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Abstract Parkinson’s disease (PD) is the second

most common neurodegenerative disease with gradual

loss of dopaminergic neurons. Despite extensive

research in the past decades, the etiology of PD

remains elusive. Nevertheless, multiple lines of evi-

dence suggest that oxidative stress is one of the

common causes in the pathogenesis of PD. It has also

been suggested that heavy metal-associated oxidative

stress may be implicated in the etiology and patho-

genesis of PD. Here we review the roles of redox

metals, including iron, copper and cobalt, in PD. Iron is

a highly reactive element and deregulation of iron

homeostasis is accompanied by concomitant oxidation

processes in PD. Copper is a key metal in cell division

process, and it has been shown to have an important

role in neurodegenerative diseases such as PD. Cobalt

induces the generation of reactive oxygen species

(ROS) and DNA damage in brain tissues.
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Abbreviations

AP-1 Activator protein-1

CNS Central nervous system

CSF Cerebrospinal fluid

CoCl2 Cobalt chloride

DMT1 Divalent metal transporter 1

GLT-1 Glutamate transporter-1

GSH Glutathione

HIF-1a Hypoxia inducible factor 1a
IL-6 Interleukin-6

IREs Iron-responsive elements

MAPK Mitogen-activated protein kinase

MPTP 1-methyl-4-phenyl-1,2,3,6-

tetrahydropyridine

mTOR Mechanistic target of rapamycin

NAC N-acetyl-L-cysteine

NO Nitric oxide

NorSAL Norsalsolinol

NOS Nitric oxide synthase

6-OHDA 6-Hydroxydopamine

PD Parkinson’s disease

ROS Reactive oxygen species

SAL Salsolinol

SNpc Substantia nigra pars compacta
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SOD Superoxide dismutase

THP Tetrahydropapaveroline

Introduction

Parkinson’s disease (PD) is an age-associated chronic

disease. It is the second most prevalent neurodegen-

erative disorder afflicting 1–2 % of the people over the

age of 65 (Dauer and Przedborski 2003). It is estimated

that the population aged 65 years and older will be as

high as 80 million by 2040 in the US alone (Boland

and Stacy 2012). The economic burden of PD on

national health care system continues to rise (Boland

and stacy 2012). In clinic, PD is characterized by

tremor, rigidity, slowness of movement and changes in

posture. The main pathological hallmark of PD is the

gradual loss of dopaminergic neurons in the substantia

nigra pars compacta (SNpc) and the presence of

aggregates of misfolded proteins (mainly a-synu-

clein), known as Lewy bodies (Anderson and Maes

2014; Dexter and Jenner 2013; Schapira et al. 2014;

Lin et al. 2012). Although PD has been heavily

researched in the past decades, the etiology of the PD

is poorly understood. Many genetic studies have

reported that some gene mutations, including gene

duplication/triplication, are highly correlated with PD

(Moore et al. 2005; Hu and Tong 2010). However, the

majority of PD cases identified so far are sporadic with

no clear genetic cause. A casual link between aging,

genetic factors, life styles and environmental exposure

may exist for PD cases (Gao and Hong 2011). In recent

years, evidence has accumulated that chronic exposure

to heavy metals and its associated oxidative stress are

implicated in PD (Gandhi and Wood 2005; Arodin

et al. 2014).

Literally, oxidative stress is defined as a redox

imbalance with a surplus of oxidants or a deficit in

antioxidants (Sies and Cadenas 1985; Shulman et al.

2011). The brain which consists of a large number of

neurons is prone to oxidative damage as it is

metabolically active and consumes about 20 % of

total body oxygen in the resting state (Ciccone et al.

2013; Herculano-Houzel 2011). PD, as a brain disease,

is inevitably affected by the oxidative stress. The aim

of this article is to briefly review a positive association

of oxidative stress with PD pathogenesis and further

discuss the transition metals-induced oxidative stress

in PD.

Oxidative stress and PD

When the levels of reactive oxygen species (ROS)

surpass the antioxidant capacity of a cell, it poses a

stress condition on the cells. This oxidative stress

condition causes irreversible damage to the cells and

can ultimately lead to cell death. ROS can be produced

in excess quantities such as superoxide free radical,

hydrogen peroxide (H2O2), singlet oxygen, nitric

oxide (NO), and peroxynitrite (Chong et al. 2012;

Maiese et al. 2010, 2011). Overproduction of ROS can

subsequently result in the loss of DNA integrity,

mitochondrial dysfunction, lipid peroxidation and

misfolding of proteins that could damage neuronal

cells (Jayaram et al. 2011; Yang et al. 2011a). Several

cellular antioxidant systems including catalase, super-

oxide dismutase (SOD), glutathione peroxidase and

vitamin C, D, E and K can reduce toxic ROS to non-

toxic levels (Muley et al. 2012; Sun et al. 2012; Suzen

et al. 2012). It is noted that the brain is more vulnerable

to deleterious ROS and oxidative damage when

compared with other organs. In the brain, it consumes

about 20 % of the oxygen supply of the body and a

significant portion of oxygen is converted to ROS

resulting from high oxygen metabolism of neurons

(Marlatt et al. 2004; Matés et al. 2009; Johnson et al.

2012). Moreover, the brain has only a relatively

modest antioxidant system and low levels of free

radical-scavenging enzymes to cope with free ROS

(Barnham et al. 2004; Mytilineou et al. 2002; Roberts

et al. 2010). Furthermore, the sensitivity of neurons to

oxidative damage, which accumulates in aging neu-

rons, might also be due to their postmitotic nature

(Crabtree and Zhang 2012). Under oxidative stress,

high concentrations of readily oxidizable polyunsatu-

rated fatty acids in the brain are peculiarly prone to

lipid peroxidation and the generation of toxic radical

species. Thus, oxidative stress may be a primary

component that leads to the onset and pathogenesis of

neurodegenerative disorders.

