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Abstract In this study, the N,N,O metal chelator

2-pyridinecarboxaldehydeisonicotinoyl hydrazone (HPC

IH, 1) and its derivatives 2-acetylpyridine-(HAPIH 2),

2-pyridineformamide-(HPAmIH, 3) and pyrazinefor-

mamide-(HPzAmIH, 4) were employed in the synthesis

of four copper(II) complexes, [Cu(HPCIH)Cl2]�0.4H2O

(5), [Cu(HAPIH)Cl2]�1.25H2O (6), [Cu(HPAmIH)Cl2]�
H2O (7) and [Cu(HPzAmIH)Cl2]�1.25H2O (8). The

compounds were assayed for their action toward My-

cobacterium tuberculosisH37Rv ATCC 27294 strain and

the human tumor cell lines OVCAR-8 (ovarian cancer),

SF-295 (glioblastoma multiforme) and HCT-116 (colon

adenocarcinoma). All copper(II) complexes were more

effective in reducing growth of HCT-116 and SF-295 cells

than the respective free hydrazones at 5 lg/mL, whereas

only complex 7 was more cytotoxic toward OVCAR-8

lines than its ligand HPAmIH. 6 proved to be cytotoxic at

submicromolar doses, whose IC50 values (0.39–0.86 lM)

are similar to those ones found for doxorubicin

(0.23–0.43 lM). Complexes 5 and 6 displayed high

activity against M. tuberculosis (MIC = 0.85 and

1.58 lM, respectively), as compared with isoniazid

(MIC = 2.27 lM), which suggests the compounds are

attractive candidates as antitubercular drugs.
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Introduction

Isoniazid (INH) was first introduced in tuberculosis

therapy in the 1950s (Judge et al. 2012). Since then, it

is regarded as one of the most commonly used and

efficient drugs in treatment of human tuberculosis

(Bernardes-Génisson et al. 2013).

In spite of efforts to eradicate tuberculosis, its

burden remains substantial (Dheda et al. 2016). Over

one-third of the global population is infected by

tuberculosis, which causes death in approximately two

to three million people annually (WHO 2014). The

increased incidence of multidrug-resistant (Prozorov

et al. 2012), and more recently, extensively drug-

resistant (Sotgiu et al. 2009) strains of Mycobacterium

tuberculosis compromise the recurrent effective treat-

ment and evidences the urgency for novel antituber-

culosis agents (Hoagland et al. 2016).

Modification of existing drugs and the development

of novel active compounds have been some of the

strategies to improve tuberculosis drug therapy (Wong

et al. 2013; Ellis et al. 2014; Chaves et al. 2015). In this

sense, INH has become the most researched antitu-

bercular agent (Hearn et al. 2009). A range of isoniazid

analogues has been studied for its antitubercular

potential and a number of promising candidates has

been described (Oludina et al. 2014; Parumasivam

et al. 2013; Matei et al. 2013; Ramani et al. 2012;

Kumar et al. 2014).

Recently, Ellis and co-workers (2014) noticed that

the INH analogue 2-pyridinecarboxaldehyde isonicoti-

noyl hydrazone (HPCIH), an effective iron chelator,

displays potent inhibition of mycobacterial growth,

probably acting as a lipophilic vehicle for the transport

of the intact INH moiety into the mycobacterium. In

spite of its marked antimycobacterial action, it has been

shown HPCIH presents limited antiproliferative activity

against malignant SK-N-MC (neuroepithelioma)

(Becker and Richardson 1999). In our previous work,

we demonstrated the analogues 2-acetylpyridine-

(HAPIH), 2-benzoylpyridine-(HBPIH), 2-pyridinefor-

mamide-(HPAmIH) and 2-pyrazineformamide-(HPzA-

mIH) isonicotinoyl hydrazones in general exhibit better

growth-inhibiting properties towards MCF-7, OVCAR-

8 and SF-295 cells than HPCIH (Amim et al. 2016).

Metal complexes of substituted hydrazones have

been reported to hold therapeutic activity and have

shown pharmacological applications (Lessa et al.

2012, 2013; Raman et al. 2008; Chang et al. 2015).

It has been evidenced that the presence of an

a(N)heterocyclic ring at azomethine scaffold of

hydrazones plays a major role in extending their

chelating and/or pharmacological properties (Beraldo

and Gambino 2004).

