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Abstract Siderophores are iron-chelating molecules

produced by microbes when intracellular iron con-

centrations are low. Low iron triggers a cascade of

gene activation, allowing the cell to survive due to the

synthesis of important proteins involved in side-

rophore synthesis and transport. Generally, side-

rophores are classified by their functional groups as

catecholates, hydroxamates and hydroxycarboxylates.

Although other chemical structural modifications and

functional groups can be found. The functional groups

participate in the iron-chelating process when the

ferri-siderophore complex is formed. Classified as

acidophiles, alkaliphiles, halophiles, thermophiles,

psychrophiles, piezophiles, extremophiles have par-

ticular iron requirements depending on the environ-

mental conditions in where they grow. Most of the

work done in siderophore production by extremo-

philes is based in siderophore concentration and/or

genomic studies determining the presence of side-

rophore synthesis and transport genes. Siderophores

produced by extremophiles are not well known and

more work needs to be done to elucidate chemical

structures and their role in microorganism survival and

metal cycling in extreme environments.

Keywords Iron acquisition � Siderophores �
Siderophore synthesis and transport � Extremophiles

Introduction

Almost all microorganisms require iron for their

cellular processes. Iron is involved in several pivotal

cellular processes, including amino acid synthesis,

oxygen transport, respiration, nitrogen fixation,

methanogenesis, the citric acid cycle, photosynthesis

and DNA biosynthesis. Iron concentrations in the

extracellular environment are low (10-18 M) and

limited by the insolubility of Fe (OH)3. Microorgan-

isms require micromolar concentrations of iron, but

many environments, such surface ocean water, has

concentrations ranging from 0.01 to 2 nM (Luther and

Wu 1997). Iron can be present in its ferric (Fe?3) or

ferrous (Fe?2) forms. The redox potential of the latter

is suitable as a protein catalytic center (Krewulak and

Vogel 2008). For pathogenic microorganisms, iron
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availability is even lower due to mammalian host

proteins (heme, lactoferrin, transferrin and ferritin)

that sequester iron from the plasma (Krewulak and

Vogel 2008). In overcome the scarcity of iron, many

organisms have developed different mechanisms for

iron capture: siderophores, hemophores, ferric binding

proteins and transferrin/lactoferrin receptors (Sandy

and Butler 2009). These molecules and proteins work

together to increase the iron acquisition capabilities of

the microbial cell. Siderophores are small molecules

of approximately 500–1200 Da in size which specif-

ically bind ferric iron with high affinity, are excreted

into the environment, thus increasing the bioavailabil-

ity of this otherwise insoluble nutrient.

The production of siderophores by disease causing

microbes and many terrestrial microorganisms is well

studied. The prevalence of siderophore production

within extreme environments or bymicrobes classified

as ‘‘extremophiles’’ is less so. This review will briefly

summarize iron acquisition and siderophores pro-

duced by both terrestrial and pathogenic microbes. A

discussion of the siderophores synthesized by extre-

mophiles (acidophiles, alkaliphiles, thermo/hyperther-

mophiles, psychrophiles, piezophiles etc.) or

siderophores produced by microbes tolerant of

extreme conditions (pH, salinity, temperature, pres-

sure) will follow.

Acquisition and transport of ferric iron

siderophore-mediated iron acquisition

The active transport of ferric iron across the cell

(Fig. 1; Crosa et al. 2004), is due to the use of porins

for the high molecular weight ferric-siderophore

complex, and requires different transport proteins

and receptors. Outer membrane receptors are respon-

sible for of recognizing iron-bound siderophores

outside the cell, and include FhuA, FecA and FepA

found in Escherichia coli (Ferguson et al.

1998, 2000, 2002, 2001; Yue et al. 2003), and BtuB,

FpvA and FptA found in Pseudomonas aeruginosa

(Cobessi et al. 2005a, b; Cornelis et al. 2009). Their

structure is composed of b-barrel and cork domains,

(Krewulak and Vogel 2008) the former of which spans

the membrane and helps to form a hollow space where

the iron-sidrophore complex passes through to the

periplasm, while the cork domain binds the iron-

siderophore complex and brings it into the b-barrel.

The outer membrane of gram-negative cells does

not have a proton motive force that will provide the

energy required for active transport, so that role is

performed by the TonB, ExbB and ExbD proteins. The

amino- and carboxy-terminal domains provide the

energy required to transport ferri-siderophores across

the outer membrane. The remaining proteins, ExbB

and ExbD, assist TonB in energy transduction.

In the periplasm there are periplasmic siderophore

binding proteins (PSBP) to transport ferric siderophores

across thecytoplasmicmembrane.Theword siderophore

is included in this term because there are about eight

different clusters of periplasmic binding proteins (Crosa

et al. 2004; Krewulak and Vogel 2008) that bind

oligosaccharides, sugars, phosphate, amino acids (polar

and non-polar), organic polyanions, peptides, iron com-

plexes and other metals. FhuD, FbpA and BtuF are the

most studied PSBPs and are associated with iron uptake

metabolism and transport. Specific group-coordinating

PSBPs will shuttle their corresponding siderophore

through the periplasm until the PSBP-siderophore-iron

complex reaches transporters on the cytoplasm.

