kuroda
et al. 1999) and B. subtilis (Harvie et al. 2006). Unlike
SmtB, CzrA has only a5 sensory site with the typical
‘DxHxoHx,H’ motif. S. aureus CzrA represses czrAB
operon that codes for the repressor itself and CzrB
protein which functions as a cation diffusion facilitator
(CDF) antiporter efflux pump (Cherezov et al. 2008).
The expression of czrAB operon is induced by metal
ions with variable affinity, Zn(I[)>Co(II)>>Ni(II)
(Pennella et al. 2003). The B. subtilis CzrA represses
its own transcription, cadA (a P-type ATPase) and
czeD-trkA (czeD and trkA encodes a CDF and a cation
exporter, respectively) operon with variable degrees
(Harvie et al. 2006). Rv2358 from M. tuberculosis is
another protein that belongs to the a5 group (Table 2)
with the ‘DxHx;oHx,E’ motif, represses Rv2358-furB
(zur) operon, which encodes the repressor itself and a

@ Springer

zinc uptake regulator FurB (Zur) (Milano et al. 2004;
Canneva et al. 2005; Maciag et al. 2007).

o3N motif

The cadmium resistant cad operon, originally identi-
fied in S. aureus plasmid pI258, has two genes cadC
(transcriptional repressor) and cadA (P-type ATPase)
(Novick and Roth 1968; Nucifora et al. 1989). Similar
to SmtB, CadC has both a3N (N-terminal Cx;C and o3
CxC) and o5 (DxHx;oHx,E) sensory sites (Sun et al.
2001). Only a3N site is the regulatory site (Busen-
lehner et al. 2002a) in CadC, whereas in SmtB a5 is the
regulatory one (VanZile et al. 2002a, b). The regula-
tory 3N site may adopt tetrahedral (Busenlehner et al.
2001) or trigonal (Busenlehner et al. 2002a) coordi-
nation complex and senses a wide range of metal ions
like Cd(II), Bi(III), Co(II), Zn(II), Pb(Il), and Hg(II)
(Endo and Silver 1995; Busenlehner et al. 2002a, b),
while non-regulatory a5-motif binds Zn(IT) and Co(II)
metal ions (Busenlehner et al. 2002a; Ye et al. 2005).
Residues Cys7 and Cysll in N-terminal of one
subunit, and Cys58 and Cys60 in o3 from other
subunit form the inter-subunit association via the
metal ions (Wong et al. 2002). Out of four cysteine
residues CadC have, only Cys7, Cys58 and Cys60 are
required for its biological activity (Busenlehner et al.
2002a).

Other than S. aureus, CadC protein was found in
several other organisms (Table 2), e.g., Listeria
monocytogenes Plasmid pLm74 (Lebrun et al. 1994),
Lactococcus lactis Plasmid pND302 (Liu et al. 1997),
Stenotrophomonas maltophilia D457R (Alonso et al.
2000), Bacillus stearothermophilus LV (Nerey Md
Mdel et al. 2002), Bacillus firmus (Ivey et al. 1992)
and Streptococcus thermophilus 4134 (Schirawski
et al. 2002). While CadC from S. aureus, B. firmus, B.
stearothermophilus and S. maltophilia has both a3N
and oS sites, L. monocytogenes, L. lactis and S.
thermophilus CadC contain only a3N site (Table 2).

Other bacterial proteins that belong to the o3N
group (Table 2) are ArsR from Desulfovibrio desul-
furicans G20 (Li and Krumholz 2007), ArsR1 from
Pseudomonas putida KT2440 (Fernandez et al. 2016),
ArsR2 from Streptomyces sp. FR-008 Plasmid
pHZ227 (Wang et al. 2006), ArsRC2 from Microbac-
terium sp. A33 (Achour-Rokbani et al. 2010), Rv2642
from M. tuberculosis (Li et al. 2016b), AztR from
Nostoc sp. (Liu et al. 2005) and AseR from B. subtilis
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168 (Harvie et al. 2006) senses not only Cd(II) but also
As(III), Sb(III), Bi(IIT), Pb(II), Zn(II), etc. ArsR1 and
ArsR2 protein from archaeon Halobacterium sp.
Plasmid pNRCI100 (Wang et al. 2004) also have
signatures of o3N group and senses As(IIl) and
Sb(III). Sometimes, it is difficult to ensure whether a
protein belong to a3 or 3N motif as two cysteine
residues in the o3 helix are enough for metalloregu-
lation (Shi et al. 1996). For example, ArsR1 from P.
putida (Fernandez et al. 2016) and AseR from B.
subtilis (Harvie et al. 2006) both have one N-terminal
cysteine residue and CxC motif in o3 helix (Table 2).
The position of N-terminal cysteine is not far from a3
helix and compared to SmtB sequence that cysteine
residue would fall in o1 helix, unless both o1 and o2
helices are much shorter in length compared to SmtB
(Fig. 2). Further experiments are required to correctly
ascertain the function of N-terminal cysteine residue
in these proteins and place them in the correct group.

The ars operon of Microbacterium sp. has an
unusual arsRC2 fusion gene (Achour-Rokbani et al.
2010). This kind of fusion of the ArsR and ArsC
proteins has been previously described in L. fer-
riphilum (Tuffin et al. 2006). The C-terminal region of
331 aa long ArsRC2 protein is related to putative
arsenate reductases while the N-terminal portion has
homology to transcriptional repressors of the ArsR—
SmtB family. The N-terminal ArsR-domain contains a
putative arsenite binding signature (ESCVCDL),
almost identical to that of E. coli ArsR (ELCVCDL),
and a contiguous DNA binding site with wHTH motif
(Gladysheva et al. 1994; Achour-Rokbani et al. 2010).
This kind of unusual fusion might reduce the problem
of the diffusion of arsenic to the inducer attachment
site and enhance the efficiency of transcription in
response to arsenate.

o3N-a5 motif

Zn(Il)-sensor ZiaR from Synechocystis PCC 6803,
represses ziaA which encodes a heavy metal trans-
porting P-type ATPase, has both a3N (N-terminal
CxsH and a3 CxC) and o5 (DxHx;oHx,E) metal
sensory sites (Thelwell et al. 1998). Another member
of a3N-a5 group, Oscillatoria brevis BXxmR represses
the expression of bxal (encoding a CPx-ATPase metal
transporter), bxmR and bmtA (a heavy metal seques-
tering metallothionein) (Liu et al. 2004). BxmR binds
to both monovalent, Ag(I) and Cu(I), and divalent,

Zn(Il) and Cd(II), metal ions and interestingly, also
found to be induced by thiol oxidants diamide and
H,O, (Hirose et al. 2006). While both 3N and o5
sensory sites are essential for the inducer responsive-
ness of ZiaR (Thelwell et al. 1998), for BxmR either
a3N (senses copper, cadmium, silver and zinc) or o5
(senses zinc) site is sufficient for zinc mediated
regulation (Liu et al. 2008). Unlike other ArsR—-SmtB
sensors, BxmR can adopt an extended range of
coordination chemistries (trigonal or tetrahedral) due
to the presence of multiple metal-sensing residues in
its a3N site (Hx7Cx3Hx3C in N-terminal and CxC in
the o3 helix) that can sense a wide range of metals
while o5 is primarily restricted to Zn(II) sensing (Liu
et al. 2008).

oS¢ motif

NmtR, a Ni(II)/Co(II)-sensing repressor, was the first
ArsR-SmtB family member that has been character-
ized in M. tuberculosis, represses nmt operon that
contains nmtA gene which encodes a P-type ATPase
metal efflux pump (Cavet et al. 2002). NmtR binds to
Ni(Il), Co(II) and Zn(Il) with varying sensitivity,
Ni(II)>Co(I)>Zn(I), and Zn(II) is not a potent
allosteric regulator of DNA binding as compared to
Ni(IT) or Co(IT) (Pennella et al. 2003). Interestingly, in
cyanobacterium Synechococcus PCC 7942, NmtR-
mediated repression was found to be only alleviated by
Co(II) and not Ni(II), despite Ni(II) is known to be the
most effective inducer in M. tuberculosis, which
indicates that cytosolic metal concentrations in dif-
ferent hosts can influence the metal-responsiveness of
these transcriptional repressors (Cavet et al. 2002).
NmtR requires six residues (Asp91, His93, His104,
His107, His109 and Hisl16; Fig. 2) for Ni(Il)- or
Co(I)-responsiveness in vivo (Cavet et al. 2002). Out
of which four (Asp91, His93, His104 and His107)
residues are provided by the o5 helices of two
monomers and the extra two residues are extended
by the C-terminal extensions in NmtR homodimer
forming oS5c sites with DxHx;oHx,HxHxcH motif
(Pennella et al. 2003). Interestingly, the N-terminal
‘Gly2-His3-Gly4’ residues, in M. tuberculosis NmtR,
are found to form an alternate metal-sensory site with
Asp91, His93, His104 and His107 residues, replacing
the C-terminal His109 and His116 amino acids
(Reyes-Caballero et al. 2011; Lee et al. 2012). The
mutant of N-terminal His3 has been found to be
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significantly more sensitive to Zn(Il)-mediated regu-
lation than the Co(II)-mediated one which indicates
that His3 has a direct role in this Ni(II)/Co(II)-
mediated allosteric switch (Reyes-Caballero et al.
2011).

o53 motif

After NmtR, KmtR is the second novel Ni(II)/Co(II)-
sensing ArsR—-SmtB family member characterized
from M. tuberculosis (Campbell et al. 2007). KmtR
represses transcription of Rv2025¢, encoding a CDF-
family metal exporter and its own gene. KmtR-
dependent repression was alleviated by binding to
Ni(Il) or Co(Il). Although, both KmtR and NmtR
binds Ni(II) and Co(II), KmtR binds these metal ions
much tighter than that of NmtR suggesting importance
of sensing variable concentrations of these metals by
M. tuberculosis. In KmtR, His88, Glul01, His102,
His110, and Hisl11 form a new sensory site oS53
(Table 1) with the motif ‘Hx;,EHx;HH’ (Campbell
et al. 2007).

o5—4 motif

The ars operon in Acidithiobacillus ferrooxidans is
controlled by an As(IIl)-responsive transcriptional
repressor, ArsR. Interestingly, As(IIl) binding site in
A. ferrooxidans ArsR has no resemblance to the
traditional o3 sensory motif found in plasmid R773 of
E. coli and others (Table 1). Instead, it has three
cysteine residues, Cys95, Cys96, and Cys102, consti-
tuting a unique As(III)-sensory site (CCx¢C) at o5-
helix designated a5—4 (Qin et al. 2007), where Cys95
and Cys96 residues in the a5 helix form a trigonal
coordination metal-binding site with C-terminal
Cys102 residue.