Due to the effectiveness of HPCIH (Armstrong et al.

2003) and its analogues (Ababei et al. 2010; Chang

et al. 2015) as tridentate chelating agents for transition

metal ions, in this work we report the synthesis of four

copper(II) complexes (5–8) with HPCIH (1), HAPIH

(2), HPAmIH (3) and HPzAmIH (4) (Fig. 1). As part of

our interest in the development of copper(II) com-

plexes as antimycobacterial and anticancer agents,

compounds 5–8 were assayed for their action toward

Mycobacterium tuberculosis H37Rv ATCC 27294

strain and the human tumor cell lines OVCAR-8

(ovarian cancer), SF-295 (glioblastoma multiforme)

and HCT-116 (colon adenocarcinoma).

Materials and methods

Chemicals

Isoniazid, 2-pyridinecarboxaldehyde, 2-acetylpyridine,

2-pyridinecarbonitrile, pyrazinecarbonitrile and cop-

per(II) chloride dihydrate were purchased from Aldrich

and used without further purification.

Physical measurements

Partial elemental analyses were performed on a Perkin

Elmer CHN 2400 analyzer. Melting points were

determined on Gehaka-PF1500 Farma, a Capillary

Melting Point Apparatus. A CG 1800 Gehaka con-

ductivity bridge (conductimetric cell constant 1 cm-1)

was employed for molar conductivity measurements

of compound solutions (1 9 10-3 mol L-1) in

dimethylsulfoxide (DMSO). Infrared spectra were

recorded on an attenuated total reflectance/Fourier

transform infrared spectrometer (Varian FT-IR 660) in

the 4000–600 cm-1 range. Electronic spectra were

recorded on an Agilent Technologies 8453 spec-

trophotometer at room temperature, using a 10 mm

beam path quartz cuvette and DMSO as solvent.

Magnetic susceptibility measurements were carried

out at 298.5 �C on a Johnson Matthey MSB/AUTO

balance.
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Synthesis of the hydrazones (1–4) and their

copper(II) complexes (5–8)

Synthesis of HPCIH (1) (Armstrong et al. 2003), HAPIH

(2) (Ababei et al. 2010), HPAmIH (3) (Amim et al. 2016),

and HPzAmIH (4) (Glushkov et al. 2004) are described in

the literature. Copper(II) complexes5–8were obtained by

mixing, under reflux and stirring for 4 h, a methanol

solution (15 mL) of the desired hydrazone (1 mmol) with

CuCl2�2H2O in 1:1 ligand-to-metal molar ratio. The

resulting solids were filtered off, then washed with

methanol followed by diethylether and dried at 50 �C
for 24 h. Single crystals of [Cu(HAPIH)Cl]Cl�H2O (6a)

and [Cu(HPzAmIH)Cl2]�H2O (8a) were obtained from

mother solutions of 6 and 8, respectively.

Dichloro(2-pyridinecarboxaldehyde-isonicotinoyl

hydrazone)copper(II)] hydrate, [Cu(HPCIH)Cl2]�
0.4H2O (5)

Green solid. Anal. Calc. for C12H10.8Cl2CuN4O1.4

(FW = 367.89 g mol-1): C, 39.18; H, 2.96; N, 15.23.

Found: C, 39.50; H, 2.79; N, 14.76 %. IR (ATR, cm-1): m
(Npy

?-H) 2555, m (C = N) 1523, q(py) 644. Molar conduc-

tivity (1 9 10-3 mol L-1, DMSO) 46.0 X-1 cm2 mol-1.

Effectivemagneticmoment:1.91 MB.UV–vis(DMSO, k in

nm/e in mol-1dm2): 386/3.02 9 105, 752/521. Yield 42 %.

Dichloro(2-acetylpyridine-isonicotinoyl

hydrazone)copper(II) hidrate, [Cu(HAPIH)Cl2]�1.25
H2O (6)

Green solid. Anal. Calc. for C13H14.5Cl2N4O2.25Cu

(FW = 397.23 g mol-1): C, 39.31; H, 3.68; N,

14.10 %. Found: C, 39.47; H, 3.43; N, 13.82 %. IR

(ATR, cm-1): m (Npy
?-H) 2569, m (C = N) 1531, q(py)

645. Molar conductivity (1 9 10-3 mol L-1, DMSO):

33.4 X-1 cm2 mol-1. Effective magnetic moment:

1.85 MB. UV–vis (DMSO, k in nm/e in mol-1 dm2):

383/1.34 9 105; 743/136. Yield 77 %.