The transporters are a class of ATP-binding cas-

settes (ABC transporter proteins). The best example

known today is the FhuBDC. The complex couples

ATP hydrolysis to transport the iron-siderophore

through the cytoplasmicmembrane into the cytoplasm.

FhuD is the PSBP for hydroxamate siderophores, and

well-studied due to its complete structure elucidation.

FhuB and FhuC are ABC transporter proteins. Due to

their transmembrane domains, FhuBC form channels

where the siderophore-iron complex passes through. It

also has two nucleotide binding domains that hydro-

lyze ATP. In brief, FhuD transfers the siderophore-iron

complex to FhuB, the complex is translocated to the

channel; in the meantime FhuC hydrolyses ATP.

Finally the siderophore-iron complex is dissociated

by an electron transfer to ferric iron (Fe?3), converting

it to ferrous iron (Fe?2).

Ferrous iron uptake

Themechanism of ferrous iron intake, contrary to ferric

iron acquisition, is not well understood. Ferrous iron

solubility is higher at neutral pH compared to ferric iron

and this facilitates transport across the membrane.

Ferrous iron concentration is higher under anaerobic or

reducing conditions. Two different systems for ferrous
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iron uptake have been described: Feo and Sit (Carpenter

and Payne 2014; Hantke 1987;Weaver et al. 2013). The

Feo and Sit operon systems, co-repressed by Fur and

iron (II), code for membrane-bound and cytoplasmic

proteins that participate in the active transport of ferrous

iron. Both ferrous uptake systems described are required

for pathogenicity (Boyer et al. 2002; Fisher et al. 2009;

Tsolis et al. 1996).

Regulatory characteristics of siderophore

production

Fur-mediated regulation of siderophore production

Bacteria utilize siderophores to obtain the ironnecessary

for their survival. However, iron is toxic and must be

tightly regulated within the cell. The most studied iron

regulation system is fur (for ferric uptake regulation)

(Hantke 2004; Lorenzo et al. 2004). Figure 2 presents a

general description of the regulatory system at high and

low iron concentration, inducing transcription of side-

rophore synthesis proteins and transportation into the

extracellular space for iron scavenging. At high iron

concentrations, the Fur protein undergoes conforma-

tional changes, attaches to the fur box to hinder the

transcription of siderophore genes. At low iron concen-

trations, no iron (II) is bounded to the Fur protein,

allowing the transcription of siderophore-related genes.

Siderophore regulation by quorum sensing

In addition to iron-dependent regulation, some bacteria

regulate siderophore production by means of quorum

sensing. Quorum sensing occurs in a cell density-

dependentmanner and helps regulate different functions

Fig. 1 Iron acquisition in a gram-negative bacterial cell. OM

outer membrane, CM cytoplasmic membrane, PSBP periplas-

mic siderophore binding protein, PBP periplasmic binding

protein. ABC transporter includes proteins ExbB and ExbD and

help in ATP hydrolysis to obtain energy for active transport.

Adapted from Krewulak and Vogel (2008)
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in the cell, triggering the corresponding phenotype

response.Different physiological conditions are affected

by quorum sensing, including: biofilm formation (Chris-

tiaen et al. 2014; Kadirvel et al. 2014), swarming

motility (Vasavi et al. 2014), bioluminescence (Packi-

avathy et al. 2013), antibiotic production and resistance

(Fineran et al. 2005), production of pharmaceuticals

(Raina et al. 2012) and toxins (Tal-Gan et al. 2013).

Due to some contradictory findings, it is unclear how

quorum sensing regulates siderophore synthesis, there-

fore more research efforts need to address this lack of

information. Siderophore production is significantly

impacted byquorum sensing in some bacteria, especially

pathogens. Stintzi et al. (1998) described that lasR

mutants were affected in siderophore production, specif-

ically pyoverdine in P. aeruginosa. Another siderophore

produced by P. aeruginosa is pyochelin and it was not

affected by the deficiency in the autoinducer production.

In contrast, Burkholderia cepacia quorum sensing

mutants tend to overproduce the siderophore ornibactin

(Lewenza et al. 1999). Complementation restored side-

rophore production to original levels.

Siderophore coordination groups

Siderophore classification is based on certain func-

tional groups that are involved in ferric iron coordi-

nation. Those groups include catechols, as in

enterobactins; hydroxamates, as in desferrioxamines;

and a-hydroxycarboxilates, as in achromobactins

(Fig. 3). These functional groups are donors of three

OO’ in order that six oxygen atoms coordinate the

ferric iron. Mixed functional group siderophores, such

as the siderophore aerobactin which contains two

hydroxamates and one hydroxycarboxilic acid group,

are also observed. A quintessential representative of a

catecholate siderophore is enterobactin (Fig. 4) and is

produced by E. coli and other enteric pathogens

(Gehring et al. 1997). Salmochelin is a glucosylated

form of enterobactin produced by Salmonella enterica

and uropathogenic E. coli (Bister et al. 2004).