Several other bacteria found to possess o5—4
sensory site, e.g., ArsR2 and ArsR3 from O. tritici
scI24” (Branco et al. 2008), ArsR1, ArsR2, ArsR3
and ArsR4 from A. tumefaciens SA (Kang et al. 2016),
ArsR proteins from Pannonibacter indicus HT23
(Bandyopadhyay and Das 2016), Chromobacterium
violaceum ATCC 12472 (Azevedo et al. 2008; Arruda
et al. 2016), Acidithiobacillus caldus (Kotze et al.
2006), A. caldus TnAtcArs (Tuffin et al. 2005), L.
ferriphilum TnLfArs (Tuffin et al. 2006) and Sinorhi-
zobium meliloti Rm1021 (Yang et al. 2005). The
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consensus motif for a5—4 site is either CCx4.¢C or
CCx5C at and near o5 helix (Table 1).

o55 motif

ArsR from Bacteroides vulgatus ATCC 8482, obligate
anaerobe and a common member of the human gut
microbiota, is found to be very sensitive to the
organoarsenicals methylarsenite MA(III), and arsenite
As(IIT). This arsenic-inducible transcriptional repres-
sor of the ars operon in B. vulgatus confers high
resistance to MAs(III), followed by As(IIl), suggests
that this organism maintains an ars operon as the result
of dietary exposure to inorganic arsenic (Li et al.
2016a). In B. vulgatus ArsR, Cys99 residue from o5,
and C-terminal Cysl06 and Cysl07 residues are
predicted to form a new As(III)-sensory site (CxCC),
designated a55 (Li et al. 2016a), contrary to o5—4
sensory site where two cysteine residues from o5 helix
constitute trigonal metal-binding site with one C-ter-
minal cysteine (Qin et al. 2007).

o3N-2 motif

C. glutamicum is one of the most arsenic-resistant
microorganisms known and can grow in presence of
elevated concentrations of arsenite or arsenate (Ordo-
fiez et al. 2005). ArsR1 and ArsR2 proteins from C.
glutamicum, binds As(III) or Sb(III) by a cysteine triad
composed of Cysl5, Cysl6, and Cys55 residues
comprising the CCx3gC sensory motif (Table 1)
(Ordoéiez et al. 2005, 2008). This binding motif is
distinctly different from other characterized ArsR—
SmtB family regulators (Sun et al. 2001; Gladysheva
et al. 1994; Turner and Robinson 1995).

o33 motif (nonmetal-binding)

C. glutamicum CyeR, is a unique redox-sensing
transcriptional regulator that binds to the intergenic
region between cyeR and cyel (encodes an old yellow
enzyme family protein), induced by oxidative stress
(Ehira et al. 2010). CyeR does not bind any metal ions,
but in the presence of oxidants such as diamide and
H,0,, the DNA-binding activity of CyeR is found to
be destabilized (Ehira et al. 2010). It has two cysteine
residues (Cys36 and Cys43), with the sensory motif
Cx6C in and close to o3 helix, but only Cys43 found to
have a role in redox regulation (Ehira et al. 2010).
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o3—4 motif

Plasmid pHZ227 in Streptomyces sp., encodes an
As(IIl)-sensing ArsR1 protein, that represses arsR-
BOCT operon, has a unique metal sensory site
designated a3—4, not observed in classical members
of ArsR-SmtB family (Wang et al. 2006). ArsR1 is
predicted to sense arsenite via Cx,H motif in the o3
helix and one cysteine residue located between 1 and
B2 strands of wHTH DNA-binding region (Fig. 2).

odc motif

The Cd(II)/Pb(Il)-sensing CmtR in M. tuberculosis is
structurally distinct from the other Cd(II)/Pb(II) sensor
CadC of S. aureus plasmid pI258 in a way that CmtR
binds Cd(II) or Pb(Il) via coordination by a4 sensors
(Cys57 and Cys61) and C-terminal Cys102 forming a
distinct adc site instead of a3N in CadC (Cavet et al.
2003). CmtR represses cmt operon encoding CmtA
which is closely related to S. aureus CadA (Yoon et al.
1991) and E. coli ZntA (Rensing et al. 1997), and
encodes Zn(I[)/Cd(II)/Pb(II) P-type ATPase efflux
pumps (Cavet et al. 2003). C-terminal residue Cys102
functions as a key allosteric metal-sensor in CmtR that
influences disassembly of CmtR-cmt O/P oligomeric
complexes in the presence of metal ions (Wang et al.
2005). Metal-dependent expression from CmtR-cmt
and NmtR-nmt O/P revealed that CmtR is insensitive
to Ni(II) and NmtR is insensitive to Cd(II) or Pb(II)
(Cavet et al. 2003). MerR of Streptomyces lividans
1326 functions as a repressor and has odc motif
(Briinker et al. 1996). MerR binds in the intercistronic
region between two operons and negatively regulate
several genes, including a mercuric reductase merA
and an organolyase merB (Rother et al. 1999). The
repression is alleviated by binding of mercuric ions
Hg(II) to the MerR (Briinker et al. 1996). Interestingly,
in all the cases of mercury resistances which are
mediated by Hg(Il) reduction, the genes are usually
regulated by activator proteins, except MerR of S.
lividans that function as a repressor, a hallmark of
ArsR-SmtB family regulators (Briinker et al. 1996).

odc2 motif
S. coelicolor CmtR, in contrast to M. tuberculosis

CmtR, binds Pb(II) or Cd(II) by forming two pairs of
sulfur-rich coordination complexes per dimer (Wang

et al. 2010), instead of one pair in M. tuberculosis
(Cavet et al. 2003). While, metal-sensory site 1
resembles exactly to the adc site of M. tuberculosis
CmtR, the second metal-binding site is coordinated by
the C-terminal Cys110 and Cysl11 residues. Site 1
binds Cd(II) tightly than Pb(II) and mediates tran-
scriptional derepression, in contrast, site 2 ligands
Cys110 and Cys111 only show Cd(II)-responsiveness
(Wang et al. 2010). The residue Cys24 from o2 helix is
predicted to be the third thiolate ligand to complete the
trigonal coordination structure at metal site 2 with
C-terminal Cys110 and Cysl11 residues, but Cys24
does not have any regulatory role as its absence has no
influence on the Cd(II)-responsiveness at site 2 (Wang
et al. 2010).

o2—a5 motif (nonmetal-binding)

HlyU protein from V. cholerae and V. vulnificus
positively regulates the expression of hemolysin AlyA
(Williams and Manning 1991; Williams et al. 1993)
and RTX toxin rtxAl (Liu et al. 2007b) genes,
respectively, by binding directly to their cognate
DNA upstream of the genes (Liu et al. 2007b;
Mukherjee et al. 2015). In V. vulnificus, HlyU activates
transcription of rtxAl toxin gene by acting as a
repressor of H-NS which negatively regulates the
expression of the rtxA [ gene (Liu et al. 2009a). H-NS
not only represses the transcription of the RTX toxin
and its transport system, but also found to directly
inhibit transcription of hemolysin gene hlyA. However,
transcriptional silencing of the ilyA gene is found to be
counteracted by the V. cholerae transcriptional acti-
vator HlyU (Wang et al. 2015). Therefore, HlyU acts as
arepressor of another repressor H-NS (Liu et al. 2009a;
Wang et al. 2015). HlyU found to be a member of
ArsR-SmtB family, but it does not have any metal-
sensory residues or motifs typical of the ArsR—-SmtB
family and constitutes a unique group, designated o2—
a5 that does not sense metals (Saha and Chakrabarti
2006). Molecular dynamics (MD) simulation studies
on V. cholerae HlyU reveal that the DNA binding
residues tend to move away from the DNA bases when
the distance between the Cys38 (in o2) and Cys104 (in
a5) residues was small. In contrast, in the DNA bound
form, the distance between Cys38 and Cysl104
increases during simulation indicating the presence
of a redox switch. The DNA-bound reduced form is
responsible for activating hlyA gene and in the
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presence of an oxidizing agent repression is established
(Mukherjee et al. 2015). Also, under oxygen-limiting
conditions (e.g., host intestines, etc.) V. cholerae was
predicted to use the redox switch for increased
expression of virulence genes (Liu et al. 2011).

In Vibrio anguillarum, two gene clusters vahl and
rtxACHBDE are found to be responsible for the
hemolytic and cytotoxic activities in fish, and are
positively regulated by the HlyU protein like other
bacterial HlyU proteins (Li et al. 2011). These two
gene clusters are again silenced by the negative
regulatory action of H-NS protein and V. anguillarum
HlyU act to alleviate that repression by acting as a
repressor of H-NS (Mou et al. 2013).