Dichloro(2-pyridineformamide-isonicotinoyl

hydrazone)copper(II) hidrate,

[Cu(HPAmIH)Cl2]�H2O (7)

Brown solid. Anal. Calc. for C12H13Cl2CuN5O2

(FW = 393.71 g mol-1): C, 36.61; H, 3.33; N,

17.79 %. Found: C, 36.65; H, 2.85; N, 17.33 %. IR

(ATR, cm-1): m (N–H) 3064, d(NH2) 1658, m (C = O),

1622 m(C = N) 1531, q(py) 646. Effective magnetic

moment: 1.89 MB. UV–vis (DMSO, k in nm/e in

mol-1dm2): 398/2.59 9 105; 754/229. Yield 87 %

Dichloro(pyrazineformamide-isonicotinoyl

hydrazone)copper(II), hidrate

[Cu(HPzAmIH)Cl2]�1.25 H2O (8)

Brown solid. Anal. Calc. for C11H12.25Cl2CuN6O2.25

(FW = 394.70 g mol-1): C, 33.09 %; H, 3.16 %; N,

21.05 %. Found: C, 33.27 %; H, 2.90 %; N, 20.66 %. IR

(ATR, cm-1): m(N–H) 3055, d(NH2) 1666, m(C = O)

1616, m(C = N) 1525, q(py) 654. Molar conductivity

(1 9 10-3 mol L-1 DMSO): 33.1 X-1 cm2 mol-1.

Effective magnetic moment: 1.91 MB. UV–vis (DMSO,

k in nm/e in mol-1dm2): 332/2.60 9 104,

425/6.36 9 104, 764/229. Yield 91 %.

Crystallography

Single-crystal X-ray diffraction methods were used to

determine the structures of [Cu(HAPIH)Cl]Cl�H2O

(6a) and [Cu(HPzAmIH)Cl2]�H2O (8a). Data were

Fig. 1 Structures of a(N) heterocyclic isoniazid-derived hydrazones HPCIH (1), HAPIH (2), (HPAmIH) (3) and HPzAmIH (4)
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collected at room temperature on a Bruker D8

VENTURE equipped with Mo Ka high-brilliance

IlS radiation (k = 0.71073 Å) and a PHOTON 100

CMOS detector. The instrument was controlled by the

APEX2 software package (Bruker 2014). Data were

processed using the integrate plug-in in the controlling

software package (SAINT) and corrected for absorp-

tion by the multiscan semi-empirical method imple-

mented in SADABS (Bruker 2014). Using Olex2

(Dolomanov et al. 2009) the structure was solved with

the SHELXS-97 (Sheldrick 2008) structure solution

program by means of Direct Methods and refined with

the SHELXL-2013 (Sheldrick 2008) refinement pack-

age using Least Squares minimization. Positional and

anisotropic atomic displacement parameters were

refined for all non-hydrogen atoms. Hydrogen atoms

were placed geometrically and the positional param-

eters were refined using a riding model.

In vitro biological activity assays

Cytotoxicity toward human tumor cell lines

The cytotoxic activity of compounds 1–8 was tested

against SF-295 (glioblastoma multiforme), HCT-116

(colon adenocarcinoma) and OVCAR-8 (ovarian

cancer), from National Cancer Institute (Bethesda,

MD, USA). The cells were maintained in RPMI 1640

medium supplemented with 10 % fetal bovine serum,

2 mM glutamine, 100 lg/mL penicillin, and 100 lg/

mL streptomycin at 37 �C/5 % CO2. Each compound

was previously dissolved in DMSO (stock solution),

whose final concentration in the RPMI culture medium

was kept below 0.1 % (v/v). For initial cytotoxic

activity evaluation, compounds 1–8 (5 lg/mL) were

incubated with SF-295, HCT-116 and OVCAR-8 cell

lines, for 72 h. Cell viability was determined by dye

reduction 3-(4,5-dimethyl-2-thiazole)-2,5-diphenyl-

2H-tetrazole bromide (MTT) assay to yield the

formazan, which is detected by electronic spec-

troscopy (Mosman 1983). Compounds that inhibited

the proliferation in more than 50 % were selected for

determination of the half maximal inhibitory concen-

tration (IC50). To this end, 5–0.009 lg mL-1 range for

compound concentration was used. All experiments

were performed in least three replicates per compound

and results are shown as the average and 95 %

confidence interval of three independent experiments.