The best known example of hydroxamate side-

rophores are the ferrioxamines (so-called desferriox-

amines when no ferric iron is coordinated). Their

structural composition is alternating units of succinic

Fig. 2 Siderophore-

mediated iron acquisition

system regulated by the Fur

protein. Adapted from Crosa

et al. (2004)

Fig. 3 Siderophore functional groups: catechols (a), hydroxa-
mates (b) and a-hydroxycarboxylates (c). Note the OO0 groups
provided by the hydroxyl and carbonyl moieties. Adapted from

Krewulak and Vogel (2008)
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acid and monohydroxylated diamine, either N-hy-

droxycadaverine or N-hydroxyputrescine. Some des-

ferrioxamines are in cyclic form, such as

desferrioxamine E (Fig. 4) (Ejje et al. 2013;

Konetschny-Rapp et al. 1992), while others are linear,

such as desferrioxamines B (Fig. 4) (Ejje et al. 2013;

Martinez et al. 2001) and G (Bergeron et al. 1992; Ejje

et al. 2013). More recently, di- and tri-hydroxamic

acid siderophores (putrebactins, scabichelins and

turgichelins) have been characterized from She-

wanella putrefaciens, Streptomyces antibioticus,

Streptomyces scabies and Streptomyces turgidiscabies

(Kodani et al. 2013; Soe and Codd 2014).

Achromobactin is produced by Pseudomonas

syringae pv. syringae (Berti and Thomas 2009) and

is a tris-a-hydroxycarboxylate siderophore (Fig. 4). A
second siderophore that falls in this group is vibrio-

ferrin (Fig. 4), categorized as a bis-a-hydroxycarbox-
ilic siderophore (Amin et al. 2009; Harris et al. 2007).

Some siderophores use only citrate to coordinate ferric

iron (Fig. 4). Rhizoferrin’s two coordinating groups

are donated from two citrates as well as those from

staphyloferrin A (Fig. 4) (Cotton et al. 2009; Drechsel

et al. 1991; Harris et al. 2007; Meiwes et al. 1990).

There are many siderophores that contain mixed

coordinating functional groups. This group of side-

rophores is composed by bidentate ligand and also

amphiphilic siderophores. Examples are aerobactins,

amphibactins, ochrobactins, marinobactins, aquache-

lins, lystabactins, rhodobactins and amychelins among

others (Fig. 5; Dhungana et al. 2007; Neilands 1995;

Seyedsayamdost et al. 2011; Zane and Butler 2013).

Siderophores produced by extremophiles

Microorganisms living in extreme environmental con-

ditions (high acidities, alkalinities, temperatures, or

barometric pressures; the ability to grow in organic

solvents; or low temperatures) are known as

Fig. 4 Enterobactin (catechol, a), desferrioxamine E (cyclic

hydroxamate, b), achromobactin (hydroxycarboxylate, c),
vibrioferrin (hydroxycarboxylate, d), citrate (e),

desferrioxamine B (linear, hydroxamate, f) and staphyloferrin

A (hydroxycarboxylate, g) structures. Adapted from Sandy and

Butler (2009)
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extremophiles. It is important to make the distinction

between tolerant and extremophile microorganisms.

Certainmicrobes isolated in non-extreme environments,

can grow in specific extreme conditions [like high

pressure, (Olsson-Francis et al. 2010) or high temper-

ature and in the presence of organic solvents (Tang et al.

2009)], however surpassing their tolerance level could

cause death of the microbe (Huidrom et al. 2011).

Microorganisms classified as acidophiles (living at

pH\ 4), alkaliphiles (pH[ 8), thermophiles (from

about 40 to 110 �C), piezophiles (high barometric

pressures) and psychrophiles (-20–10 �C) depending
on their extreme environment. Although these phys-

iological classifications exist, it is important to note

that a species could have two or more physiological

requirements (for example: halophile and ther-

mophile, alkaliphile and halophile, or piezophile and

psychrophile). Extremophiles possess the required

cellular machinery to survive such conditions (Calo

et al. 2010; Doukyu and Ogino 2010; Eichler 2003;

Georlette et al. 2003; Jarrell et al. 2011; Kogej et al.

2006; Scandurra et al. 1998).

Scarce information is available for siderophore-

mediated iron acquisition in extremophiles (Ye et al.

2004) but some physiological groups (halophiles and

thermophiles) have more available structural infor-

mation than others (alkaliphiles, acidophiles, piezo-

philes and psychrophiles). Microbial Fe(III) reduction

has been described in diverse conditions, including

acidic (Kusel et al. 1999), alkaliphilic (McMillan et al.

2010; Ye et al. 2004), thermophilic (Liu et al. 1997;

Zhang et al. 2013; Zhou et al. 2001), psychrophilic

(Zhang et al. 1999) and halophilic (Emmerich et al.

2012; Handley and Lloyd 2013) environments.

Depending on the metabolic requirements and envi-

ronmental conditions, ferric iron could be an essential

micronutrient (although in extreme acidic conditions

ferrous, and not ferric, iron is available).

Siderophores produced by acidophiles

Iron bioavailability in acidic environments is high

when comparing to neutral pH environments. At such

environmental situations soluble ferric iron is at a

Fig. 5 Some mixed functional groups siderophores: lystabactins (a–c), aerobactin (d), rhodobactin (e) and amychelin (f). Adapted
from Sandy and Butler (2009), Seyedsayamdost et al. (2011) and Dhungana et al. (2007)
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concentration of 0.1 M (at pH 2) (Quatrini et al. 2007).