PD, as a progressive neurodegenerative movement

disorder, is characterized by a selective loss of

nigrostriatal dopaminergic neurons (Dawson and

Dawson 2003). Accumulating experimental evidence
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suggests that oxidative stress is involved in dopamin-

ergic neuronal apoptosis in PD (Jenner and Olanow

2006; Zeng et al. 2014; Zhang et al. 2015). For

example, H2O2, a major oxidant generated when

oxidative stress occurs, could induce apoptosis of

neuronal cells (Chen et al. 2010a). Rotenone, as a

neurotoxin in PD models, could induce the overpro-

duction of H2O2, leading to the apoptosis of neuronal

cells (Zhou et al. 2015; Ojha et al. 2016). In addition,

implication of oxidative stress in PD is further

supported by postmortem analysis of the brains from

patients with PD. Such evidence for oxidative stress in

PD brains includes a dramatic depletion of the

antioxidant glutathione (GSH), a reduction in mito-

chondrial complex I activity, DNA oxidation, aug-

mented SOD activity and elevated free iron levels

(Blum et al. 2001; Mythri et al. 2011). Moreover, some

bio-markers related to oxidative stress are increased in

the cerebrospinal fluid (CSF) (such as malondialde-

hyde content and superoxide radical production) and

blood of patients with PD (Vinish et al. 2011;

Buhmann et al. 2004).

It is believed that the generation of deleterious ROS

and oxidative damage play a pivotal role in dopamin-

ergic neuronal cell death (Zemlyak et al. 2006; Hu

et al. 2011; Chong et al. 2014). As one of important

sources of ROS, transition metals, such as copper and

iron, have been found to be accumulated in brains of

patients with PD (Andersen 2004) (Fig. 1). These

findings suggest that transition metals might be

involved in PD pathogenesis via ROS-generating

pathways. Here we will further discuss ROS-mediated

mechanisms underlying the neurotoxicity of iron,

copper and cobalt in PD.

Metal ions and PD

Many metal ions are essential components of a wide

variety of biological processes of living systems. In the

nervous system, metals are involved in several

important cellular functions and physiological activ-

ities. For example, iron is essential for DNA synthesis,

neurotransmission, myelination, oxygen activation,

mitochondrial electron transport and metabolism

(Halliwell 2006; Benarroch 2009; Crichton et al.

2011). Besides iron, copper is required for bio-

synthesis of neurotransmitters and mitochondrial

respiration (Schlief et al. 2006; Telianidis et al.

2013). In addition, cobalt is a critical component of

Vitamin B12 which is oxygen-sensitive and important

for the normal functions of the nervous system. Three

classes of cobalt/B12-dependent enzymes, including

isomerases, methyltransferases and reductive dehalo-

genases, participate in the reactions essential to DNA

synthesis, fatty acid synthesis and energy production

(Banerjee and Ragsdale 2003).

Although transition metals are important for life,

well-documented evidence suggests that environ-

mental and occupational exposure to toxic metals or

metal-containing compounds leads to some serious

health conditions, such as neurodegenerative dis-

eases (Stohs and Bagchi 1995). Elevated levels of

several metals (mainly iron and copper) have been

found to be associated with the subjects with

neurological diseases (Migliore and Coppedè

2009). In PD, high levels of iron have been

observed in the degenerative dopaminergic neurons

(Zhu et al. 2007), and lewy bodies contain reactive

iron together with aggregated proteins such as a-

synuclein (Castellani et al. 2000). The role of copper

in the pathogenesis of PD is thought to be associated

with its ability to form a complex with a-synuclein

and promote a-synuclein into neurotoxic aggregates

(Davies et al. 2011; Brown 2013). In addition, high

levels of copper in PD have been observed in the

cerebrospinal fluid (Hozumi et al. 2011), blood

serum (Ahmed and Santosh 2010) and brain (Larner

et al. 2013). Although there is no enough evidence

to support the role of cobalt in PD, it is well

established that cobalt-mediated free radical gener-

ation contributes to neuronal cell toxicity. Further-

more, previous studies suggested that cobalt ions

could not only induce DNA damage and interfere

with DNA repair, but also induce DNA–protein

crosslinking and sister chromatid exchange (Hengs-

tler et al. 2003). Importantly, low levels of cobalt

can directly induce a-synuclein fibril formation

(Uversky et al. 2001). Recent in vitro studies have

shown that iron or copper interacting with mutant a-

synuclein seems to aggravate the neurotoxicity

elicited by a-synuclein (Chew et al. 2011; Wang

et al. 2010). Here, it is worth noting that copper is a

special case because, apart from the previously

mentioned mechanism of neurotoxicity, it is also a

co-factor of antioxidant enzymes such as cerulo-

plasmin. This duality makes copper interesting for
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the study of PD. In the following sections, we will

mainly focus on three transition metals (i.e. iron,

copper and cobalt) which are more relevant to PD.