Antitubercular activity

Antimycobacterial activities of compounds 1–8, as

well as isoniazid and copper(II) chloride, were

assessed against Mycobacterium tuberculosis H37Rv

ATCC 27294 using the Micro plate Alamar Blue

Assay (MABA) (Franzblau et al. 1998). This method-

ology is nontoxic, uses a thermally-stable reagent and

shows good correlation with proportional and BAC-

TEC radiometric methods (Tortoli et al. 2002; Kontos

et al. 2004). The method is described as follows:

200 ml of sterile deionized water was added to all

outer-perimeter wells of 96 sterile well plates (falcon,

3072: Becton–Dickinson, Lincoln Park, NJ) to min-

imize evaporation of the medium in the test wells

during incubation. The 96 plates received 100 mL of

the Middlebrook 7H9 broth (Difco laboratories,

Detroit, MI, USA) and successive dilution of the

compounds was performed directly on the plate. The

final drug concentrations tested were 0.01–20.0 mg/

mL. Plates were covered and sealed with parafilm and

incubated at 37�C for 5 days. Twenty five milliliter of

a freshly prepared 1:1 mixture of Alamar Blue

(Accumed International, WestlakeOhio) reagent and

10 % tween 80 were then added to the plate and

incubated for 24 h. A blue color in the well was

interpreted as no bacterial growth, and a pink color

was scored as growth. The minimal inhibition con-

centration (MIC) was defined as the lowest drug

concentration, which prevents a color change from

blue to pink.

Results and discussion

Formation of the copper(II) complexes

Microanalyses suggest the formation of [Cu(HPCIH)Cl2]�
0.4H2O (5), [Cu(HAPIH)Cl2]�1.25H2O (6), [Cu(HPA

mIH)Cl2]�H2O (7) and [Cu(HPzAmIH)Cl2]�1.25H2O (8).

For complexes 5 and 6, the hydrazones coordinate as

zwitterionic forms (based on infrared spectroscopy),

whereas neutral ligands are attached to the metal center

in 7 and 8. Molar conductivities of 5–8 weren’t

determined in commonly used solvents (Geary 1971)

due to its low solubility. Instead, molar conductivities

were measured in DMSO whose values suggest the

compounds behave as weak electrolytes in solution

(Zianna et al. 2016). This behavior is probably
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consequence of either the labile nature of chloro ligands or

metal coordinating feature of the solvent. At room

temperature, powdered samples of complexes display

effective magnetic moments (leff) in the 1.85–1.91 BM

range, which is higher than the spin-only value. Such

divergence, which is not quite uncommon in mononuclear

copper(II) complexes, is due to mixing-in of some orbital

angular momentum from the closely lying excited states

via spin–orbit coupling (Bhattacharyya et al. 1996).

Infrared spectra

Absorptions observed between 1545 and 1557 cm-1

assigned to the m(C = N) in the IR spectra of free

hydrazones (1–4) shift to 1523–1531 cm-1 in the

spectra of the copper(II) complexes (5–8), suggesting

coordination through azomethine nitrogen (Parrilha

et al. 2014). Absorptions attributed toq(py) observed at

613–665 cm-1 for 1–4 exhibit pronounced shift in

spectra of complexes 5–8 (644–654 cm-1), suggesting

the pyridine nitrogen coordination (Ferraz et al. 2013).

Bands attributed to m(N–H) of secondary amines are

absent in the spectra of 5 and 6. On the other hand, a

fairly strong and very broad absorption attributed to

the m(N?–H) stretching vibration of the pyridinium

group (Lessa et al. 2011) is observed around

2600 cm-1. Moreover, the m(C = O) absorptions at

1665–1677 cm-1 in the spectra of the uncomplexed

hydrazones disappear in those ones of complexes 5

and 6, in agreement with coordination of an enolate

oxygen (Mondal et al. 2013). Thus, for 5 and 6 the

hydrazones are attached to copper(II) as zwitterionic

species. Nonetheless, for complexes 7 and 8,

m(C = O) vibrations are present at 1616–1622 cm-1,

which are shifted in relation to the free hydrazones, in

accordance with coordination through a keto oxygen

(Mishra and Sharma 2009).