In neutrophilic environments the ferric iron bioavail-

able concentration is at 10-18 M. Ferrous iron pre-

dominates in acidic conditions presenting risk for

cellular toxicity due to the production of radicals.

Therefore, acidic environments present two main

challenges to microorganisms living in such condi-

tions: (1) cellular iron homeostasis needs to be

maintained to avoid toxic levels and (2) iron utilized

as energy source and an important micronutrient for

optimal cellular metabolic functions (Quatrini et al.

2007) regulated.

Microbial iron oxidation for the production of

cellular energy tend to occurs frequently in acidic

environments and several studies described the dif-

ferent mechanisms of iron acquisition and manage-

ment of selected acidophiles (Bonnefoy and Holmes

2012). Osorio et al. took a bioinformatics approach for

the study of iron transport proteins in three acidithio-

bacilli (Osorio et al. 2008). It was found that

Acidithiobacillus ferrooxidans, Acidithiobacillus

thiooxidans and Acidithiobacillus caldus possess the

corresponding genetic information to oxidize ferrous

iron. The A. ferrooxidans Fur box regulator was

studied by another group of scientists and it was

determined to have the ability to complement Dfur
E.coli (Quatrini et al. 2005). Other bioinformatic

studies present valuable information regarding iron

homeostasis in Ferroplasma acidarmanus (Potrykus

et al. 2011). Genes responsible for iron metabolism

were up-regulated when F. acidarmanuswas grown in

iron poor conditions.

There is some genomic computational analysis

information available on siderophore-mediated iron

acquisition (Osorio et al. 2008; Potrykus et al. 2011).

A. ferrooxidans and A. thiooxidans have the genetic

capability for citrate (a siderophore) production, a

citrate efflux pump and a TonB-dependent Fe(III)-

dicitrate transport systems (Osorio et al. 2008).

Potrykus et al. (2011) determined that F. acidarmanus

carries a gene for siderophore synthesis and internal-

ization (ZP_05571308 and ZP_05571695, respec-

tively). However, the type of siderophore produced

by F. acidarmanus was not determined, leaving an

open question regarding the structure of the side-

rophore produced.

Phylogenetic and diversity studies have been per-

formed on acidic soil environments due to plant

growth-promotion capabilities of secondary

metabolite production of rhizobia. The studies focused

on siderophore production and other growth-promot-

ing metabolites produced by acidophilic rhizobacteria

like Bacillus, but no structural characterization of the

siderophore was performed (Yadav et al. 2011). In that

study, researchers found that most of the isolates

produced siderophores (31 out of 49 isolates). Similar

results were obtained by studies done by Karagoz et al.

(2012). The isolates were related to Pseudomonas

putida (7), P. fluorescens (2), Rhizobium radiobacter

(1), P. syringae (1) and Bacillus atrophaeus (1). An

earlier report by Verma et al. measured siderophore

production activity in acidic soil isolates related to P.

fluorescens (Verma et al. 2007). No structural studies

were carried on in order to characterize the

siderophore(s) produced by the isolates, but it is likely

that pyoverdine (produced by Pseudomonas species)

is a candidate (Kalinowski et al. 2006).

Siderophores produced by alkaliphiles

Alkaliphilic microorganisms are capable of growth

and reproduction at high pH environments, typically

[8. At such environmental conditions, iron exists in

its ferric form (Fe?3), reacting with oxygen to

produce Fe (OH)3 and reducing its bioavailability.

Alkaliphiles must overcome this physiological prob-

lem to survive, making siderophore-mediated iron

acquisition a critical physiological step (McMillan

et al. 2010; Sarethy et al. 2011). Several studies

have examined alkaliphiles isolated from different

environments that foster lower solubility and

bioavailability to determine their physiological

requirements (carbon and energy sources) and their

possible utilization of certain metals (Blum et al.

1998; Luque-Almagro et al. 2005a, b; Wood and

Kelly 1991; Ye et al. 2004).

Iron uptake by complexation with chelators has

been studied previously in alkaline, anaerobic condi-

tions (Ye et al. 2004). Additional strategies selected

alkaliphiles use to obtain iron employ the interaction

with cyanide (Luque-Almagro et al. 2005a, b, 2011).

In these reports, researchers described the physiolog-

ical characteristics of Pseudomonas pseudoalcalige-

nesCECT5344, especially its biodegradation potential

by the bacterial utilization of ferrocyanide. The

microorganism was able to synthesize siderophores

but no chemical characterizations were performed.

Other microorganisms, like Streptomyces, produce
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respiratory inhibitors with iron-chelating properties

(Pick 2004). It was demonstrated in the report that the

iron-bound antimycin A was utilized by the halotol-

erant alga, Dunaniella salina, as a possible iron-

acquisition pathway. Although researchers do not

classify antimycin A as a siderophore, its chemical

structure resembles that of enterobactin (Fig. 6).

These reports demonstrate the capacity of microor-

ganisms to utilize xenosiderophores, or siderophores

produced by other microorganisms. In another study

by Gascoyne and co-workers, bacterial isolates were

obtained from different sample types including chalk

soils, cement work wastes, alkaline soils and soda

lakes (Gascoyne et al. 1991a, b). Researchers demon-

strated that isolates were capable of obtaining iron and

gallium by a siderophore-mediated mechanisms.