Copper

Copper is an essential metal with an average concen-

tration of 1.4–2.1 mg/kg in healthy individuals and it is

readily absorbed from the diet through the small

intestine (*2 mg/day). Under physiological condi-

tions, copper can catalyze ROS formation via Fenton-

like reaction (Wang et al. 2012). Disruptions in copper

homeostasis are responsible for the neurological

symptoms, such as PD (Tisato et al. 2010; Asthana

et al. 2014). Some studies have indicated that long-

term exposure ([20 years) to copper increases the risk

of PD (Gorell et al. 1999). Other environmentally

based studies within urban populations have also

shown that the incidence of PD is greater in those areas

with important emissions of copper or manganese

(Willis et al. 2010). It has been reported that the copper

level in PD is increased in the cerebrospinal fluid

(Hozumi et al. 2011; Pall et al. 1987), blood serum

(Ahmed and Santosh 2010) and brain (Larner et al.

2013). In addition, in the animal model of PD using

6-hydroxydopamine (6-OHDA), increased level of

copper was observed in all regions along the dopamin-

ergic pathways (Tarohda et al. 2005). Thus, copper

excess may be an important factor for the onset or

pathogenesis of PD.

The intensive production of ROS are widely seen in PD

(Nikam et al. 2009; Reddy and Reddy 2011; Chakrabarti

et al. 2011; Jomova etal. 2010), as indicated by an increase

in the contents of lipid peroxidation in blood samples of

patients with PD (Serra et al. 2009). Copper ions are very

likely involved in this process (Greenough et al. 2013).

Fig. 1 Schematic illustration of main sources of ROS which

ultimately cause neuronal cell death in PD models. Agents for

potential therapeutic interventions, such as antioxidants, radical

scavengers and metal chelators, are suggested to attenuate

oxidative stress and prevent progressive loss of dopaminergic

neurons in PD
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For example, in the rats exposed to copper in the drinking

water for four weeks, the levels of the lipid oxidation

marker malondialdehyde are increased, and the SOD

activity is diminished in the brain (Ozcelik and Uzun

2009). Another study reported that copper sulfate directly

injected into the substantia nigra of rodents could elicit

dopaminergic cell toxicity such as decreased dopamine,

increased oxidative stress and apoptosis (Yu et al. 2008).

In addition, similarities between copper treatment and

treatment with other commonly used oxidants have been

found in human brain cells (Merker et al. 2005). Increased

extracellular copper levels contribute to neuronal cell

death by increasing the production of deleterious ROS

(Huang et al. 2015). Particularly, copper affects the

secretion of molecules involved in the protection of

neurons against oxidative stress, such as cyclophilin A, or

molecules capable of shifting neural cells toward a

proinflammatory state, such as IL-1 (Spisni et al. 2009). It

has been reported that treatment of PC12 cells (a common

neural cell model) with dopamine-derived salsolinol (1-

methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline,

SAL) causes decreased cell viability, which is exacerbated

by copper (Kim et al. 2001). Moreover, cells exposed to

both SAL and copper exhibit high levels of intracellular

ROS. By contrast, copper chelator bathocuproinedisul-

fonic acid and the antioxidantsN-acetyl-L-cysteine (NAC)

or GSH ameliorate cytotoxicity induced by SAL and

copper. All these findings suggest that copper facilitates

the redox cycling of SAL (Kim et al. 2001). Besides SAL,

another dopamine metabolite, norsalsolinol (NorSAL)

reduces cell viability and induces apoptosis via cyto-

chrome c release and caspase-3 activation in SH-SY5Y

neuroblastoma cells (Kobayashi et al. 2009). Cytochrome

c release, caspase-3 activation and apoptosis induction are

all inhibited by the antioxidant NAC, suggesting that ROS

contributes to the apoptosis induced by NorSAL. Treat-

ment with NorSAL also increased levels of oxidative

damage to DNA, a stimulus for apoptosis, in SH-

SY5Y cells. It is worthy of note that NorSAL induced

DNA damage is enhanced by Cu (II). Bathocuproine and

catalase, as Cu (I) chelators, inhibit the DNA damage,

implying that ROS generated from the reaction of H2O2

with Cu (I) mediates the DNA damage by NorSAL. These

findings suggest that NorSAL- and copper-generated

ROS induces oxidative DNA damage, which leads to

caspase-dependent apoptosis in neuronal cells (Kobayashi

et al. 2009). In other experiments, tetrahydropapaveroline

(THP), a dopamine-derived tetrahydroisoquinoline alka-

loid, has been reported to inhibit mitochondrial respiration

and is considered to contribute to neurodegeneration

implicated in PD. Because THP bears two catechol

moieties, the compound may readily undergo redox

cycling to produce ROS as well as toxic quinoids. Of

particular significance, copper can also promote THP-

mediated oxidative DNA damage (Soh et al. 2003). On the

other hand, ROS may also enhance the copper accumu-

lation in the brain. For instance, 6-OHDA, a dopaminergic

neuron-specific ROS generator, induces an increase of

copper in the brain regions related to dopaminergic

pathways in a rat model of PD (Tarohda et al. 2005).

Taken together, the neurotoxicity of copper might be

through a ROS-mediated mechanism. It is yet to be known

which one, ROS or copper, comes first to initiate

dopaminergic neuron degeneration. In our laboratory,

we have also found that copper overload induced

apoptosis in SH-SY5Y cells, where AMPK and ROS

may be involved in this process (unpublished data). The

precise mechanisms in this process need to be further

explored. Although copper excess contributes to neurode-

generation, deficiencies in copper absorption could also

have a number of detrimental effects. For example,

insufficient copper uptake during development interferes

with the activity of copper-containing enzymes and results

in dysregulation of protein crosslinking in the extracellular

matrix and altered cell signaling (Uriu-Adams et al. 2010).

The toxic effects of low level of copper may be related to

reduced SOD activity. Therefore, the homeostasis of

copper in body is very important.