BigR in X. fastidiosa and A. tumefaciens is
structurally similar to V. cholerae HlyU and found to
undergo similar DNA-binding and release using a
redox switch. In the reduced DNA-bound form of
BigR, the two critical cysteine residues (Cys42 and
Cys108 in o2 and a5 helices, respectively) found to be
wide apart while the oxidized form indicates a
reduction in distance between these residues due to
the formation of disulfide bridge that results in
dissociation of BigR from its cognate DNA (Guimar-
des et al. 2011). BigR binds to the ‘BigR-box’ in the
Xylella and Agrobacterium promoters, and strongly
represses transcription of an operon (encodes BigR,
membrane proteins and beta-lactamase-like hydrolase
BLH) responsible for biofilm formation (Barbosa and
Benedetti 2007). BigR is found to be easily reduced,
but difficult to oxidize as two unbound cysteine
residues are not very accessible and a hydrogen
sulfide-induced reactive oxygen is predicted to oxidize
BigR (Guimaraes et al. 2011) (Fig. 4).

In purple photosynthetic bacterium Rhodobacter
capsulatus, transcriptional repressor SqrR functions as

DNA-protein S-S
complex
HS SH
Oxidation
1 offbna
Repression De-repression

Fig. 4 Model of redox-responsive gene regulation. The
reduced form of the protein binds to the promoter region and
represses the expression of downstream genes in the operon. In
the presence of an oxidizing agent, oxidized protein displaces
from the promoter region. The RNA polymerase binds DNA and
subsequently induces gene expression
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a master regulator of sulfide-dependent gene expres-
sions. In absence of H,S, with two cysteins (Cys41 and
Cys107) that are in reduced form, SqrR binds the
promoter region and represses the expression of
sulfide-responsive genes (SRGs). In presence of H,S,
reactive sulfur species (RSS) promotes the formation
of a sulfide bond between Cys41 and Cys107 residues,
thereby inhibiting the ability of SqrR to bind to the
promoter and derepression occurs (Shimizu et al.
2017) (Fig. 4).

PigS is another ArsR-SmtB family transcriptional
regulator, belong to a2-aS5 group, which represses
expression of the red-pigmented prodigiosin antibiotic
genes via the control of divergent operons in Serratia
sp. (Gristwood et al. 2011). YgaV is an autoregulated,
tributyltin (TBT)-inducible repressor found in E. coli
that represses ygaVP operon. The ygaVP operon
encodes YgaP protein, which is a membrane-associ-
ated protein with sulfur transferase (rhodanese) activ-
ity (Gueuné et al. 2008). The dimeric thiosulfate-
inducible repressor SoxR binds cooperatively to the
promoters regulating expression of the sulfur oxida-
tion sox operon in P. salicylatoxidans (Mandal et al.
2007).

o2—-052 motif

Acidophilic and facultative chemoautotrophic bac-
terium Thiomonas arsenitoxydans encodes an ArsR—
SmtB family metalloprotein AioF, stabilized by
As(IIT) or As(V), but not Sb(IIT) or Mo(VI), binds to
aioBA operon at two distinct places and induces its
expression (Slyemi et al. 2013; Moinier et al. 2014).
There are three cysteine residues, Cys53 in the o2
helix, and Cys111 and Cys115 in the a5 helix (Fig. 2),
in AioF that binds As(IIT) or As(V) constitute the o2—
a52 sensory motif (Slyemi et al. 2013) designated
here. ArsR-SmtB family members known to repress
the transcription of metal-resistant operons in the
absence of the metal ions and derepresses them in their
presence. Interestingly, contrary to ArsR—SmtB met-
alloregulators, AioF specifically activates transcrip-
tion of the aioBA operon in presence of metal ions
(Moinier et al. 2014).

None/unknown motifs

This group includes non-classical ArsR-family regu-
lators that do not have obvious metal-sensory motifs
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and involved in processes which are independent of
metal-sensing or resistance (Komeda et al. 1996;
Ellermeier et al. 2006; Li et al. 2008; Keese et al. 2010;
Gao et al. 2011, 2012; Mac Aogain et al. 2012)
(Table 2). Also, these regulators do not have any
associated metal resistance genes such as metalloth-
ionins, metal reductases, or metal efflux pumps, which
are usually linked with classical ArsR-SmtB family
proteins (Busenlehner et al. 2003).

In spore-forming bacterium B. subtilis, SdpC
induces the synthesis of an immunity protein Sdpl
that protects toxin-producing cells from being killed
under starvation. Sdpl is encoded by the sdpIR
operon which is repressed by SdpR (Ellermeier et al.
2006). PyeR in P. aeruginosa negatively regulates
pyeR-pyeM-xenB operon (pyeM encodes a major
facilitator superfamily membrane transporter and
xenB encodes an old yellow enzyme family reduc-
tase) and is the second ArsR regulator, after BigR
(Guimardes et al. 2011), found to be involved in
biofilm formation (Mac Aogdin et al. 2012). In R.
meliloti (Kondorosi et al. 1991) and R. legumi-
nosarum (Li et al. 2008) expression of the nodula-
tion genes are repressed by a the NolR protein. In
Rhodococcus rhodochrous, nhIBA operon encodes a
nitrile hydratase (L-NHase) whose expression is
repressed by the protein NhID. In the presence of
inducer amide, NhIC inhibits the repressor NhID,
leading to the expression of L-NHase, while in the
absence of amide NhIC could not inhibit NhID,
leading to the repression of the L-NHase expression
by NhID (Komeda et al. 1996). In B. anthracis
plasmid pXOl1, PagR negatively controls expression
of the pagAR operon that encodes a toxin gene
pagA. PagR also represses transcription of atxA, a
positive regulator of pagA (Hoffmaster and Koehler
1999). Rv2034 and Ms6762 proteins in M. tubercu-
losis and Mycobacterium smegmatis, respectively,
positively regulates the expression of dosR, phoP
and groEL2 genes and represses own genes (Gao
et al. 2011, 2012).

Archacon Methanococcus jannaschii  protein
MIJ223 (Ray et al. 2003), hyperthermophilic archaeon
Pyrococcus horikoshii proteins PH1061 (Okada et al.
2006) and PH1932 (Itou et al. 2008) have structural
features common to ArsR-SmtB family. Phr protein
from the hyperthermophilic archaeon Pyrococcus
furiosus inhibits transcription of its own gene, a small

heat shock protein Hsp20 and an AAA+ ATPase
(Vierke et al. 2003; Keese et al. 2010).

Structural studies on ArsR-SmtB family of sensory
proteins

ArsR-SmtB family members are included in InterPro
database (Finn et al. 2017) with profile IPR0O01845
(HTH ArsR-type DNA-binding domain), in PROSITE
database (Sigrist et al. 2013) with profile PS50987
(HTH_ARSR_2), in Pfam database (Finn et al. 2016)
with profile PF01022 (HTH_5), in PRINTS database
(Attwood et al. 2012) with profile PR0O0778
(HTHARSR) and in SMART database (Letunic et al.
2015) with profile SM00418 (HTH_ARSR). Several
X-ray crystal and NMR structures of ArsR—-SmtB
family members have been solved over the years and
these 3d structures help us to understand how confor-
mational changes mediated by key sensory residues
drive transcriptional regulation in this metallorepres-
sor family (Table 3).

A highly conserved ‘ELCV(C/G)D’ motif named
‘metal-binding box’ was originally identified in the
members of ArsR—SmtB family (Shi et al. 1994). This
motif contains residues that directly involved in
binding metal ions and several ArsR—SmtB repressors
have been shown to use residues from this ‘metal-box’
including ArsR and CadC proteins (Endo and Silver
1995; Bruhn et al. 1996). However, with the discovery
of several new and unique members the list of metal-
sensory motifs found in this family expanded
(Table 1). The X-ray structure of apo-SmtB found to
contain the ‘ELCVGD’ motif in the o3 helix as part of
the wHTH (a3-turn-a4) DNA-binding motif (Cook
et al. 1998). The 2.2 A resolution structure of SmtB
from Synechococcus sp. strain PCC7942 is the first
three-dimensional (3d) structure of ArsR—-SmtB fam-
ily that was solved by X-ray crystallography (Cook
et al. 1998). This apo-SmtB structure showed that the
protein is an elongated dimer with a twofold axis of
symmetry consisting of 5 ao-helices and 2 B-strands
arranged into  ol-02-03-04—B1-P2-a5 motif
(Fig. 5a). The dimeric interface is formed between
the two N-terminal a1 and two C-terminal a5 helices.
The DNA recognition helix-turn-helix (HTH) domain
(a3-turn-o4), specially the o4 helix is highly con-
served and is a distinguishing characteristic of the
ArsR-SmtB family repressors. Helix 4 (04) is also
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Table 3 Summary of ArsR-SmtB family proteins whose 3d structures have been solved