Assay-mediated structural characterization (Arnow

and Atkin assays) confirmed hydroxamic and cate-

cholic acids type siderophores.

The studies presented here demonstrate the capa-

bilities of alkaliphiles to thrive in low iron concentra-

tions and their evolutionary responses to such

environmental conditions that help them in their

survival. However information regarding specific

siderophore structures is scarce since most of the

studies only determine siderophore presence via the

chrome azurol sulfonate (CAS) assay. Future investi-

gations of siderophores isolation and microbial

ecology organisms in alkaline pH environments

should focus not only on siderophore detection, but

characterization, to better understand the specific

mechanisms of iron uptake.

Siderophores produced at high-temperatures:

thermophiles

High-temperature environments are widely spread on

Earth, from thermal hot springs in Yellowstone

National Park (Beam et al. 2014; Kozubal et al.

2013; Wu et al. 2013a) and Mexico (Brito et al. 2014),

to deep-sea vents (Kaye et al. 2011; Pettit 2011), mines

(Gounder et al. 2011) and volcanoes (Amaresan et al.

2014; Connell et al. 2009). A diverse population of

organisms are found, representing the three branches

of the tree of life: eukaryotes (Connell et al. 2009),

archaea (Beam et al. 2014; Hedlund et al. 2013;

Kozubal et al. 2013) and bacteria (Kaye et al. 2011;

Temirov et al. 2003). New organisms and even phyla

are being discovered, and their physiological charac-

teristics determined, in such environmental conditions

(Beam et al. 2014; Kozubal et al. 2013). For example,

one possible mechanism for iron reduction in high-

temperature is explained by methanogenic bacteria. In

brief, ferric iron reduction decrease the reduction

potential of the system allowing methanogenesis

(which in return helps the methanogen to grow and

Fig. 6 Enterobactin and antimycin A chemical structures
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in turn enhance ferric iron reduction) (Zhang et al.

2013).

Thermophiles are producers of a plethora of

secondary metabolites like siderophores that could

be key players for drug developments including

antibiotics, antifungals, antibacterials and anticancer

drugs (Pettit 2011), but little information about

siderophore production and structural characterization

is available (Temirov et al. 2003). Iron transport

systems have been characterized in few thermophilic

bacteria (Guerry et al. 1997). In some cases side-

rophore production assays are performed to charac-

terize the isolates obtained, but no structural

elucidation is attained (Sudek et al. 2009). The more

common, siderophore-producing species present were

Pseudomonas and Pseudoalteromonas, representing

more than half of isolated microorganisms (41 and

26 %, respectively). The microorganisms withstood

fluid temperatures up to 81 �C in basalt rock and iron

mat samples in situ. Further in vitro studies of

siderophore and metal chelation from volcanic rocks

revealed the transfer of the iron and other metals from

the rock matrix to the aqueous phase of glacial

meltwater, increasing iron bioavailability (Bau et al.

2013). Therefore, it is not surprise to find metal

oxidizing bacteria with siderophore-producing bacte-

ria, creating a community where mutualism is the key

for survival.

To the best of our knowledge, there are three reports

that present the structural characterization of side-

rophores produced by thermophilic species. Machuca

and co-workers purified and partially characterized a

low-molecular mass component (530 Da) from the

fungus Thermoascus aurantiacus grown at 48 �C and

low-pH conditions (Machuca et al. 1999). X-ray

fluorescence determined the presence of iron, calcium

and magnesium in the purified metabolite samples,

indicating potential metal chelation (main character-

istic of siderophores). The following study investi-

gated the siderophore production of the

thermoresistant bacterium B. licheniformis VK21

(Temirov et al. 2003). The purified compound, SVK21
(Fig. 7), was analyzed with NMR spectroscopy and its

structure was determined to be 2,3-dihydroxybenzoyl-

glycyl-threonine, which after comparison with bacil-

libactin, it was suggested to be a fragment of the latter.

The final study elucidated the structure and

Fig. 7 SVK21 siderophore produced by B. licheniformis VK21

Fig. 8 Fuscachelins

produced by the thermophile

T. fusca
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biosynthesis of fuscachelins (Fig. 8), produced by the

moderate thermophile Thermobifida fusca, (Dimise

et al. 2008). These few studies show that there is still

more to investigate to unveil the relationship between

secondary metabolites and important biogeochemical

processes.

Siderophores produced by psychrophilic

microorganisms

Low-temperature environments represent one of the

most hostile living conditions. For some time they

were thought to be inhabitable (Horowitz et al. 1972).

An example of such extreme environmental condi-

tions (average temperature of -22 �C and winter

temperatures as low as -60 �C) is the McMurdo Dry

Valleys in Antarctica (Friedmann et al. 1987; Fried-

mann and Ocampo 1976; Siebert et al. 1996). In spite

of the hostile conditions, living organisms’ presence

was confirmed and it was demonstrated that they

thrived in those environments (Friedmann and

Ocampo 1976). Even the production of siderophores

was described in such environment (Siebert et al.