It is worthy to note that the role of copper in the

pathogenesis of PD is also thought to be associated with

its ability to form a complex with a-synuclein, which is a

protein of unknown function and enriched at the

presynaptic terminals of many neurons. a-synuclein

aggregation is considered as a key event in PD

pathogenesis (Olanow and Brundin 2013). It has been

reported that copper is able to facilitate the formation of

aggregated a-synuclein (Ahmad et al. 2012; Wright et al.

2009). Wang et al. (2010) used a cellular model of a-

synuclein aggregation to investigate the association

between metals and aggregate formation. Their findings

suggest that copper plays an important role ina-synuclein

aggregation and reduction in cellular copper results in a

significant decrease in aggregate formation. They also

showed that reduction in copper results in a change in

localization of a-synuclein, which is more intensely

localized to the plasma membrane with low copper, and

this change is reversed when copper is restored to the cells

(Wang et al. 2010). Furthermore, mutations of the copper
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binding domains in a-synuclein alter the response of the

protein to copper, whereas increased expression of wild-

type a-synuclein increases cell sensitivity to the toxicity

of copper (Wang et al. 2010). These results suggest that

the potential pathological role of a-synuclein aggregates

is dependent upon the copper binding capacity of the

protein. This notion is supported by a recent study

suggesting that overexpression of a-synuclein at non-

toxic levels increases dopaminergic cell death induced by

copper exposure via modulation of protein degradation

pathways (Anandhan et al. 2015).

In addition, there is another protein to note. Cerulo-

plasmin is a multicopper—containing glycoprotein that

is mainly bio-synthesized in the liver (Healy and Tipton

2007). Copper is a component of ceruloplasmin which

contains up to 95 % of circulating copper (Larner et al.

2013). Ceruloplasmin acts as an iron oxidase, copper

transporter, as well as many other functions (Vash-

chenko and MacGillivray 2013). The modification of

ceruloplasmin with hydrogen peroxide can release

copper and mediate a-synuclein aggregation (Gaggelli

et al. 2006). Other than copper, ceruloplasmin may also

modulate iron levels in the nervous systems. In cerulo-

plasmin-knockout mice, iron is deposited in the cere-

bellum and brain stem, leading to dopaminergic neuron

loss and compromised motor coordination (Patel et al.

2002). Ceruloplasmin remains an attractive target for

new therapeutic method in PD because of its antioxidant

properties and its role as an iron regulator in the brain.

The current therapeutic strategies, such as supplying a

dopamine precursor (L-DOPA), dopamine agonists (e.g.,

pramipexole, bromocriptine) and antioxidants, only pro-

vide symptomatic relief (Hung et al. 2012). As mentioned

above, the role of copper in PD is complicated. Thus, there

is still an imperative need to develop an appropriate copper

ion chelator for moving from symptom-alleviating to

disease-modifying therapies.

Iron

Iron, similar to copper,is one of the first-row transition

metals in the periodic table. In the central nervous

system (CNS), iron is essential for a variety of vital

biochemical and metabolic functions, including neu-

rotransmission, myelination, oxygen activation and

mitochondrial electron transport. Although iron is

very important for physiological processes in several

organs including the brain, a wide body of evidence

showing the neurotoxic effects of iron has been

reported (Castellanos et al. 2002; Cheah et al. 2006;

Double et al. 2003), especially on tyrosine hydroxy-

lase-positive neurons (Double et al. 2003).

It has been shown that iron concentrations are

significantly elevated in melanized dopaminergic

neurons of patients with PD (Gerlach et al. 2006;

Götz et al. 2004; Riederer et al. 1989; Youdim and

Riederer 1993; Shoham and Youdim 2002; Hirsch

et al. 1991), which has also been confirmed by

magnetic resonance imaging (MRI) and ultrasound

studies (Gorell et al. 1995; Berg et al. 1999). More

specifically, neuromelanin granules with iron overload

were observed around the neurons in SN of patients

with PD (Jellinger et al. 1992). In animal models, an

increase in iron levels was also observed in SN of

6-OHDA, 1-methyl-4-phenyl-1,2,3,6-tetrahydropy-

ridine (MPTP) (Gerlach et al. 2000; Youdim and

Riederer 2004), lactacystin (Zhu et al. 2010) and

rotenone (Mastroberardino et al. 2009) models of PD.

PD is an age-associated disease, aging can regulate

iron neurotoxicity. For example, adult mice

(12–24 months old) fed with iron during the neonatal

period show a decrease in striatal DA content, while

their young counterparts (2 months old) with the same

treatment have unchanged DA levels (Barlow et al.

2007; Kaur et al. 2007). Similar to PD, iron dysreg-

ulation also occurs in Huntington’s disease (HD)

(Dexter et al. 1991; Rosas et al. 2012). However, the

locus of iron accumulation in PD seems to be different

from that in HD (Bartzokis et al. 1999). PD is

characterized by iron accumulation in the SN, which

has not been observed in HD. In HD, increased iron

levels have been primarily observed in the basal

ganglia (Bartzokis et al. 1999). Iron accumulation in

HD is presumably a secondary effect of the disease

(Bartzokis and Tishler 2000).

Once iron is accumulated in PD, it could promote

neuronal death through oxidative stress. Previous

studies indicated that iron participates in the Fenton

chemistry to produce deleterious ROS (Koppenol

2001; Lan and Jiang 1997). The formation of ROS,

combined with the depletion of endogenous antioxi-

dants, particularly GSH, can lead to oxidative stress in

PD (Lan and Jiang 1997; Han et al. 1999; Bharath et al.