No. Sensory Protein PDB Organism Domain Structure  Structure note Reference(s)
motif name ID(s) type
1 a3N CadC 102W, Staphylococcus Bacteria  X-ray 1U2W (two Zn-bound Ye et al. (2005)
3F72 aureus form); 3F72 (D101G/ and
H103A CadC) Kandegedara
et al. (2009)
2 as SmtB 1SMT, Synechococcus Bacteria X-ray ISMT and IRIT (apo- Eicken et al.
1RIT, elongatus PCC SmtB); 1R22 (two Zn- (2003) and Cook
1R22, 7942 bound form); 1R23 et al. (1998)
1R23 (Zn-bound form)
CzrA 1R1U, Staphylococcus Bacteria X-ray 1R1U (apo-CzrA); Eicken et al.
IR1V, aureus (IR1U, IR1V (Zn-bound (2003),
2KIJB, 1R1V, form); 2KJC (two Zn- Arunkumar et al.
2KIJC, 4GGG); bound form); 2KJB (2009)
4GGG, NMR (apo-CzrA); 4GGG Campanello
2M30 (2KJB, (V66A/L68V CzrA, etal. (2013), and
2KIC, Zn-bound form); 2M30 Chakravorty
2M30) (two Zn-bound form) et al. (2013)
3 aSc NmtR 2LKP Mycobacterium Bacteria NMR Apo-NmtR Reyes-Caballero
tuberculosis et al. (2011)
4 odc CmtR 2JSC Mycobacterium Bacteria NMR Two Cd-bound form Banci et al. (2007)
tuberculosis
5 02—-a5* HlyU 4001, Vibrio cholerae Bacteria X-ray 4K2E (oxidized form); Mukherjee et al.
4K2E N16961 400l (reduced form) (2014)
3JTH Vibrio vulnificus Bacteria X-ray Reduced form Nishi et al. (2010)
CMCP6
BigR 3PQJ, Xylella fastidiosa Bacteria X-ray 3PQJ (reduced form); Guimardes et al.
3PQK 3PQK (oxidized form) (2011)
6 None/ PagR 27ZKZ Bacillus anthracis Bacteria  X-ray Has ArsR—-SmtB family ~ Zhao et al. (2010)
Unknown® signature
NolR 40MY, Sinorhizobium fredii  Bacteria X-ray 40MY (DNA-bound Lee et al. (2014)
40MZ, form); 4OMZ
40NO (unliganded); 4ONO
(DNA-bound form)
MJ223 1KU9 Methanocaldococcus ~ Archaea  X-ray Has ArsR-SmtB family = Ray et al. (2003)
Jjannaschii signature (partial)
PH1061 1UB9 Pyrococcus Archaea X-ray Has ArsR—-SmtB family  Okada et al.
horikoshii OT3 signature (2006)
Phr 2P4W Pyrococcus furiosus ~ Archaeca X-ray Has ArsR-SmtB family  Liu et al. (2007c)
signature (partial)
PH1932 1ULY Pyrococcus Archaea X-ray Has ArsR-SmtB family  Itou et al. (2008)

horikoshii OT3

signature (partial)

# Does not sense metal(s)

° No known metal binding residue/motif present

termed as the DNA recognition helix («R) that binds to
the DNA at the major groove, and B1/p2-strands form
the wing similar to other winged-HTHs. This wHTH
domain (a3-turn-oR) has strong structural similarity to
other bacterial transcriptional regulators like

@ Springer

catabolite activator protein CAP (Schultz et al.
1991), Fe(Ill)-regulated diphtheria toxin repressor
DtxR (Pohl et al. 1999), LysR-family proteins
(Mukherjee et al. 2009; Alanazi et al. 2013), MerR-
family proteins (Shewchuk et al. 1989; Huang et al.
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a3N sensory
site

o5 sensory site

a3N sensory

o4c sensory site

Cys

site
c abc sensory
a3 ‘ . 4
7 \7
B1
a5c sensory

site

Fig. 5 Representative 3d structures of ArsR—SmtB family of
transcriptional repressors showing different sensory sites.
a Structure of S. elongatus SmtB (PDB ID: 1R22) showing
two o5 Zn(Il) binding sites shared between two subunits (in
black and grey). One o5 site is shown (inset) where histidine and
glutamic acid residues (in grey) from one subunit and histidine
and aspartic acid residues (in black) from another subunit binds
a single Zn(II) metal ion. Non-regulatory a3N metal binding site
is also indicated in the figure. Secondary structural elements of
SmtB are indicated in numbers. b Structure of S. aureus CzrA
(PDB ID: 2M30) showing two o5 sites which senses Zn(II).

2016), etc. The SmtB crystal structure does not have
any metal ion, however, experiments with mercuric
acetate derivative suggested a total of four metal-

c Structure of M. tuberculosis NmtR (PDB ID: 2LKP) indicating
two aSc sites which senses Ni(Il). d Structure of M. tuberculosis
CmtR (PDB ID: 2JSC) showing two a4c Cd(II) binding sites.
The inset shows two cysteine residues from one subunit (in grey)
and one cysteine from another subunit (in black) binds a single
Cd(II) metal ion. e Structure of Pyrococcus horikoshii PH1061
(PDB ID: 1UBY) showing resemblance of ArsR-SmtB family
fold. f Structure of Xylella fastidiosa BigR showing o2-a5
nonmetal-binding site. The inset shows reduced (PDB ID:
3PQJ) and oxidized (PDB ID: 3PQK) cysteine residues

binding sites in the dimeric repressor (Cook et al.
1998). The two metal-sensory motifs in SmtB, a3N
(type 1) and o5 (type 2), binds four metal ions
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(Fig. 5a), however, Zn(Il)-sensing oS5 site is the
regulatory site that controls derepression while a3N
is non-regulatory in nature (VanZile et al. 2002a, b).
The structure of the Zn-bound SmtB repressor shows
that both a5 Zn(II)-binding sites of the homodimer
must be filled in order to change the dynamics of the
DNA-bound SmtB that drives the derepression
(Eicken et al. 2003).

S. aureus CzrA and Synechococcus SmtB share
nearly 35% sequence identity, but CzrA lacks the
N-terminal extension and residues that comprise the
a3N metal-sensing site in SmtB (Fig. 5b) (VanZile
et al. 2002a, b). In S. aureus, upon Zn(II)-binding to
a5, CzrA functions to halt the internal dynamics of
DNA-protein interaction, such that the Zn(II)-bound
form became energetically unfavorable and is no
longer binds to the O/P site (Eicken et al. 2003;
Chakravorty et al. 2013). The solution structure of
CzrA bound to czr operator sequence, reveals how two
allosteric states of the protein work. Upon Zn(II)-
binding, high-affinity DNA-bound closed-state switch
to low-affinity open-state and results in derepression
(Arunkumar et al. 2009). The allosteric pathway that
controls derepression is regulated by several residues
(His97, His67, Val66 and Leu68) in and around the
sensory a5-helix in CzrA (Campanello et al. 2013).

The X-ray crystal structure of homodimeric S.
aureus CadC shows that each monomer has six o-
helices and three B-strands with a0—o1-02—B0-03—
04—B1-P2-a5 motif (Ye et al. 2005). CadC has an
extra helix in N-terminal, designated a0, and one extra
beta strand, designated B0, in contrast to SmtB (Cook
et al. 1998). Although, CadC has both type 1 and type
2 metal-sensory sites like SmtB (Cook et al. 1998), but
only type 1 site is required for metalloregulation (Ye
et al. 2005) where in SmtB type 2 site is the regulatory
one (VanZile et al. 2002a, 2002b). The a3N type 1
metal-binding site in CadC is composed of N-terminal
Cys7 and Cysll residues from one monomer, and
Cys58 and Cys60 residues from another monomer.
Even though Zn(II)/Cd(I)-sensing type 2 site is not
regulatory in CadC, it is similar to type 2 site in SmtB
(Turner et al. 1996). Mutagenesis results suggest that
the Arg87 residue stabilizes type 2 site in SmtB by
forming hydrogen bond and in CadC the residue
corresponding to SmtB Arg87 is Gly84. Therefore, in
CadC, Gly84 residue do not make any significant
changes in the orientation of type 2 site, and hence,
binding of Zn(II) to the type 2 site is non-regulatory

@ Springer

(Kandegedara et al. 2009). CadC and SmtB might be
evolutionary intermediates between ArsR and CzrA.
ArsR uses only type 1 site for metalloregulation, while
CzrA uses only type 2 site. CadC and SmtB both have
type 1 and 2 sites, yet CadC uses only type 1 and SmtB
uses only type 2 site for metalloregulation.

Although M. tuberculosis Ni(II)/Co(II)-sensor
NmtR (Fig. 5¢) suggested to bind metal ions with
four a5 residues, Asp91, His93, His104, and His107,
and two C-terminal residues, His109 and His116 (a5¢
motif) (Cavet et al. 2002), the recent apo-NmtR NMR
structure along with molecular dynamics simulations
proposed an alternative Ni(II)-coordination model that
involves the N-terminal ‘Gly2-His3-Gly4’ motif and
only four a5 ligands with no contribution from two
C-terminal residues His109 and His116 previously
suggested (Lee et al. 2012).

M. tuberculosis sensor CmtR responds in vivo to
Cd(I) or Pb(IT) by a4 residues Cys57 and Cys61, and
C-terminal Cys102 (o4c motif). The NMR structure
(Fig. 5d) shows that CmtR has a relatively weak
affinity towards DNA and the unstructured C-terminal
tail becomes less mobile in the metal-bound form than
the apo-CmtR due to the recruitment of Cys102 as one
of the metal-ligand (Banci et al. 2007).

Crystal structures of the transcriptional activator
HlyU from V. vulnificus (Nishi et al. 2010) and V.
cholerae (Mukherjee et al. 2014) have been elucidated
which suggests the existence of a redox switch in
transcriptional regulation instead of metallogeulation
typical to ArsR-SmtB family of repressors. In V.
cholerae HlyU, two cysteines Cys38 (in o2) and
Cys104 (in o5) are found in the dimeric interface with
a distance between the two being less than 5 A in the
oxidized form (Cys38 was found to be modified as
sulfenic acid), while the reduced form shows a
distance more than 5 A. The presence of a redox
switch is much more clearly observable in X. fastid-
iosa BigR X-ray crystal structures (Guimaraes et al.
2011). In the reduced DNA-bound form of BigR, two
cysteine residues (Cys42 and Cys108) are more than 9
A apart, while in the oxidized form Cys42 and Cys108
are disulfide-linked (Fig. 5f). BigR cannot bind to the
DNA in oxidized form due to altered orientation of
two important residues Met18 and Tyr104, and more
than 30% reduction in interface area compared to the
reduced form. Formation of the disulfide bridge
involving Cys42 and Cys108 induces conformational
changes in the wHTH DNA-binding interface of BigR
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homodimer, results in loss of DNA binding (Guimar-
aes et al. 2011).