Electronic spectra

The electronic absorption spectra of hydrazones (1–4)

and their complexes (5–8) were recorded at room

temperature using DMSO as the solvent. The absorp-

tion spectra of the ligands are characterized by one

band and a sholder or by two bands in the 297–377 nm

region, which are assigned to n ? p* and p ? p*

transitions of azomethine and the carbonyl groups

(Cohen and Flavian 1967; Gegiou et al. 1996; Sorrell

1989). In the UV–vis spectra of 5–8 these absorptions

are shifted. Also, the complexes show a single broad

band centred in 743–764 nm, which is typical for d–d

transition of Jahn–Teller distorted copper(II) com-

plexes in square pyramidal geometries (Tabbı̀ et al.

2013).

Structural study of [Cu(HAPIH)Cl]Cl�H2O (6a)

and [Cu(HPzAmIH)Cl2]�H2O (8a)

Crystal data and structure refinement for 6a and 8a are

summarized in supplementary information (online

resource). Selected bond distances and angles for 6a

and 8a are shown in Table 1. Compounds 6a and 8a

crystallized in the triclinic and monoclinic systems,

respectively. ORTEP (Farrugia 1997) drawings (Figs. 2,

3) display the hydrazones tridentate to the metal ion

through NazoNaromO system for both complexes, giving

Table 1 Selected bond

lengths (Å) and angles (�)
for [Cu(HAPIH)Cl]Cl�H2O

(6a) and

[Cu(HPzAmIH)Cl2]�H2O

(8a)

6a 8a 6a 8a

Cu1-N1 2.0241(16) 2.0801(17) Cl1-Cu1-N1 99.28(5) 101.13(5)

Cu1-N2 1.9324(16) 1.9112(17) Cl1-Cu1-N2 165.17(5) 121.09(6)

Cu1-O1 1.9992(14) 2.0136(15) Cl1-Cu1-O1 100.19(4) 92.66(6)

Cu1-Cl1 2.2332(5) 2.4170(7) Cl1-Cu1-Cl2 – 103.97(2)

Cu1-Cl2 – 2.3106(7) Cl2-Cu1-N1 – 92.54(5)

C7-N2 1.289(2) 1.304(3) Cl2-Cu1-N2 – 134.91(6)

N2-N3 1.375(2) 1.385(2) Cl2-Cu1-O1 – 102.16(5)

N3-C8 1.320(2) 1.306(3) N1-Cu1-N2 79.67(7) 78.18(7)

C8-O1 1.280(2) 1.288(2) N1-Cu1-O1 158.90(6) 156.84(6)

N2–Cu1-O1 79.42(6) 78.76(6)

C2–C7–N2–N3 179.87(17) -179.59(16)

N2–N3–C8–O1 2.5(3) 1.3(3)

Biometals (2016) 29:953–963 957
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rise to two five-membered rings. Despite the similarities

in ligand structures, metal ions adopt different coordi-

nation numbers and geometries, that is, 6a shows a

distorted square planar geometry, in which one chloride

is attached to the metal center, whereas 8a is a

pentacoordinated compound, in which two chloride ions

complete its coordination. According to Addison and co-

workers (1984), for distorted pentacoordinate structures,

Fig. 2 ORTEP diagram for 6a (elipsoids at 50 % at probability)

Fig. 3 ORTEP diagram for 8a (elipsoids at 50 % at probability)

Table 2 Hydrogen bond distances (Å) and angles (�) for [Cu(HAPIH)Cl]Cl�H2O (6a) and [Cu(HPzAmIH)Cl2]�H2O (8a)

D—H���A D—H H���A D���A D—H���A

6a

N4—H4���Cl2 0.86 2.23 3.057(2) 163

O1 W—H1 WA���Cl2 0.85 2.42 3.203(3) 154

O1 W—H1 WB���Cl2a 0.85 2.56 3.341(3) 153

8a

N4—H4���O1 W 0.86 2.00 2.746(3) 145

N5—H5A���Cl2b 0.86 2.43 3.2575(18) 161

N5—H5B���Cl1c 0.86 2.49 3.2098(18) 142

O1W—H1WA���Cl2d 0.85 2.32 3.168(2) 174

O1W—H1WB���Cl1e 0.85 2.55 3.2828(19) 146

Symmetry code: a –x ? 2, -y, -z ? 2; b x ? 1/2, -y ? 1/2, z ? 1/2; c -x ? 1, -y, -z ? 1; d -x ? 1, -y ? 1, -z ? 1;
e -x ? 2, -y ? 1, -z ? 1