2002; Youdim et al. 1990; Aguirre et al. 2007). Indeed,

there is a drastic decrease of GSH in SN of PD brains

(Riederer et al. 1989; Bharath et al. 2002; Jenner

1991, 1998; Aguirre et al. 2007), which renders

dopaminergic neurons more vulnerable to deleterious
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ROS. Moreover, iron mediates the decomposition of

lipid peroxides to produce highly cytotoxic free

radicals, which causes damage to DNA, lipids, or

proteins and ultimately leads to neuronal cell death in

PD models (Youdim and Riederer 2004). Further,

iron-induced oxidative stress increases the vulnerabil-

ity of PC12 cells to rotenone-induced toxicity,

suggesting that oxidative stress is directly involved

in iron neurotoxicity (de Groot and Westerink 2014).

In addition, the role of iron in PD is also associated

with its ability to link oxidative damage and a-

synuclein accumulation. A number of studies indicated

that iron accumulates in Lewy bodies (Napolitano et al.

2002) and iron-induced lipid peroxidation promotes a-

synuclein aggregation (Götz et al. 2004). In vitro studies

also demonstrated that iron induces the intracellular

oxidation and further aggregation of a-synuclein, as

well as mitochondrial clumping, in dopaminergic

neuronal cells (Sangchot et al. 2002; Li et al.

2011, 2010; He et al. 2011). Further molecular mech-

anistic studies reported that iron might regulate a-

synuclein aggregation through the IRE/IRP system in

SK-N-SH neuroblastoma cells (Li et al. 2011), and

oxidative stress affects a-synuclein aggregation via

oxidation of iron to the ferric state (Levin et al. 2011). A

recent research reported that synergistic a-synuclein/

iron cytotoxicity induces a-synuclein aggregation and

neurotoxicity by inhibiting Nrf2/HO-1 in SK-N-SH

neuroblastoma cells. Inhibition of Nrf2/HO-1 leads to

more a-synuclein aggregation and enhanced toxicity

induced by iron, creating a vicious cycle of iron

accumulation and a-synuclein aggregation in PD (He

et al. 2013). In addition, sodium nitroprusside, a water-

soluble iron nitrosyl complex, induces SH-SY5Y

apoptosis through ROS-p53 signaling pathway (Car-

daci et al. 2008). Chelation of lysosomal iron protects

dopaminergic SH-SY5Y cells from H2O2 toxicity by

inhibiting autophagy and Akt dephosphorylation (Cas-

tino et al. 2011). It is known that autosomal dominant

PD is partially related to mutations in a-synuclein that

enhance the protein aggregation (Gupta et al. 2008).

Therefore, those individuals with mutations in a-

synuclein could be more susceptible to iron overload.

For example, the expression of a mutant form of a-

synuclein enhances the susceptibility of neuroblastoma

cells to iron exposure (Martin et al. 2003). Perfeito et al.

(2014) reported that stimuli (FeSO4 or rotenone)

promoting ROS formation and mitochondrial alter-

ations highly correlate with mutant a-synclein

phosphorylation at Ser129, which may precede cell

degeneration in PD. Under basal conditions, prolonged

expression of A53T mutant a-synuclein alters mito-

chondrial morphology, increases superoxide formation

and phosphorylation at Ser129. Exposure to FeSO4 or

rotenone increases intracellular ROS levels along with

a-synuclein Ser129 phosphorylation and mitochondrial

depolarization. Most of these changes were largely

evident in A53T mutant a-synuclein expressing cells

(Perfeito et al. 2014). Moreover, SH-SY5Y cells stably

expressing divalent metal transporter 1 (DMT1) alone

or together with mutant a-synuclein enhance iron

uptake, which results in oxidative stress and neuronal

cell death (Chew et al. 2011; Cardaci et al. 2008;

Castino et al. 2011). It has been suggested that humana-

synuclein may act as a cellular ferrireductase, respon-

sible for reducing iron(III) to bioavailable iron(II)

(Davies et al. 2011). It is currently known that iron

interacts with a-synuclein, at least at two biological

levels: the first involves the translation of the protein via

iron-responsive elements (IREs) that exist in the 50-
UTR of the a-synuclein mRNA (Friedlich et al. 2007).

The second consists of a direct binding of iron to the

protein itself, leading to its abnormal folding and

aggregate formation. Although the binding sites for iron

in a-synuclein are not clear yet, previous studies

demonstrated a preferential binding of iron(II) in the

C-terminal region of a-synuclein (Binolfi et al. 2006)

and iron(III)-mediated aggregation of a-synuclein

(Kostka et al. 2008). Furthermore, neuronal cell death

caused by potent inhibitors (MPTP, 6-OHDA) of

complex I of mitochondrial electron transport chain is

prevented by the chelation of iron (Youdim et al. 2004;

Kaur et al. 2003; Shachar et al. 2004; Youdim and

Buccafusco 2005; Zheng et al. 2010). A recent study in

mesencephalic neurons showed that low concentrations

(0.25–0.5 lM) of MPP?, an active metabolite of

MPTP, induces neuritic tree collapse without signifi-

cant loss of cell viability (Gomez et al. 2011). This

MPP?-mediated effect can be prevented by decreasing

iron supply or by the addition of antioxidants. There-

fore, it seems plausible that increased intracellular iron

and ROS are involved in the early stage of dopamin-

ergic neuron dysfunction, prior to cell death. At a later

stage, a vicious cycle of iron accumulation, complex I

dysfunction and increase in ROS levels may result in

irreversible oxidative damage and neuronal cell death.