The crystal structure of the B. anthracis PagR was
solved at 1.8 A resolution and the DN A-—protein model
suggests that the homodimer binds to DNA with a
bend of approximately 40 (Zhao et al. 2010). The
X-ray crystal structures of NolR in apo- and DNA-
bound form indicates the importance of conforma-
tional switching of GIn56 residue in the DNA-
recognition helix that senses target DNA sequence
variations and influence nodulation and symbiosis in
S. fredii. Although like B. anthracis PagR, S. fredii
NolR does not show any substantial change in
conformations between apo- and DNA-bound forms
(Lee et al. 2014).

P. furiosus Phr protein is the first characterized heat
shock transcription factor in archaea with ArsR—-SmtB
family signature. The X-ray crystal structure showed
some surprising features. The N-terminal domain of
Phr has similarity towards bacterial ArsR—-SmtB
family, while its C-terminal domain was found to
resemble eukaryotic BAG domain (Liu et al. 2007c¢).
X-ray crystal structures of few other proteins from
archaea have been solved, e.g., M. jannaschii protein
MIJ223 (Ray et al. 2003), P. horikoshii PH1061
(Okada et al. 2006) and PH1932 (Itou et al. 2008),
and they all show resemblance to ArsR—-SmtB family
of bacterial proteins (Fig. Se).

Characteristics of DNA-binding region

ArsR-SmtB metallorepressors predominantly exists
as homodimers in both metal-bound (weak-affinity
towards cognate DNA) and metal-free (high-affinity
towards cognate DNA) states in solution (Kar et al.
1997; Busenlehner et al. 2001, 2002a; Pennella et al.
2003). Most of these homodimers bind to at or near
O/P sites of repressed operons which contain one or
more imperfect inverted repeats with a distinct ‘12-2-
12’ architecture (Table 4). The smt operon of Syne-
chococcus sp. contains two imperfect inverted 12-2-12
repeats, termed ‘S1/S2’ and ‘S3/S4’, which overlaps
the —10 and —35 regions of the RNA polymerase
binding site (Huckle et al. 1993; Turner and Robinson
1995). The S1/S2 inverted repeat is required for the
Zn(Il)-mediated metalloregulation of smtA by oS-
sensor SmtB, while the S3/54 repeat is non-regulatory
(Erbe et al. 1995; Turner et al. 1996). Each SmtB

homodimer expect to bind to a single 12-2-12 inverted
repeat, as both the homodimer and the inverted repeat
are approximately two-fold symmetic, with two HTH
motifs (a3-turn-o4) of the homodimer interacts with
consecutive major grooves in the DNA-bound state,
but this scenario would suggests significant bending of
the DNA (~ 36) around the minor groove (Cook et al.
1998). Although the entire O/P region of smtA
containing both S1/S2 and S3/S4 repeats was found
to bind two SmtB homodimers, yet interestingly, both
S1/S2 and S3/S4 repeats separately found to bind two
homodimers each, which suggest the possibility of sm¢
O/P forming a looped-structure stabilized by dimer—
dimer interactions (Kar et al. 2001; VanZile et al.
2002b). Other oS5 sensors, S. aureus and B. subtilis
CzrA also bind to czr O/P with an imperfect 12-2-12
inverted repeat similar to smt O/P (Kuroda et al. 1999;
Singh et al. 1999; Harvie et al. 2006).

Like the smtA and czr O/Ps, the M. tuberculosis nmt
O/P contains a single 12-2-12 inverted repeat where
aSc-sensor NmtR has been shown to bind tightly to
repress transcription (Cavet et al. 2002; Pennella et al.
2003). Interestingly, another M. tuberculosis protein
a53-sensor KmtR binds to a ‘13-4-13” inverted repeat
at the O/P region instead of 12-2-12 palindromic
sequence (Campbell et al. 2007).

S. aureus a3N-sensor CadC protects the O/P site of
the cad operon with a 12-2-12 imperfect repeat similar
to that of the smr operon (Endo and Silver 1995;
Busenlehner et al. 2003). A single CadC homodimer
binds to the cad O/P (Busenlehner et al. 2001),
however, at low salt concentrations two CadC dimers
found to bind the DNA (Busenlehner et al. 2002a).
Also, two distinct CadC-DNA complexes found to
form at higher concentrations of the homodimer (Endo
and Silver 1995). CadC proteins from other bacteria
also bind to similar 12-2-12 repeats (Ivey et al. 1992;
Lebrun et al. 1994; Liu et al. 1997; Schirawski et al.
2002). Other a3N-sensors like AztR from Nostoc sp.
and Rv2642 from M. tuberculosis also bind to similar
inverted repeats (Liu et al. 2005; Li et al. 2016b).
Interestingly, M. tuberculosis Rv2642 represses sev-
eral genes by binding to a 16-bp core palindromic
region (TTTGATA-TA-TGTCAAA) which could be
a part of extended 12-2-12 repeats (Table 4) (Li et al.
2016b). Another a3N-sensor B. subtilis AseR shows
similar DNA-binding properties (Harvie et al. 2006).
Microbacterium sp. ArsRC2 fusion-protein binds to
larger inverted repeats (17-6-17 and 10-5-10)
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(Achour-Rokbani et al. 2010) and neither of these
palindromes resemble the ArsR binding regions
identified previously (Wu and Rosen 1993; Rosenstein
et al. 1994; Xu et al. 1996).

Like o3N- and a5-sensors, a3N—a5 sensory pro-
teins, e.g., Synechocystis sp. ZiaR, O. brevis BxmR,
M. tuberculosis Rv2358 and M. smegmatis Ms2358,
found to have similar DNA-binding characteristics
(Table 4) (Thelwell et al. 1998; Liu et al. 2004;
Canneva et al. 2005).

The ars O/P sequence of E. coli and other bacteria
also contains an imperfect 12-2-12 repeat, similar to
the cad O/P, sensed by a3-sensor ArsR proteins
(Gralla 1990; Ji and Silver 1992; Wu and Rosen 1993;
Rosenstein et al. 1994; Xu et al. 1996; Sato and
Kobayashi 1998; Suzuki et al. 1998; Wang et al.
2009b; Yu et al. 2015; Paez-Espino et al. 2015). Gel
mobility shift experiments suggest that E. coli ArsR
form only one DNA—protein complex (Wu and Rosen
1993; Xu et al. 1996). Acidophilic archaeon F.
acidarmanus also predicted to have an imperfect
12-2-12 repeat adjacent to the TATA-box regions of
arsRB operon (Baker-Austin et al. 2007).

Interestingly, several ArsR—-SmtB family proteins
do not conform to the ‘12-2-12’ rule as observed in o3,
a3N, a5, adc, a53 and a3N—aS-sensory repressors.
The a3N-2 sensor ArsR1 from C. glutamicum, bind to
two regions (S1 and S2) of 30 bp each (with 10 bp
palindromic region present between S1 and S2) at O/P
(from —7 to —37 bp and —47 to —77 bp) of the arsB
gene (Table 4) (Ordofiez et al. 2008). S. lividans MerR
(adc) also binds to two sites spanning 28-31 bp
regions with inverted repeats at the O/P site, but not
similar to 12-2-12 repeat (Rother et al. 1999). Another
adc-sensor M. tuberculosis CmtR binds to an unusu-
ally long 90 bp protected region (from —80 to
+10 bp) having 4 inverted repeats of 14—15 nt each
with a ‘T(A/G)TAA-N4_s-T(T/G)ATA’ consensus at
the O/P region (Chauhan et al. 2009). AioF from T.
arsenitoxydans (02—052-sensor) binds to two long
regions of 60-74 nt without any inverted repeats in the
aioX-aioB intergenic region that overlaps O/P sites
(Moinier et al. 2014). Similarly, o5-4-sensor A.
ferrooxidans ArsR protects a 28 nt long region without
any inverted repeat (Table 4). Interestingly, the pro-
tected region by A. ferrooxidans ArsR is found
between —60 and —86 nt relative to the start site of
the arsB gene (outside RNA polymerase binding sites)
that it represses (Qin et al. 2007).

Non-metal sensor protein (a2—aS5-sensor) like V.
cholerae HlyU, binds to a region (31-nt long region
with a 17-nt core palindrome) of about 150 bp away
from the O/P of hlyA gene that it controls (Mukherjee
et al. 2015). HlyU from V. vulnificus also recognizes a
42 nt long region, with imperfect palindrome, about
400 bp away from the rtxAl transcription start site
(Liu et al. 2009a). Interestingly, V. anguillarum HlyU
binds to far upstream of the RNA polymerase binding
site, but its 18-22 nt protected regions contain 5 bp
direct repeats of “TAAAA’ instead of inverted repeats
found in HlyU proteins from V. cholerae and V.
vulnificus (Li et al. 2011). Similarly, other a2-u5-
sensors like BigR, SoxR, PigS and SqrR binds to
variable sized regions at the O/P sites with inverted or
direct repeats (Table 4) (Mandal et al. 2007; Barbosa
and Benedetti 2007; Gristwood et al. 2011; Mandal
and Das Gupta 2012; Shimizu et al. 2017).

The non-classical group of ArsR-SmtB family
proteins (NolR, SdpR, Phr, PyeR, Rv2034, etc.) that
do not have any metal-sensory motif binds and protect
variable regions at O/P sites with or without inverted
repeats (Table 4) (Cren et al. 1995; Ellermeier et al.
2006; Li et al. 2008; Keese et al. 2010; Gao et al.
2011, 2012; Mac Aogain et al. 2012).

Evolution of metal-sensory motifs

The most important organizing principle in biology is
the universal tree of life that separates the living world
into three domains—Archaea, Bacteria and Eucarya
(Woese et al. 1990). Presently accepted theory of
evolution suggests that the life on planet Earth might
have evolved from a hot climatic condition (Wéchter-
shdauser 2000, 2002; Schwartzman and Lineweaver
2004) and therefore, a hyperthermophile may have
been the last common ancestor of life before the
divergence of three primary domains (Schwartzman
and Lineweaver 2004).