1996) suggesting the presence of iron acquisition

systems. Iron acquisition studies have been done on

psychrophilic microorganisms (e.g., Oleispira antarc-

tica) based on genome sequencing (Kube et al. 2013).

Siderophore biosynthesis genes were also described in

the microorganism and the genes were expressed

during iron-limiting conditions. No structural charac-

terization of the particular siderophore was done.

Bioprospecting studies have been done in low-

temperature environments with the aim of isolating

plant growth-promoting bacteria (Balcazar et al. 2015;

Yadav et al. 2015a). In those studies siderophore

production experiments were performed but no struc-

tural characterizations were done. Since isolates were

related to Pseudomonas sp., and other species mem-

bers of siderophore-producing phyla (Actinobacteria,

Firmicutes, b-Proteobacteria and c-Proteobacteria),
this suggest that these microorganisms could produce

pyoverdines, pyochelins, bacillibactins, yersini-

abactins and aerobactins.

Another study presented the results for diversity

and functional annotation of psychrotrophic bacteria

(Yadav et al. 2015b). The samples were obtained from

soil and water from a cold desert and generated 325

bacterial isolates. Siderophore producers were identi-

fied by the typical CAS assay revealing 29 strains. As

in previous reports discussed here, no structural

characterizations were made. However, siderophore

producers were related to Bacillus, Sanguibacter,

Arthrobacter and other species for which siderophore

structures are known (e.g., bacillibactin, sanguibactin,

pyoverdine and pyochelin).

Studies of single species siderophore production

are found in literature. One report characterized a

bacterium, Pseudomonas sp. PGERs17 (MTCC 9000),

isolated from the northern Indian Himalayas (Mishra

et al. 2008). Siderophore production was confirmed by

CAS assay at as low as 4 �C, but higher siderophore
production values were recorded at room temperature.

No structural characterization of the siderophores

produced was achieved, suggesting only pyoverdines

and pyochelins as potential siderophore candidates in

this microorganism. Ren et al. studied the bacterium

Bacillus sp. PZ-1 (Ren et al. 2015). Siderophore

production was confirmed but no structural character-

ization studies were performed.

The lack of information regarding structure of

siderophores may be due to the difficulty to grow

psychrophilic microorganisms. But the presence of

iron acquisition systems and confirmation of side-

rophore production genes must be the motivation to

engage in such studies to increase important scientific

knowledge.

Siderophores produced by halophiles

The halophilic environments are those found in the

oceans, salterns, desserts and soda (hypersaline) lakes

and the microbial richness and diversity that thrives in

them has been described (Bamforth 1984; Crognale

et al. 2013; Emmerich et al. 2012; Ghozlan and Deif

2006; Pandit et al. 2015; Sunagawa et al. 2015).

Halophilic microorganisms were found in the rhizo-

sphere of halotolerant plants. Some bacterial species

are unable to produce siderophores (Tipre et al. 2015)

but others are capable of such mechanism (Sahay et al.

2012). In the latter report, researchers found that 21 %

of the hypersaline-lake isolated bacteria produce

siderophores. No structural characterizations were

made to elucidate the chemical structure of those

siderophores produced. After 16S rRNA gene

sequencing, the siderophore-producing microorgan-

isms were related to bacterial species of which some

siderophore structures are known (bacillibactin, mari-

nobactins, amphibactins, sodachelins and halochelins)
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(Figueroa et al. 2015; Gledhill et al. 2004; Martinez

and Butler 2007; Richards et al. 2006, 2007; Woo and

Kim 2008). Other siderophore-producing microorgan-

isms have been isolated from marsh water and soil

samples but they failed to determine structure of

siderophores (Malviya et al. 2014) or the presence of

siderophore-mediated iron reduction (Rossello-Mora

et al. 1995). Several published studies isolated side-

rophore producers from soda, or hypersaline, lakes

(Figueroa et al. 2015, 2012; Ramadoss et al. 2013;

Richards et al. 2006, 2007; Serrano Figueroa 2015).

Chemical structure characterizations were performed

by mass spectrometry and fatty acid methyl ester, and

siderophores were classified as amphiphilic side-

rophores: sodachelins and halochelins (Fig. 9). Rama-

doss and co-workers found that a total of three isolates

(SL3, SL32 and PU62), out of 84, from different

hypersaline lakes of India produced siderophores. No

chemical structure studies were done but phylogenetic

analysis determined that SL3 was related to

Halobacillus; SL32 to Bacillus pumilus; and PU62

to Bacillus halodenitrificans. Known siderophore

production studies have been done on Halobacillus

species to the best of our knowledge, however Bacillus

species produce bacillibactin and we could infer that

SL32 and PU62 may produce this siderophore.

Additional reports described studies done for side-

rophore production with desert-isolated Kocuria tur-

fanensis 2M4 and Bacillus licheniformis A2 bacteria

(Goswami et al. 2014a, b) but in both reports no

structural characterization was presented. Therefore,

we suggest bacillibactin as the siderophore produced

Fig. 9 Halochelins (a, b) and sodachelins (c) produced by Halomonas sp. SL01 (a, b) and SL28 (c)

Biometals (2016) 29:551–571 561

123



by B. licheniformis A2 but further confirmation is

needed. A more recent study confirmed the production

of siderophores by another desert-isolated bacterium,

B. cereus brm, however no chemical characterizations

were performed (Vishal and Manuel 2015).