958 Biometals (2016) 29:953–963
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the parameter s (s = (b-a)/60�, where a and b are the

largest angles around the metal center) can be used to

rationalize its geometries. Value s is 0 for perfectly

square-pyramidal geometry and 1 for perfectly trigonal–

bipyramidal geometry. For 8a, s is 0.36, which suggests

it is likely a distorted square–pyramidal compound.

Hydrazone ligands are nearly planar whose rms

deviation of atoms from the least-squares plane is

0.0782 Å for 6a and 0.0588 Å for 8a. Metal ions lay

close onto this plane (at 0.0481(10) and 0.0715(10) Å

for 6a and 8a, respectively), as well as chlorine ligand

in 6a (0.638(2) Å).

The N3–C8 bond lengths 1.320(2) and 1.306(3) Å

found for hydrazones in 6a and 8a, respectively, is

shorter than the similar free hydrazone HBPIH

(1.3601 (1) Å) (Ababei et al. 2010). Furthermore,

C8–O1 bond is marked longer in 6a (1.280(2) Å) and

8a (1.288(2) Å) in comparison with HBPIH (1.2152

(1) Å). The C8–O1 bond is most likely to change from

a double to a predominantly single bond and N3–C8

acquires some double bond character when hydra-

zones are attached to copper(II) in the enolate form

(Despaigne et al. 2012; Mondal et al. 2013).

Besides, the enolate ligands are protonated at the

para-substituted pyridine nitrogen in both complexes,

indicating it is attached to the metal ion in the

zwitterionic form. Complex 8a is also protonated in

the powder, whereas zwitterionic form of 6a was

obtained only through the crystallization process.

The dihedral angles C2-C7-N2-N3 and

N2-N3-C8-O1 are 179.87(17) and 2.5(3), respec-

tively, for 6a as well as -179.59(16) and 1.8(3)

respectively for 8, which are in accordance with EZ

conformation adopted by the hydrazones when

attached to copper(II).

Interactions in crystal packing for 6a and 8a are

described in Table 2. The interaction between Cu1 and

Cl1(1-x, 2-y, 1-z) (2.6375(6) Å) is the main contact in

structure of compound 6a, which results in the

formation of a dimeric arrangement. Study of hydro-

gen bonds reveals a chain along the [1–2 1] direction.

For compound 8a, a three-dimensional hydrogen-

bonding network is observed connecting water

molecules and coordination compound (see supple-

mentary information).

bFig. 4 Growth inhibition (GI, %) of OVCAR-8, HCT-116 and

SF-295 cells promoted by 128, copper(II) chloride and

isoniazid (INH)
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Cytotoxicity against tumor cell lines

Figure 4 reports growth inhibition of the human tumor

cell lines OVCAR-8, SF-295 and HCT-116 induced by

compounds 1-4 (Amim et al. 2016) and its complexes

5–8. INH and copper chloride dihydrate were also

tested for comparison.

According to results, isoniazid proved to be poorly

effective against the three cell lines. Copper chloride,

in turn, reduced in 75 % the SF-295 cells growth,

whereas it presented moderate to low activity against

the other cell lines.

All copper(II) complexes were more effective in

reducing growth of HCT-116 and SF-295 cells than

the respective free hydrazones. Coordination led to

significant higher cytotoxity of 7 to OVCAR-8 cells

than hydrazone 3. 2 as well as its complex 6 also

strongly inhibited OVCAR-8 cells growth. It is

noteworthy that complexes 6 and 7 were able to

inhibit the growth of all cell lines in more than 90 %.

The most potent compounds HAPIH (2),

[Cu(HAPIH)Cl2]�1.25H2O (6) and [Cu(HPAmIH)

Cl2]�H2O (7) were selected to determine the concen-

tration which inhibits 50 % of cell growth (IC50)

(Table 3). Complex 6 was found to be the most active

compound against all strains, whose activity is supe-

rior to the free hydrazone 2. Besides, 6 is as potent as

the anticancer drug doxorubicin. Thus, coordination of

2 to copper(II) was an efficient approach to obtain

compound with improved action against tumor SF-

295, OVCAR-8 and HCT-116 cell lines.