Though it has been observed that three domains are
very dissimilar and the differences that separate them
being of a more profound nature, but most of archaeal
and bacterial lineages have an extensive history of
horizontal or lateral gene transfer. Horizontal gene
transfer (HGT), a widely-recognized adaptation mech-
anism in prokaryotes, can be defined as the sharing of
genetic material from one individual to another that
are not in a vertical or parent-offspring relationship
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(Soucy et al. 2015). Initially HGT was often associated
with pathogenicity and antibiotic resistance in a
microbial world, but the reach of HGT was far beyond
this. It has been interesting to note that how the gene
content in different domains of the universal tree of
life has been shaped thoroughly by HGT among
microbial world, between microbes and eucarya, and
even among multicellular eukaryotes (Soucy et al.
2015). The domain archaea comprise of most of the
hyperthermophiles while the bacterial kingdom also
contains many. Several metabolic processes in archaea
are found to be similar to bacterial systems (Lak-
sanalamai et al. 2004) and also, many transcriptional
regulators discovered in bacteria have homologs in the
archaeal genome (Bell and Jackson 2001; Bell 2005;
Geiduschek and Ouhammouch 2005), suggesting the
possibility of HGT among domains. Also, archaeal
members found to encode a large number of proteins
with the HTH DNA-binding motifs whose sequences
are highly similar to the bacterial HTH DNA-binding
domains rather than to eukaryotic counterparts, and
this relationship between archaeal and bacterial tran-
scriptional regulators might have been occurred due to
multiple HGT events (Aravind and Koonin 1999).

The classical view of the universal tree of life
suggests that the Archaea and the Eukarya have a
common ancestor, however, the origin of Eucarya
remains controversial (Gribaldo et al. 2010). It can be
stated that Eucarya are mainly the evolutionary
chimeras of bacterial and archaeal cells that arose
via endosymbiotic fusion (Soucy et al. 2015), but the
mechanism by which eucarya interchange genes with
prokaryotes are less clear (Gribaldo et al. 2010).
Interestingly, the archaeal heat shock regulator Phr
from P. furiosus is found to be a molecular chimera
having N-terminal wHTH DNA-binding domain
resembling bacterial wHTH motif and C-terminal
domain that resembles eukaryotic BAG domain,
suggesting HGT from hyperthermophiles to mesother-
mophiles (Liu et al. 2007c).

The ArsR-SmtB family of transcriptional regula-
tors showed a great diversity with different types of
sensory sites (Fig. 6) and in future we expect more
unique members of this family will be discovered. The
founding members of the ArsR—-SmtB family repres-
sor proteins (e.g., E. coli ArsR) had only type 1 site
with a3 motif and binding of As(IIl) to the protein
results in derepression. The As(IIl) binding site in
E. coli ArsR is composed of only Cys32 and Cys34,
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Fig. 6 Cartoon representation of functionally characterized p
ArsR—-SmtB family proteins depicting different sensory motifs.
a a5, b a5c/a53, ¢ a5-4/a55, d o3, e a3N, f a3N-a5, g a3N-2,
h odc, i adc2, j a2-052, k 02-05, 1 233 and m a3—4. Metal ions
are denoted as spheres. Cysteine residues are marked as filled
circles. Two subunits (I and II) of the protein are indicated in
grey and black colors, respectively. N- and C-terminal ends of
each subunit are indicated and for each subunit o-helices are
numbered from 1 to 5. Dotted line represents N- or C-terminal
extensions. The dotted triangle with ‘w’ letter represents the
wing comprising f1-B2 strands in between o4 and a5 helices.
n Model of the evolution of type 2 metal-binding site from type
1 site. Square box represents regulatory metal-binding site, star
represents non-regulatory metal-binding site and dotted-line
represents N-terminal extension of the protein

while Cys37 is the non-regulatory residue (Shi et al.
1996), with CxCx,C motif in o3 helix (Table 1;
Fig. 6d). While CxCx,C motif is the predominant one
in o3-sensors, a wide range of variations is also
observed in different bacteria (Table 2). A wide array
of ArsR-SmtB family repressors sense cysteine
residues for metal-mediated derepression, which
indicates that the type 1 sites are the ancestral
regulatory sites and type 2 sites might have evolved
later (Kandegedara et al. 2009).

The a3N-sensory proteins (e.g., B. subtilis AseR,
Nostoc sp. AztR, etc.) may have evolved from the o3-
sensory ones by acquiring the N-terminal extension
which provide one or two metal sensors apart from two
cysteines that are contributed by the o3 helix similar to
E. coli ArsR (Fig. 6e) (Liu et al. 2005; Harvie et al.
2006). The a3N-sensors have different combinations
of residues (one or two cysteine residues or cysteine
and histidine residues in N-terminal) contributes to the
trigonal or tetragonal o3N site (Table 1; Fig. 2).
Another a3N-sensor, S. aureus CadC not only has
the regulatory o3N site, but also has a non-regulatory
type 2 oS5 site (Sun et al. 2001; Busenlehner et al.
2002a). Interestingly, CadC from L. monocytogenes
has only a3N site and no o5 site (Lebrun et al. 1994),
while CadC from L. lactis or S. thermophilus have
partial o5 sites (Liu et al. 1997; Schirawski et al. 2002)
(Table 2), which suggests a progression of type 2 o5
site in proteins with o3N motif (Fig. 6n). The a3N—a5
sensors (Fig. 6f), O. brevis BxmR or Synechocystis sp.
ZiaR may be considered as intermediates between
E. colil ArsR (type 1 site) and S. aureus CzrA (type 2
site) as they contain both true type 1 and 2 sites
(Thelwell et al. 1998; Liu et al. 2004). Contrary to S.
aureus CadC, although Synechococcus sp. SmtB has
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both a3N and a5 sites, o5 site is the regulatory site and
a3N is the non-regulatory one (VanZile et al.
2002a, b). As all these proteins (ArsR, CadC, SmtB,
etc.) have true type 1 site or remnants of type 1 site,
they might have evolved from a common ancestor (Ye
et al. 2005). Although, Synechocystis sp. ZiaR, O.
brevis BxmR and Synechococcus sp. SmtB all have
o3N and o5 sites, for ZiaR both sites are essential, for
BxmR either one and for SmtB only a5 site is required
for metal-mediated regulation (Thelwell et al. 1998;
VanZile et al. 2002a, b; Liu et al. 2008), again
indicating the progression of true type 2 site (e.g., S.
aureus CzrA; Fig. 6a) by losing the type 1 site from a
type 1-2 dual sensor (Fig. 6n) (Ye et al. 2005). The
aSc or 53 sensors may have evolved from a5-sensory
proteins (Fig. 6b) (Cavet et al. 2002; Campbell et al.
2007).

Interestingly, o3-sensor proteins have a length
between 84 and 118 aa (e.g., true type 1 sensor
E. coli ArsR has 117 aa), a3N-sensors have between
119 and 136 aa (e.g., type 1 and pseudo type 2
sensor S. aureus CadC has 122 aa), a3N—a5-sensors
with 132-136 aa (e.g., dual type 1-2 sensor ZiaR has
132 aa) and o5-sensors have between 103 and 135
aa (e.g., pseudo type 1 and type 2 sensor SmtB has
122 aa; true type 2 sensor CzrA has 106 aa)
(Table 2), indicating that the length of a protein has
a direct relationship with number of sensory sites.
The a3-sensors usually do not have long N-terminal
extensions, therefore, length of a3-sensors are less
than the a3N sensors with long N-terminal exten-
sions providing metal ligands. Subsequently, a3N-
a5 sensors are relatively longer to accommodate
both type 1 and type 2 sites. Again, o5-sensors in
the course of evolution lost type 1 site and became
smaller in terms of protein length (Table 2).

The Arg87 residue in SmtB stabilizes the Zn-
sensory type 2 site by forming hydrogen bond and in
CadC the corresponding residue is Gly84 which do not
make any significant changes in the conformation of
type 2 site and subsequently turn into a non-regulatory
site (Fig. 2) (Kandegedara et al. 2009). The o5 sensor
CzrA also has arginine residue at the corresponding
position, while a3/a3N-sensors ArsR, AseR, etc. have
glycine residue. Interestingly, a single point mutation
(guanine to cytosine) can substitute a glycine residue
into an arginine residue suggesting that it is easy for
the Nature to convert a non-regulatory type 2 site to a
regulatory one (Kandegedara et al. 2009).
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Fig. 7 A phylogenetic tree (Bootstrap consensus tree) of the 46 p»
sequences (representative sequences taken from Table 2),
created using the Neighbor-Joining method (Saitou and Nei
1987). Sequence alignment was done using MUSCLE (Edgar
2004). The percentage of replicating trees in which the
associated taxa clustered together in the bootstrap test (1000
replicates) are shown (if the value is 50 or more) next to the
branches (Felsenstein 1985). The evolutionary distances were
computed using the number of differences method (Nei and
Kumar 2000) and are in the units of the number of amino acid
differences per sequence. All positions with less than 95% site
coverage were eliminated. Evolutionary analyses were con-
ducted in MEGA7 (Kumar et al. 2016). For each entry sensory
site, scientific name, protein name and class (for archaea, classes
are shown in bracket) are indicated. The metal-binding motifs
sense different metals, present in different clusters, are indicated
on the right. ‘UK’ stands for the ‘unknown’ sensory site. ‘NM’
stands for ‘nonmetal-binding’ sensory site

A phylogenetic tree of a subset of ArsR—-SmtB
family proteins show that they have evolved from a
common evolutionary ancestor, with three distinct
clusters—As(IIl)-sensor a3-group, Zn(II)-sensor oS-
group and non-metal sensor o2-aS5 group (Fig. 7).
The o3- and o5-sensors, with type 1 and 2 sites
respectively, belong to two distinct clusters. Also the
redox-sensor 02—aS5 proteins form a distinct group
apart from the o3/aS-sensors which indicates the
possibility of coexistence of primitive ArsR—-SmtB
family proteins with or without metal-sensory resi-
dues. Interestingly, all a2-a5-sensors belong to the
phylum proteobacteria (Fig. 7; Table 2) and as pro-
teobacteria is relatively younger compared to other
groups (e.g., Firmicutes, Chloroflexi, Actinobacteria,
Cyanobacteria, etc.), which suggests that this group
may have evolved from ancestral metal-sensory
groups by losing metal-binding residues in the course
of evolution (Saha and Chakrabarti 2006; Hug et al.
2016). CadC proteins having regulatory type 1 and
non-regulatory type 2 sites, clusters with o3/a3N-
sensors with type 1 regulatory site, while SmtB which
has regulatory type 2 site and vestigial type 1 sites
clusters with a5-sensors with type 2 regulatory sites
(Fig. 7).