Iron acquisition studies have linked siderophores to

proper and optimal cell development of halophiles

(Anderson et al. 2011; Buyer et al. 1991; Hopkinson

and Morel 2009; Wilhelm et al. 1998). Every year

halophilic, siderophore-producing microorganisms

are characterized by different research groups. Most

of the siderophores produced by halophiles are

classified as amphiphiles, meaning that the same

molecule will have polar and non-polar properties.

The polar headgroup is the iron binding site and it is

attached to one or two of a series of fatty acids

(Gauglitz et al. 2012; Ito and Butler 2005; Martin et al.

2006; Martinez et al. 2003, 2000; Owen et al. 2005).

Figure 10 shows selected amphiphilic siderophore

structures presenting the structural feature of a-
hydroxycarboxylic acid moiety, usually in the form

of b-hydroxyaspartic acid or citric acid, conferring

photochemical reactivity to the molecule as demon-

strated previously (Barbeau et al. 2003, 2002; Butler

et al. 2001; Butler and Theisen 2010).

As observed from the review in siderophore-

producing halophiles there is considerable information

available about marine amphiphilic siderophores.

However, little information is published regarding

soda, hypersaline lakes and deserts. It is important to

ensure the studies of these environments and look for

secondary metabolite production, specifically side-

rophore production, and their relationship to iron

acquisition and biogeochemical pathways.

Fig. 10 Suites of marine amphiphilic siderophores structures characterized: marinobactins (a), aquachelins (b), amphibactins (c),
loihichelins (d), moanachelins (e) and synechobactins (f). Adapted from Sandy and Butler (2009)
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Siderophores produced by piezophiles

Piezophilic microorganisms (previously known as

barophiles) grow and reproduce under high hydro-

static, or barometric, pressures ([1100 atm) (Deming

and Colwell 1981). Typically that level of pressuriza-

tion can be found in deep-sea environments (due to the

pressure of the water column), under the basaltic sea

floor (caused by both the water column and Earth’s

crust weight) and underground (subsurface) environ-

ments. In addition to hydrostatic pressure, most of the

temperatures are below 4 �C, and up to 400 �C nearby

hydrothermal vents presenting a double challenge for

microorganisms living in such conditions. It was

thought by most scientists that life could not withstand

the conditions present in these environments until

independent studies by Certes and Regnard in 1884

stated the contrary. Posterior studies presented the

evidence of life at depths greater than 10,000 m under

sea level (Zobell and Morita 1957). Organisms living

under the influence of high pressures evolved mem-

branes with modified fatty acyl moieties in the

phospholipids, making the membrane more fluid

(Abe 2013). During the early times of deep-sea studies

(piezobiology), a main objective was always present in

the experimental design: to keep high hydrostatic

pressures when sampling deep-sea water and sedi-

ments, avoiding decompression that may kill obligate

piezophiles. Nowadays scientists have developed

modern sampling systems that solve the decompres-

sion problem (Fang et al. 2010). With the assistance of

robots and submarines sediments can be sampled and

novel piezophilic species isolated to lead to an

understanding of nutritional and physical require-

ments for their optimal cellular function (Bale et al.

1997; Nogi et al. 1998). In addition, with modern

molecular biology techniques in non-cultivable

approaches can be used to describe the microbial

population living under the influence of high pressures

(Fleming et al. 2013; Jorgensen et al. 2013;Wang et al.

2008).

Siderophore production and iron reduction are

closely linked in microorganisms (Adams et al.

1992) by the effects of some physical and physico-

chemical conditions in the latter. Nutrient availability

could also exert an effect on the viable cell count of

these microorganisms (Wirsen and Molyneaux 1999).

Microbial iron reduction and oxidation processes have

been described in the literature. Model simulations

proved that increasing the hydrostatic pressure on

organisms causes a decrease of the energy yield of

cellular reactions like oxygen reduction (Fang et al.

2010). In contrast, ferric iron reduction free energy

increases as the pressure increases. Several studies

have demonstrated that microorganisms belonging to

the domains Bacteria and Archaea possess the

required genetic machinery (Fleming et al. 2013;

Jorgensen et al. 2013; Wang et al. 2008) and other

investigations presented in vitro evidence of microbial

iron reduction and oxidation (Picard et al. 2014; Wu

et al. 2013b). Wang and co-workers isolated an iron-

reducing bacterium, Shewanella piezotolerans WP3

and determined by its genome sequencing the pres-

ence of mtr-omc gene cluster involved in metal

reduction in most Shewanella species. The group of

Jorgensen and co-workers discovered that members of

the deep sea archaeal group constitute up to 50 % of

the microbial population in certain sediment horizons.

Also that group of investigators determined that there

were significant variations in iron oxide and dissolved

iron levels, implying redox reactions occurring in the

microscopic community.