Since iron accumulation in the affected areas in PD

is an important event, metal depletion may be a
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rational therapeutic method for neurodegenerative

diseases. Some iron chelators have been successfully

employed in pre-clinical studies of PD. For example,

the natural prototype iron chelator/radical scavenger

desferrioxamine (Keberle 1964) and the iron-chelating

drugs deferiprone and deferasirox were found to be

protective against dopaminergic neurodegeneration

induced by iron, 6-OHDA, or MPTP (Ben-Shachar

et al. 1992, 1991; Molina-Holgado et al. 2008; Dexter

et al. 2011). The antibiotic metal chelator clioquinol

has been shown to inhibit MPTP-induced neurotoxi-

city in mice (Kaur et al. 2003). These studies indicate

that iron chelation may be an effective therapeutic

method for PD. However, the pharmacological manip-

ulation of intracellular iron levels has the potential to

cause undesirable side effect, such as the inhibition of

iron-containing enzymes, including metalloenzymes,

lipoxygenase and ribonucleotide reductase (Hider

1995). It is suggested that other iron chelators must

be carefully designed to prevent toxicity and side

effects.

Cobalt

Cobalt is an element that exists naturally throughout

our environment (Lison et al. 2001). Vitamin B12

contains 4 % cobalt and therefore cobalt is essential to

many physiological processes (Kim et al. 2008). Total

body content of cobalt is about 1.1–1.5 mg in an adult

male. Cobalt chloride (CoCl2) is a well-known

hypoxia mimetic agent. These CoCl2-elicited bio-

chemical changes include the production of ROS, a

loss of mitochondrial membrane potential, activation

of hypoxia inducible factor 1a (HIF-1a) and the

expression of a number of genes, such as erythropoi-

etin, vascular endothelial growth factor and endothe-

lin-2/vasoactive intestinal contractor (one of the

hypoxia-related factors) (Chandel et al. 1998; Guille-

min and Krasnow 1997; Yang et al. 2004; Zou et al.

2002; Kotake-Nara and Saida 2007; Chen et al.

2009, 2010b; Yang et al. 2011b).

Although the role of cobalt in PD pathogenesis

has not been well documented, a number of reports

suggested that CoCl2, as a hypoxia mimetic, can

induce oxidative stress in cultured neuronal cells. It

is reported that one of the mechanisms underlying

CoCl2-induced neuronal damage is associated with

the production of ROS (Zou et al. 2002; Chen et al.

2009; Jung et al. 2008). CoCl2 could function as an

oxidative stress-inducing factor since Co(II) can

react with H2O2 via Fenton-like reaction to produce

ROS (Wang et al. 1993). Elevated ROS is capable

of attacking nucleic acids, proteins and membrane

phospholipids, leading to neuronal cell death (Wang

et al. 2000; Chen et al. 2008). In our previous

studies, we have showed that CoCl2-induced ROS

overproduction and mitogen-activated protein kinase

(MAPK) activation are inhibited by a free radical

scavenger NAC in PC12 cells, indicating that

CoCl2-mediated MAPK activation is dependent on

ROS production (Lan et al. 2011). Consistent with

our study, Zou et al. (2002) have reported that

CoCl2-activated caspase-3 and p38 MAPK are

involved in CoCl2-induced apoptosis of PC12 cells.

Moreover, we have also demonstrated that the signal

pathway of ROS-ERK/12 is involved in the down-

regulation of glutamate transporter-1 (GLT-1) pro-

tein expression in CoCl2-treated PC12 cells (Xiao

et al. 2012). In addition, a significant increase in the

DNA-binding activity of activator protein-1 (AP-1)

upon CoCl2 treatment has also been observed. This

increase is blocked by antioxidants, implying that

CoCl2-induced apoptosis is accompanied by ROS-

activated AP-1 (Zou et al. 2001).

More recently, it has been reported that CoCl2-

mediated repression of mechanistic target of rapa-

mycin (mTOR) signaling could be significantly

alleviated by an antioxidant in PC12 cells, which

suggests that CoCl2 suppresses mTOR signaling via

ROS (Zhong et al. 2014). Aside from mTOR

signaling, endothelin system which is important for

vascular homeostasis could also be modulated by

CoCl2. The expression of endothelin-2 is increased

by CoCl2 and conversely CoCl2 decreases the

expression of the endothelin-1 in PC12 cells, which

could be inhibited by the antioxidant NAC (Kotake-

Nara and Saida 2006; Kotake-Nara et al. 2005).

Meanwhile, the expression interleukin-6 (IL-6),

which has both pro- and anti-inflammatory proper-

ties, is up-regulated upon the differentiation of PC12

cells by CoCl2 (Kotake-Nara and Saida 2006). These

results indicate that CoCl2 modulates the expression

of endothelin-2 and endothelin-1 through ROS and

CoCl2-mediated oxidative stress may be associated

with inflammation. CoCl2-induced inflammatory

response in PC12 cells, including an increase in

nitric oxide (NO) production and IL-6 secretion, was

also observed in our previous study (Lan et al. 2013).
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The inflammatory response in PC12 cells upon CoCl2
treatment could be blocked by NAC, suggesting that

CoCl2-induced inflammatory response correlates

with oxidative stress in PC12 cells (Zhong et al.

2014; Kotake-Nara et al. 2005; Kotake-Nara and

Saida 2006; Lan et al. 2013). It is well known that

astrocytes, as the major glial population, play an

important role in the central nervous system (CNS).

It has been reported that CoCl2 treatment induces

intracellular ROS generation and glyceraldehyde

3-phosphate dehydrogenase (GAPDH) gene expres-

sion, but inhibites TSP-1 (Thrombospondin-1)

mRNA expression in astrocytes (Chen et al. 2011).