The a3 motif (CxCx,C), instead of its usual place in
a3-helix in bacteria, is found at the C-terminal region
of acidophilic iron-oxidizing archaeon F. acidar-
manus ArsR which represses arsRB operon and the
derepression results from binding of As(III) metal ion
to the protein (Gihring et al. 2003; Baker-Austin et al.
2007). Very little information is available about ArsR—
SmtB homologs in Archaea and F. acidarmanus ArsR
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with As(III)-binding (CxCx,C) motif in the C-termi-
nal region may indicate a possibility of the existence
of this motif in a different region in the ancestral
proteins and bacteria may have acquired it by HGT
from archaeal counterparts. ArsR1 and ArsR2 from
halophilic archaeon H. salinarum have o3N motifs
and senses As(IIl) or Sb(III) to derepress ars operons
(Table 2) (Wang et al. 2004). Some other archaeon
like M. jannaschii (Ray et al. 2003), P. furiosus
(Vierke et al. 2003) and P. horikoshii (Okada et al.
2006; Itou et al. 2008) have ArsR-SmtB family
members in their genome, but without any identifiable
metal-sensory or redox-sensory motifs (Table 2).
With very little information about archeal ArsR—
SmtB members and a few bioinformatic analysis with
limited datasets on bacteria (Busenlehner et al. 2003;
Campbell et al. 2007; Harvie et al. 2006), the
knowledge on the evolution of ArsR-SmtB family is
incomplete and requires further study.

Even though the overall fold in ArsR—-SmtB family
members is conserved, the location of metal-sensory
sites varied on the surface of these proteins. Some of
these metal-sensory sites (e.g., a3, a5, etc.) may have
evolved in the natural course of evolution from an
ancestral protein, but some sensory sites (e.g., a3N-2,
aS5, etc.) are unrelated to the binding sites of other
characterized ArsR—-SmtB family members and may
have evolved by convergent evolution in response to
niche environmental pressures (Ordéiez et al. 2008).

Identification of new metal sensors

The tree of life is comprised of an enormous number of
branches and an approximation of the universal tree of
life to full scale is a gigantic task and remains elusive
(Woese et al. 1990; Koonin 2014; Hug et al. 2016).
The 16s rRNA was used to construct the phylogenetic
relationship between microorganisms, but it was soon
realized that analyzing different molecular markers or
genes may lead to either conflicting phylogenies or
phylogenetic incongruence among microorganisms by
grouping species that are split by other morphological,
physiological or molecular markers. So, to avoid this
conflict, it is better to use the whole genome instead of
a gene sequence and ample new methods were
employed to create genome sequences that illuminate
the identity of organisms and place them correctly in
the tree of life in the context of their proper ecosystem
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and community (Brown et al. 2015; Castelle et al.
2015). The genomes of a large number of Proteobac-
teria, Actinobacteria and Firmicutes, including the
environmental strains like Burkholderia ubonensis
(Price et al. 2013), Streptomyces antibioticus (Wang
et al. 2017), etc., human pathogens like M. tubercu-
losis H37Rv (Cole et al. 1998), B. anthracis (Vilas-
Boas et al. 2007), etc., and plant pathogens like R.
leguminosarum (Ryu 2015), A. tumefaciens (Mans-
field et al. 2012), etc., encode a large number of ArsR—
SmtB family of transcriptional regulators, mostly of
unknown functions (Table 5). Several archaea pre-
dominantly from phylum Euryarchaeota, like Metha-
nosarcina mazei (Deppenmeier et al. 2002),
Haloarcula amylolytica (Yang et al. 2007), etc. also
express a large number of ArsR—SmtB family proteins
(Table 5). This signifies the importance of this family
member to modulate varying metal types and concen-
trations in different environmental conditions for
survival and proliferation.

In the last 30 years, only a few different metal-
sensing and non-metal binding sites have been char-
acterized in ArsR-SmtB family of transcriptional
repressors (Table 2). With the increase in the number
of newly characterized genome sequences more
proteins now show signature motifs of ArsR—-SmtB
family in various sequence databases. At present, in
InterPro database (Finn et al. 2017), HTH ArsR-type
DNA-binding domain (motif number IPR001845)
includes more than 82,000 proteins that have ArsR—
SmtB signatures which implies the possibility of a
large number of undiscovered ArsR-SmtB family
proteins with unique sensory motifs. Several bacteria
and archaea encodes a large number of putative ArsR—
SmtB family regulators (Table 5), many of which do
not exactly fit to the a3 or o5 metal binding motifs
(Table 5). For example, the Hg(IT)-sensor MerR from
S. lividans (Rother et al. 1999) has been classified as
ArsR-SmtB family member based on the basis of
having a4c motif like another ArsR-SmtB repressor
M. tuberculosis CmtR that senses Cd(II) or Pb(II)
(Wang et al. 2005). Phylogenetic analysis suggests the
possibility of extensive convergent evolution among
different groups and strongly argues against the belief
which states that proteins sharing overall sequence
similarity would sense same metal ions (Ordoiiez et al.
2008).

With the discovery of more ArsR-SmtB family
members with new sensory sites and based upon the
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Table 5 Representative list of species of archaea, pathogenic and non-pathogenic bacteria having largest number of ArsR-SmtB

family members in their genome

No. Organism

Phylum, class

Characteristic(s)

Number of ArsR-
SmtB members®

A. Archaea
1 Methanosarcina mazei LYC Euryarchaeota, Anaerobic archaeobacter living in semi 32
Methanomicrobia aquatic environments
2 Haloarcula amylolytica JCM  Euryarchaeota, Halobacteria ~ Starch-hydrolysing and extremely 23
13557 halophilic
3 Haloferax mediterranei Euryarchaeota, Halobacteria ~Extremely halophilic 22
ATCC 33500
4 Methanobacterium lacus AL-  Euryarchaeota, Autotrophic, hydrogenotrophic 19
21 Methanobacteria methanogen
5  Methanoplanus limicola DSM  Euryarchaeota, Mesophilic methanogen 19
2279 Methanomicrobia
B. Bacteria
1 Burkholderia ubonensis Proteobacteria, Environmental bacterium associated with 90
Betaproteobacteria opportunistic but generally nonfatal
infections in healthy individuals
2 Mesorhizobium plurifarium Proteobacteria, Root nodule bacteria 51
Alphaproteobacteria
3 Microbacterium oxydans Actinobacteria, Involved in efficient treatment of seaweed 51
Actinobacteria waste, possess both alginate lyase and
laminarinase activities
4 Amycolatopsis keratiniphila Actinobacteria, Aerobic, gram-positive soil bacteria 51
Actinobacteria
5  Streptomyces antibioticus Actinobacteria, Produces a large number of antibiotic 49
Actinobacteria compounds including boromycin,
oleandomycin, actinomycin etc.
No. Organism Phylum, class Disease(s) Number of ArsR-

SmtB members®

C. Pathogenic bacteria (human)
Bacillus cereus VD045

Firmicutes, Bacilli

Nausea, vomiting, and diarrhea

[ N

Nocardia asteroides NBRC 15531
Chlamydia trachomatis
Bacillus anthracis H9401

Mycobacterium tuberculosis
ATCC 25618

D. Pathogenic bacteria (plant)

1 Streptomyces europaeiscabiei

2 Sinorhizobium meliloti
CCNWSX0020

3 Rhizobium leguminosarum
WSM2297

4 Agrobacterium tumefaciens SA

5  Klebsiella variicola

Actinobacteria, Actinobacteria
Chlamydiae, Chlamydiia
Firmicutes, Bacilli

Actinobacteria, Actinobacteria

Actinobacteria, Actinobacteria

Proteobacteria,
Alphaproteobacteria

Proteobacteria,
Alphaproteobacteria

Proteobacteria,
Alphaproteobacteria

Proteobacteria,
Gammaproteobacteria

Nocardiosis
Trachoma
Anthrax

Tuberculosis

Common scab in potato

Citrus greening
Induced infection threads in pea
root nodules

Crown gall

Banana soft rot

29
23
20
18
17

24
21

21

19

17

(A) Archaea, (B) bacteria, (C) pathogenic bacteria (human) and (D) pathogenic bacteria (plant)
# Obtained from InterPro database (Finn et al. 2017)

@ Springer



492

Biometals (2017) 30:459-503

presence or absence of one or more identified metal-
sensing motifs, one can more accurately predict their
ability to sense specific metals. In general, one metal-
sensory motif (e.g., a3 or a5) correspond to specific
metal (e.g., As or Zn), but an exception to this rule
exists. The a3N proteins usually sense Cd(II) or Zn(II)
(e.g., CadC, AztR, etc.), but M. tuberculosis Rv2642,
D. desulfuricans ArsR, P. putida ArsR1, Streptomyces
sp. ArsR2, B. subtilis AseR, etc. found to sense As(III)
(Table 2). It is not apparent what factors in a3N
proteins distinguish between a Cd(II)/Zn(II)-sensing
site from a As(IIl)-sensing one, although it is possible
that adjacent residues facilitate this facet of metal
selectivity, such as the Arg87 residue that stabilizes
the Zn(Il)-sensory type 2 site in SmtB while in CadC
the equivalent glycine residue convert the site into a
non-regulatory one (Kandegedara et al. 2009). Simi-
larly, M. tuberculosis CmtR with odc motif senses
Cd{I) or Pb(Il), but another adc group protein S.
lividans MerR senses Hg(I) (Table 2).