Not much information is available regarding side-

rophore-mediated iron acquisition and it is limited to

simple, but significant, siderophore production exper-

iments. The first evidence of potential siderophore

production by genome analysis of the deep-sea

bacterium, Pseudomonas sp. 10B238, confirmed the

presence of non-ribosomal peptide synthetases genes

(Pan and Hu 2015). Additional genome studies have

confirmed heterologous expression of hydrothermal

deep-sea metagenomic DNA in E. coli, producing the

siderophore avaroferrin (Fig. 11) and putrebactin

(Fujita and Sakai 2014). The only direct siderophore

isolation and structure identification was reported

from the deep-sea microorganism Streptomyces oli-

vaceus FXJ8.012 which produces tetroazolemycins A

and B (Fig. 11; Liu et al. 2013).

In another study, arsenic-rich groundwater samples

demonstrated the presence of siderophore-producing

microorganisms (Sarkar et al. 2013). Siderophore

structural studies were not done in this study but we

can infer that ochrobactins (Martin et al. 2006) and

alcaligin (Li et al. 2013) may be the ones produced

since bacterial species corresponding to these side-

rophores were isolated and identified through 16S

rRNA analysis. Since scarce siderophore structures

were directly linked to siderophore production, there is
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a need to elucidate novel siderophore from piezophilic

isolates. In this manner we may be able to link iron

reduction and acquisition in these microorganisms

with their siderophore production, and understand

their role in deep-ocean and sediment biogeochemical

processes.

Concluding remarks

Observing Fig. 10, we can conclude there might be

certain levels of hydrophilicity or hydrophobicity in

amphiphilic siderophores due to some molecular

characteristics (length of fatty acyl moieties and

headgroup). A clear example of this is the hydropho-

bicity of amphibactins (Gledhill et al. 2004; Vraspir

et al. 2011), moanachelins (Gauglitz and Butler 2013)

and ochrobactins (Gauglitz et al. 2012) contrasting to

the hydrophilic lohichelins (Homann et al. 2009). This

affects their extraction: amphibactins, moanachelins

and ochrobactins are mainly obtained from cell pellet

extracts, contrasting to the supernatant extracts that

contain loihichelins. Marinobactins have been the

most studied of the amphiphilic siderophores and have

different degrees of hydrophobicity and hydrophilicity

(Martinez and Butler 2007; Xu et al. 2002). Membrane

partitioning studies were also done with ochrobactins

giving similar results to those of the marinobactins

(Martin et al. 2006). Aquachelins are quite hydrophilic

especially aquachelins I and J isolated from Halomo-

nas meridiana (Vraspir et al. 2011). Synechococcus

sp. produces synechobactins (Fig. 10) which are

related to the siderophore schizokinen (Ito and Butler

2005). Other siderophores can be taken up by another

type of microorganism and then undergo changes in

their structure. In Vibrio harveyi, enterobactin

Fig. 11 Additional

siderophores produced by

piezophilic microbes:

avaroferrin (a),
tetroazolemycin A (b) and
tetroazolemycin B (c)
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undergoes a chemical modification (addition of fatty

acids moieties with different levels of saturation and

hydroxylation) to transform it into an amphi-enter-

obactin (Zane et al. 2014). The relevance of amphi-

philic siderophores chemical characteristics determine

their extraction process, important in the study of new

family members.

Another property of amphiphilic siderophores is the

capacity of the molecules to self-assemble in micelles

and vesicles upon iron coordination (Bednarova et al.

2008; Luo et al. 2002;Martinez et al. 2000; Owen et al.

2007, 2005, 2008). The science behind this phe-

nomenon is based on the critical micelle concentration

(cmc) of the amphiphile molecule. When the concen-

tration of the amphiphilic siderophore is over the cmc

and the siderophore is not bound to iron, micelle

formation occurs. Adding ferric iron (*1 Eq.) to the

solution causes micelle size reduction, but if the iron

concentration increases ([1 Eq.) a micelle-to-vesicle

transition happens (Owen et al. 2005). A brief

description of this process appears in Fig. 12.

Iron is ubiquitous in the environment and required

by most living organisms. It is not bioavailable due to

its poor solubility in water, but microorganisms have

developed iron acquisition systems to overcome this

problem. These acquisition systems help regulate a

balanced iron concentration across the cell. Side-

rophore production and respective receptors and

transport proteins are part of that system and help

obtain iron from the extracellular environment in iron-

limiting conditions. In general, three different func-

tional groups (hydroxamates, catacholates and

hydroxycarboxylates) are found in the siderophore

molecule and assist in ferric iron coordination.

Different structures are found in diverse environments

including extreme environments. Extremophiles

evolved to overcome the hostile conditions in such

environments ensuring their survival and have devel-

oped mechanisms for iron acquisition. The physiolog-

ical requirements for extremophiles are so complex

and interweaved that a single extremophilic species

could possess characteristics from two or more

physiological groups (e.g., thermoacidophilic bacte-

ria, haloalkaliphilic archaea etc.). Halophiles synthe-

size a variety of siderophores and some information is

available regarding their structural composition.

These structures contrast with the siderophore pro-

duction and structural characterization studies from

other physiological requirements groups (like piezo-

philes and acidophiles). Siderophores help maintain

the equilibrium of iron in extreme environments

providing physiological niches for extremophiles.

More studies on extremophiles and siderophore

production should be performed along characteriza-

tion studies to elucidate siderophore chemical

structures.
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