CoCl2-induced down-regulation of TSP-1 mRNA

was blocked by the addition of the potent antioxidant

NAC, suggesting that ROS is involved in CoCl2-

mediated effects in astrocytes. Taken together, these

studies suggest that CoCl2 modulates several vital

signaling pathways mainly through ROS and more

precise molecular mechanism of CoCl2-induced

oxidative stress needs to be further investigated. In

view of the role of cobalt in the neuronal cells, as

well as cobalt-mediated formation of a-synuclein

fibril (Uversky et al. 2001), we speculate that cobalt

may be potentially implicated in PD.

Conclusions

Although molecular mechanism underlying the etiol-

ogy and pathogenesis of PD are not fully understood,

transition metals and oxidative stress have been well

documented to be implicated in PD-related neuronal

lesions. In this review, we briefly discuss the associ-

ation of oxidative stress with PD and elaborate on the

mechanisms underlying the neurotoxicity of transition

metals. Transition metal-mediated neuronal cell death

generally involves ROS production and protein aggre-

gation. However, ROS may also facilitate metal

accumulation when neurons are under oxidative stress.

Which one, metals or ROS, comes first to initiate

neurodegeneration has not been answered yet. It is

plausible that either transition metal overload or an

imbalance in ROS metabolism alone can trigger

neuronal cell death and mutually reinforce the neuro-

toxic effects. On the other hand, although the antiox-

idants coping with oxidative stress have been

successfully used to inhibit the cytotoxicity of ROS

in cellular or animal models of PD, no antioxidants

have been shown to be effective in clinic. As ROS per

se is important for cellular functions, a delicate control

of ROS homeostasis is critical to combat cytotoxic

ROS. Considering the complexity of physiological

conditions, we envisage that targeted delivery of

antioxidants to the cells with metal overload or under

oxidative stress can provide spatial and temporal

control of intracellular ROS levels. The development

of dopaminergic neuron-specific targeted drug deliv-

ery is urgently needed for the translational research of

PD.
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Götz ME, Double K, Gerlach M, Youdim MB, Riederer P

(2004) The relevance of iron in the pathogenesis of

Parkinson’s disease. Ann N Y Acad Sci 1012:193–208

Greenough MA, Camakaris J, Bush AI (2013) Metal

dyshomeostasis and oxidative stress in Alzheimer’s dis-

ease. Neurochem Int 62:540–555

Guillemin K, Krasnow MA (1997) The hypoxic response:

huffing and HIFing. Cell 89:9–12

Gupta A, Dawson VL, Dawson TM (2008) What causes cell

death in Parkinson’s disease? Ann Neurol 64:S3–S15

Halliwell B (2006) Oxidative stress and neurodegeneration:

where are we now? J Neurochem 97:1634–1658

Han J, Cheng FC, Yang Z, Dryhurst G (1999) Inhibitors of

mitochondrial respiration, iron (II), and hydroxyl radical

evoke release and extracellular hydrolysis of glutathione in

rat striatum and substantia nigra: potential implications to

Parkinson’s disease. J Neurochem 73:1683–1695

He Q, Song N, Xu H, Wang R, Xie J, Jiang H (2011) Alpha-

synuclein aggregation is involved in the toxicity induced

by ferric iron to SK-N-SH neuroblastoma cells. J Neural

Transm 118:397–406

He Q, Song N, Jia F, Xu H, Yu X, Xie J, Jiang H (2013) Role of

alpha-synuclein aggregation and the nuclear factor E2-re-

lated factor 2/heme oxygenase-1 pathway in iron-induced

neurotoxicity. Int J Biochem Cell Biol 45:1019–1030

Healy J, Tipton K (2007) Ceruloplasmin and what it might do.

J Neural Transm 114:777–781

Hengstler JG, Bolm-Audorff U, Faldum A, Janssen K, Reifen-

rath M, Götte W, Jung D, Mayer-Popken O, Fuchs J, Geb-

hard S, Bienfait HG, Schlink K, Dietrich C, Faust D, Epe B,

Oesch F (2003) Occupational exposure to heavy metals:

DNA damage induction and DNA repair inhibition prove

co-exposures to cadmium, cobalt and lead as more dan-

gerous than hitherto expected. Carcinogenesis 24:63–73

Herculano-Houzel S (2011) Scaling of brain metabolism with a

fixed energy budget per neuron: implications for neuronal

activity, plasticity and evolution. PLoS One 6:e17514

Hider RC (1995) Potential protection from toxicity by oral iron

chelators. Toxicol Lett 82–83:961–967

Hirsch EC, Brandel JP, Galle P, Javoy-Agid F, Agid Y (1991)

Iron and aluminum increase in the substantia nigra of

patients with Parkinson’s disease: an X-ray microanalysis.

J Neurochem 56:446–451

Hozumi I, Hasegawa T, Honda A, Ozawa K, Hayashi Y,

Hashimoto K, et al (2011) Patterns of levels of biological

metals in CSF differ among neurodegenerative diseases.

J Neurol Sci 303:95–99

Hu Y, Tong YR (2010) A trojan horse for Parkinson’s disease.