ArsR-SmtB family repressors not only have dif-
ferent metal-sensory motifs, but also several members
lack known metal-binding sites (Table 2). Further
characterization of new and unique proteins in this
family would enable us to understand the factors
affecting metal-specificity in vivo. The characteriza-
tion of ArsR—-SmtB members which does not have
known metal-sensory sites would help us to assign
precise functions to the metal-sensory members in the
ever-increasing number of homologues gathering in
the sequence databases and metagenome datasets.

Conclusions

Metals (Na, Mg, K, Ca, Cr, Mn, Fe, Co, Ni, Cu, Zn, Se,
Mo, etc.) are essential for the regular physiology and
functions of all organisms. Approximately, half of all
known proteins are predicted to require metal atoms
for their structure and function (Gaballa and Helmann
1998; Andreini et al. 2004). Metals comprise rela-
tively large portion of the periodic table and have a
wide range of chemical properties that govern their
sensitivity in the organism. A central metal ion binds
to the atoms of donor ligands, such as oxygen, nitrogen
and sulfur, through interactions that are often strong
and selective (Haas and Franz 2009; Ma et al. 2009).
The ability to sense metal ions in the environment is
extremely important for the survival of pathogenic
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bacteria. Host organisms can both restrict access to
essential metals from invading bacteria and use their
innate toxicity of certain metals for effective bacterial
killing (Weinberg 2009; White et al. 2009; Kehl-Fie
and Skaar 2010; Shafeeq et al. 2011). In response,
bacteria developed complex metal-regulatory systems
to evade metal toxicity in hostile environments within
the host or outside (Brocklehurst et al. 1999; Busen-
lehner et al. 2003).

The human body needs many metals like iron,
copper, cobalt, zinc etc. for its survival. Most of them
are required in a very low concentration and problem
may arise if our body receives too much of them
(Guengerich 2015). Concentrations of different metals
in our body are essentially very low as compared to
their occurrence in the environment. For example, the
concentration of copper in the environment is about
50 mg/kg (Emsley 2003) but in the human body, it is
maintained at a much lower concentration of about
1.7 mg/kg body weight (Velisek 2013). Similarly, the
concentration of iron in the environment is nearly 700
fold more than what is found in the human body
(Velisek 2013). This metal balance is maintained by
homeostasis. A specific set of transporters present in
the cell compartments is involved in maintaining the
delicate balance of transport activities across the cell
membrane. Hemochromatosis, Pica, Wilson’s and
Menkes diseases are few examples which are associ-
ated with improper functioning of the homeostatic
mechanism (Nelson 1999). Entry of metals in the body
can also be regulated by the process of detoxication
(the mechanism of preventing entry of damaging
compounds in the body). Also, there are reports
showing microbial sequestering of heavy metals by
the intestinal microflora, which effectively reduce the
metal absorption in the human body (Monachese et al.
2012; Breton et al. 2013).

The metallothioneins, a group of low-molecular-
weight proteins, rich in sulthydryl groups, serve as
ligands for several essential and nonessential metals
are also involved in regulation of metal concentration
(Cherian and Goyer 1995). The expression of metal-
lothionin genes are initiated by binding of metal
transcription factor-1 (MTF-1) to the regulative region
of metallothionin gene called metal responsive ele-
ments (MREs) (Grzywacz et al. 2015). In mammals,
different types of metallothioneins are expressed and
some are also tissue-specific (Sakulsak 2012). Ferritin
is a storage protein for iron in reticuloendothelial cells



Biometals (2017) 30:459-503

493

of the liver, spleen, and bone. Transferrin is a
glycoprotein that binds most of the ferric ion in
plasma and plays a role in transporting iron (also
aluminium and manganese) across cell membranes
(Pillet et al. 2002). ArsR—-SmtB family member SmtB
from Synechococcus sp. regulates a class II metal-
lothionein protein SmtA involved in sequestering
excess metal ions inside the cell (Huckle et al. 1993).
Another member O. brevis BxmR represses bmtA
gene, which encodes a heavy metal sequestering
metallothionein (Liu et al. 2004).

In recent times, the number of infections associated
with conventional antibiotic-resistant microorganisms
have increased multifold (e.g., multidrug resistant S.
aureus) that fueled the search for new alternative anti-
microbials in absence of new potent antibiotics in the
market. Metal-nanoparticles, which use completely
different mechanisms of antibacterial activity than the
traditional antibiotics, provide a compelling alterna-
tive strategy to kill and restrict multidrug-resistant
bacteria (Wright et al. 1998; Kaneko et al. 2007;
Mikolay et al. 2010). Use of different types of metal-
nanoparticles (made up of Zn, Ag, Cu, Fe, Al, Au, Mg,
Ti, etc.), especially zinc and silver nanoparticles in
particular (Kim et al. 2007; Yoon et al. 2007; Reddy
et al. 2007; Padmavathy and Vijayaraghavan 2008;
Simon-Deckers et al. 2009; Jiang et al. 2009; Tran
et al. 2010), showed substantial reduction in both
gram-positive (e.g., B. subtilis, S. aureus, Enterococ-
cus faecium, B. megaterium, L. monocytogenes, etc.)
and gram-negative (e.g., E. coli, klebsiella pneumo-
niae, Salmonella typhi, V. cholerae, Pseudomonas
fluorescens, Salmonella enteritidis, S. typhimurium,
etc.) bacterial viability (Feng et al. 2000; Koper et al.
2002; Gu et al. 2003; Panacek et al. 2006; Gil-Tomas
et al. 2007; Jung et al. 2008; Nanda and Saravanan
2009; Perni 2009; Liu et al. 2009b; Jin et al. 2009;
Jiang et al. 2009). Metal nanoparticles also showed
substantial antiviral (Elechiguerra et al. 2005; Lu et al.
2008; Pinto et al. 2009; Di Gianvincenzo et al. 2010;
Lara et al. 2010) and antifungal activities (Kim et al.
2009; Gajbhiye et al. 2009). The mechanisms of
metal-toxicity mediated by metal-nanoparticles
mainly relies on the loss of protein function (Calderén
et al. 2009; Anjem and Imlay 2012; Xu and Imlay
2012), production of reactive oxygen species (Imlay
et al. 1988; Touati et al. 1995; Nunoshiba et al. 1999;
Banin et al. 2008; Warnes et al. 2012), impairment of
membrane function (Yaganza et al. 2004; Zhang and

Rock 2008; Hong et al. 2012), interfere with nutrient
uptake (Fauchon et al. 2002; Pereira et al. 2008), or
genotoxicity (Keyer and Imlay 1996; Linley et al.
2012).

On the other hand, the unsystematic widespread
release of heavy metals into the soil and waters is a
major health concern globally, as these cannot be
broken down to non-toxic forms and therefore have
long lasting effects on the ecosystem. Many of these
metals are toxic even at very low concentrations. These
are not only cytotoxic but also carcinogenic and
mutagenic in nature (Giller et al. 1998; Mclaughlin
et al. 1999; Yao et al. 2012). Toxic concentrations of
metals, otherwise essential for life, disrupt various
body functions and causes severe diseases like renal
dysfunction, liver cirrhosis, bone weakness, heart
failure, cerebral attack, memory loss, nephrosis, lung
damage, chronic anemia, gastrointestinal irritations,
vision loss, disability (Vinceti et al. 2001; Neustadt and
Pieczenik 2007; Duda-Chodak and Baszczyk 2008;
Ainza et al. 2010; Gulati et al. 2010), etc. Although,
some heavy metals are essential for microorganisms,
some microbes have, however adapted to tolerate high
concentrations of metals and use them for their growth.
The interactions between microorganisms and metal
ions have significant environmental implications espe-
cially in bioremediation. That is why bioremediation of
heavy metals by microorganisms has received a great
deal of interest in recent times because of its beneficial
and ecofriendly nature than any other conventional
methods. Heavy metal biotransformation done by
natural and genetically modified bacteria (e.g.,
E. coli, Methylococcus capsulatus, Pseudomonas sp.,
Ralstonia eutropha, Deinococcus radiodurans, Alcali-
genes eutrophus, Bacillus sp., Enterobacter cloacae,
Micrococcus sp., etc.) is found to be an effective
alternative and provides a promising approach for the
removal of a wide variety of ecotoxic heavy metals
(Diels et al. 1995; Wang et al. 1997; Valls et al. 2000;
Brim et al. 2000; Lopez et al. 2002; Ackerley et al.
2004; Zouboulis et al. 2004; Kostal et al. 2004; Iyer
et al. 2005; Kiyono and Pan-Hou 2006; Congeevaram
et al. 2007; Hasin et al. 2010).

Development of ecofriendly metal bioremediation
technology, or metal-nanoparticle based antibacterial
therapy are still in early stages of development and
better understanding of how bacteria sense metals in
various environments are important to develop further
technology. Bacterial metal sensors, such as ArsR—
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SmtB repressors, detect surplus metal ions and mod-
ulate transcription of genes involved in metal uptake,
efflux, sequestration, or detoxification (Tottey et al.
2005; Lucarelli et al. 2007). Several bacteria (e.g., M.
tuberculosis, etc.) harbor not only one but multiple
metal sensors in response to extracellular metal ions
(Cole et al. 1998). Having several sensory sites for a
range of diverse metals allows the pathogen to respond
quickly to host mediated metal flux and help them to
survive harsh environments. Understanding the mech-
anisms of how bacteria respond to various metals is of
prime importance as this knowledge would benefit us
in developing new and unconventional antibacterial
treatments and also create a pollution free environ-
ment for our future generations.
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