Antimycobacterial activity

Determined values of minimum inhibitory concentra-

tions (MIC) of hydrazones 124, their complexes 5–8,

INH and copper(II) chloride salt against Mycobac-

terium tuberculosis H37Rv (ATCC 27294) are listed in

Table 4.

Selected hydrazones display different behavior

toward M. tuberculosis. HPCIH (1) shows moderate

activity, whereas substitution of hydrogen at imine

carbon by a methyl group in HAPIH (2) increases the

antimycobacterial potency. HAPIH (MIC = 2.60 lM)

is as effective as the reference antitubercular drug INH

(MIC = 2.27 lM) in inhibit M. tuberculosis. Nonethe-

less, the presence of formamide in HPAmIH (3) as well

as pyrazine substituent in HPzAmIH (4) leads to

moderate and lost of action, respectively. In general,

coordination of hydrazones to copper(II) promotes

reduction in MIC values. [Cu(HPCIH)Cl2]�0.4H2O (5),

for example, exhibited sub-micromolar MIC value

(0.85 lM) and was around 15-fold more effective than

HPCIH (1) (13.79 lM) in inhibit growth of M.

Table 3 Cytotoxic activity (IC50) against SF-295, OVCAR-8 and HCT-116 cell lines of 2, 6 and 7 in comparison with doxorubicin

Compound IC50 (lmol L-1)

HCT-116 OVCAR-8 SF-295

HAPIH (2) 0.8216 (0.6621–1.0193) 0.7800 (0.7246–0.8828) 1.4413 (1.1317–1.8350)

[Cu(HAPIH)Cl2]�1.25 H2O(6) 0.3886 (0.3568–0.4232) 0.4843 (0.4123–0.5689) 0.8552 (0.6678–1.0952)

[Cu(HPAmIH)Cl2]�H2O(7) 9.3466 (7.7880–10.3337) 8.8617 (6.8652–11.4396) 7.9513 (7.0137–90102)

Doxorubicin 0.230 (0.165–0.313) 0.488 (0.313–0.561) 0.423 (0.350–0.460)

Data are expressed as IC50 values and 95 % confidence interval, obtained by non-linear regression from three independent

experiments performed in triplicate. Doxorubicin was used as control

Table 4 Minimal inhibitory concentration of 128, copper(II)

chloride and isoniazid (INH) against M. tuberculosis H37Rv

(ATCC 27294)

Compound MIC (lmol L-1)

HPCIH(1) 13.79

[Cu(HPCIH)Cl2]�0.4H2O(5) 0.85

HAPIH(2) 2.60

[Cu(HAPIH)Cl2]�1.25H2O(6) 1.58

HPAmIH(3) 51.81

[Cu(HPAmIH)Cl2]�H2O(7) 63.50

HPzAmIH(4) [412.81

[Cu(HPzAmIH)Cl2]�1.25H2O(8) 126.7

INH 2.27

CuCl2�2H2O 146.6

960 Biometals (2016) 29:953–963
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tuberculosis. Complexes 5 and [Cu(HAPIH)Cl2]�
1.25H2O (6) displayed high activity against M. tuber-

culosis, as compared with isoniazid, which suggests the

compounds are attractive candidates as antitubercular

drugs.

Conclusion

In this work, copper(II) complexes 5–8 were evaluated

toward three tumor cell lines (OVCAR-8, SF-295 and

HCT-116). In most cases, chelation with metals gave

rise to enhancement of the ligands activity against the

tested cells. 6 and 7 were appointed as lead cytotoxic

complexes. Additionally, 6 has proved to be as

effective as the anticancer drug doxorubicin. Further

work will be needed to understand the mechanism

whereby the complex disturbs cellular proliferation.

Upon coordination to copper(II), activity against

Mycobacterium tuberculosis H37Rv growth signifi-

cantly improved except for 7. Copper(II) chloride is

poorly effective, suggesting the action is probably due

to the complex per se. Coordination of HPCIH (1) to

copper(II) was an efficient strategy to produce a

compound (5) with improved antimycobacterial

action. Complex 5 was also more active than isoniazid,

suggesting it is a promising compound, which should

be considered for further studies aiming to confirm its

potential as novel antitubercular drug candidate.
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