Sci Signal 3:pe13

Hu Y, Liu J, Wang JF, Liu QS (2011) The controversial links

among calorie restriction, SIRT1, and resveratrol. Free

Radic Biol Med 51:250–256

Huang HC, Hong L, Chang P, Zhang J, Lu SY, Zheng BW, Jiang

ZF (2015) Chitooligosaccharides attenuate Cu2?-induced

cellular oxidative damage and cell apoptosis involving

Nrf2 activation. Neurotox Res 27:411–420

Hung LW, Villemagne VL, Cheng L, Sherratt NA, Ayton S,

White AR et al (2012) The hypoxia imaging agent

CuII(atsm) is neuroprotective and improves motor and

Biometals (2016) 29:665–678 675

123



cognitive functions in multiple animal models of Parkin-

son’s disease. J Exp Med 209:837–854

Jayaram HN, Kusumanchi P, Yalowitz JA (2011) NMNAT

expression and its relation to NAD metabolism. Curr Med

Chem 18:1962–1972

Jellinger K, Kienzl E, Rumpelmair G, Riederer P, Stachelberger

H, Ben-Shachar D, Youdim MB (1992) Iron-melanin

complex in substantia nigra of parkinsonian brains: an

x-ray microanalysis. J Neurochem 59:1168–1171

Jenner P (1991) Oxidative stress as a cause of Parkinson’s dis-

ease. Acta Neurol Scand Suppl 136:6–15

Jenner P (1998) Oxidative mechanisms in nigral cell death in

Parkinson’s disease. Mov Disord 1:24–34

Jenner P, Olanow CW (2006) The pathogenesis of cell death in

Parkinson’s disease. Neurology 66:S24–S36

Johnson WM, Wilson-Delfosse AL, Mieyal JJ (2012) Dysreg-

ulation of glutathione homeostasis in neurodegenerative

diseases. Nutrients 4:1399–1440

Jomova K, Vondrakova D, Lawson M, Valko M (2010) Metals,

oxidative stress and neurodegenerative disorders. Mol Cell

Biochem 345:91–104

Jung JY, Roh KH, Jeong YJ, Kim SH, Lee EJ, Kim MS et al

(2008) Estradiol protects PC12 cells against CoCl2-in-

duced apoptosis. Brain Res Bull 76:579–585

Kaur D, Yantiri F, Rajagopalan S, Kumar J, Mo JQ, Boon-

plueang R et al (2003) Genetic or pharmacological iron

chelation prevents MPTP-induced neurotoxicity in vivo: a

novel therapy for Parkinson’s disease. Neuron 37:899–909

Kaur D, Peng J, Chinta SJ, Rajagopalan S, Di Monte DA,

Cherny RA, Andersen JK (2007) Increased murine

neonatal iron intake results in Parkinson-like neurodegen-

eration with age. Neurobiol Aging 28:907–913

Keberle H (1964) The Biochemistry of desferrioxamine and its

relation to iron metabilism. Ann N Y Acad Sci

119:758–768

Kim HJ, Soh Y, Jang JH, Lee JS, Oh YJ, Surh YJ (2001) Dif-

ferential cell death induced by salsolinol with and without

copper: possible role of reactive oxygen species. Mol

Pharmacol 60:440–449

Kim J, Gherasim C, Banerjee R (2008) Decyanation of vitamin

B12 by a trafficking chaperone. Proc Natl Acad Sci USA

105:14551–14554

Kobayashi H, Fukuhara K, Tada-Oikawa S, Yada Y, Hiraku Y,

Murata M, Oikawa S (2009) The mechanisms of oxidative

DNA damage and apoptosis induced by norsalsolinol, an

endogenous tetrahydroisoquinoline derivative associated

with Parkinson’s disease. J Neurochem 108:397–407

Koppenol WH (2001) The Haber-Weiss cycle—70 years later.

Redox Rep 6:229–234

Kostka M, Hogen T, Danzer KM, Levin J, Habeck M, Wirth A

et al (2008) Single particle characterization of iron-induced

pore-forming alpha-synuclein oligomers. J Biol Chem

283:10992–11003

Kotake-Nara E, Saida K (2006) Endothelin-2/vasoactive

intestinal contractor, regulation of expression via reactive

oxygen species induced by CoCl2, and biological activities

including neurite outgrowth in PC12 cells. Sci World J

6:176–186

Kotake-Nara E, Saida K (2007) Characterization of CoCl2-in-

duced reactive oxygen species (ROS): inductions of neu-

trite outgrowth and endothelin-2/vasoactive intestinal

contractor in PC12 cells by CoCl2 are ROS dependent, but

those by MnCl2 are not. Neurosci Lett 422:223–227

Kotake-Nara E, Takizawa S, Quan J, Wang H, Saida K (2005)

Cobalt chloride induces neurite outgrowth in rat

pheochromocytoma PC-12 cells through regulation of

endothelin-2/vasoactive intestinal contractor. J Neurosci

Res 81:563–571

Lan J, Jiang DH (1997) Excessive iron accumulation in the

brain: a possible potential risk of neurodegeneration in

Parkinson’s disease. J Neural Transm 104:649–660

Lan A, Liao X, Mo L, Yang C, Yang Z, Wang X et al (2011)

Hydrogen sulfide protects against chemical hypoxia-in-

duced injury by inhibiting ROS-activated ERK1/2 and

p38MAPK signaling pathways in PC12 cells. PLoS ONE

6:e25921

Lan A, Xu W, Zhang H, Hua X, Zheng D, Guo R et al (2013)

Inhibition of ROS-activated p38MAPK pathway is

involved in the protective effect of H2S against chemical

hypoxia-induced inflammation in PC12 cells. Neurochem

Res 38:1454–1466

Larner F, Sampson B, Rehkämper M, Weiss DJ, Dainty JR,

O’Riordan S, Panetta T, Bain PG (2013) High precision

isotope measurements reveal poor control of copper

metabolism in parkinsonism. Metallomics 5:125–132
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