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Abstract Aspects of manganese metabolism during

normal and acidogenic growth of Aspergillus niger

were explored. Arginase from this fungus was a

Mn[II]-enzyme. The contribution of the arginase

protein towards A. niger manganese metabolism was

investigated using arginase knockout (D-42) and

arginase over-expressing (DXCA-29) strains of A.

niger NCIM 565. The Mn[II] contents of various

mycelial fractions were found in the order: D-42

strain\ parent strain\DXCA-29 strain. While the

soluble fraction forms 60 % of the total mycelial

Mn[II] content, arginase accounted for a significant

fraction of this soluble Mn[II] pool. Changes in the

arginase levels affected the absolute mycelial Mn[II]

content but not its distribution in the various mycelial

fractions. The A. niger mycelia harvested from

acidogenic growth media contain substantially less

Mn[II] as compared to those from normal growth

media. Nevertheless, acidogenic mycelia harbor con-

siderable Mn[II] levels and a functional arginase.

Altered levels of mycelial arginase protein did not

significantly influence citric acid production. The

relevance of arginase to cellular Mn[II] pool and

homeostasis was evaluated and the results suggest that

arginase regulation could occur via manganese

availability.
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Introduction

Manganese is an essential micronutrient found in

almost all biological systems where it functions as a

co-factor for many enzymes (Crowley et al. 2000).

Cellular Mn[II] ions also interact with various

metabolites to form low molecular weight complexes;

some of these function in protection against oxidative

stress (McNaughton et al. 2010). On the other hand,

excessive Mn[II] can be toxic and inhibits growth

(Kosman 1994). Aspects of manganese metabolism

with respect to growth, development and secondary

metabolite production have been studied in a few fungi

(Auling 1994). A lipid phosphatase (Cdc1p) located in

the yeast endoplasmic reticulum is implicated in

Mn[II] metabolism but does not affect cellular Mn[II]

levels (Paidhungat and Garrett 1998). The cdc1

homolog of Neurospora crassa (frost) is involved in

manganese sensitivity and hyphal branching (Sone

and Griffiths 1999). Various mushrooms have been

analyzed for their Mn[II] contents because of their role

in bioaccumulation of metal ions (Tuzen 2003). Our

current understanding of manganese metabolism is
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largely confined to bacteria (Foster et al. 2014) and

among fungi Saccharomyces cerevisiae is well repre-

sented (Reddi et al. 2009). Mn[II] transporters from

the yeast and homologs from N. crassa and Aspergil-

lus fumigatus have also been studied (Bowman et al.

2012; Pinchai et al. 2010).

A large number of enzymes require divalent metal

ions for their activity, but very few of them are

absolutely specific for Mn[II] (Crowley et al. 2000).

Table 1 summarizes the available literature on

enzymes from Aspergilli that can use Mn[II] ions.

With very few exceptions, arginase is a strict Mn[II]

enzyme across organisms (Ash 2004; Mendz et al.

1998). The Aspergillis niger arginase may therefore

find a place in Table 1 as a prominent member with

tightly bound Mn[II] ions. Arginase hydrolyzes

arginine to ornithine and urea. Despite its catabolic

role, significant basal levels of arginase are found in

fungal mycelia grown on minimal media (Dave et al.

2012; Davis 1986). For these reasons, Aspergillus

niger arginase could represent a significant cellular

pool of Mn[II] and its levels could potentially

influence fungal manganese metabolism. While the

global effects of manipulating Mn[II] transport are

obvious, the impact of interfering with cellular Mn[II]

binding proteins on manganese homeostasis is not.

In the present study, the contribution of A. niger

arginase towards manganese metabolism was investi-

gated using arginase knockout (D-42) and arginase

over-expressing (DXCA-29) strains of A. niger. The

cellular arginase protein content influenced the

mycelial Mn[II] levels. This report for the first time

demonstrates the involvement of arginase in the

manganese homeostasis of any organism.

Materials and methods

Strains and growth conditions

The three different fungal strains used in this study

were A. niger NCIM 565 (the parent strain), D-42 (an

arginase knockout) and DXCA-29 (a strain that

constitutively expresses arginase) (Dave et al. 2012).

Preparation of spore inoculum and media (normal

minimal medium—MM and acidogenic medium—

AM) was as earlier (Punekar et al. 1985); all the media

were prepared in de-ionized water. The Mn[II]

Table 1 Enzymes from Aspergilli that require Mn[II] for activity

Enzymea Metal ions that can substitute Mn[II] Reference

Alkaline manganese peroxidase None Kanayama et al. (2002)

Exo-polygalacturonase None Maller et al. (2013)

Manganese superoxide dismutase None MacKenzie et al. (2005)

Prolidase None Jalving et al. (2002)

Adenylate cyclase Not studied Xu et al. (1989)

Carboxymethylcellulase Not studied Siddiqui et al. (1997)

Galactofuranosyltransferase Not studied Komachi et al. (2013)

NADH:Ubiquinone oxidoreductase Not studied Promper et al. (1993)

Oxaloacetase Not studied Ruijter et al. (1999)

Glutamine synthetase Mg[II] Punekar et al. (1985)

Malic enzyme Mg[II] Jernejc and Legisa (2002)

NADP? isocitrate dehydrogenase Mg[II] Kubicek and Rohr (1986)

Oxalate decarboxylase Mg[II] Emiliani and Bekes (1964)

PEP carboxykinase Mg[II] Kawasaki et al. (1995)

b-Glucosidase Fe[II] Gong et al. (2014)

Chitin synthase Mg[II], Ca[II], Co[II] Tatsuno et al. (1997)

Citrate transporter Mg[II], Zn[II], Fe[III] Netik et al. (1997)

Glucoamylase Ca[II] Benassi et al. (2014)

a The enzymes have been grouped according to their Mn[II] requirement
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concentration measured by inductively coupled

plasma atomic emission spectrometry (ICP-AES;

9.2 ± 0.7 lM, n = 4) in typical MM preparations

was close to the value calculated from the MM

composition (10.8 lM). While no explicit Mn[II]

additions were made, the traces contributed by other

media components to AM amounted to 0.1 ± 0.1 lM,

n = 5 (inductively coupled plasma mass spectrome-

try, ICP-MS). Mycelial growth was carried out in

shake flasks (220 rpm) at 30 �C, either for 4 days (on

MM) or for 8 days (on AM). For experiments

involving pure arginase protein, Escherichia coli

BL21 (DE3) (expressing A. niger arginase cDNA

from pETNat) was grown in Luria–Bertani broth (with

ampicillin at 0.1 mg/ml) at 37 �C (Jayashri et al.

2009).

A. niger arginase purification

The E. coli BL21 (DE3) harboring pETNat was

induced with 0.4 mM IPTG for 3 h at 37 �C (Jayashri

et al. 2009). Purification of expressed arginase was

performed in three steps: ammonium sulfate precip-

itation, ion-exchange chromatography using DEAE

Sephacel and gel filtration chromatography. All steps

except gel filtration were performed at 4 �C. The cell
lysates were prepared in Buffer A (200 mM imida-

zole�HCl, 12 mM MnSO4, 2 mM 2-mercaptoethanol,

1 mM PMSF, pH 7.5). The crude extract was

subjected to 0–30 % and further 30–60 % ammonium

sulfate fractionation. The pellet obtained was dis-

solved in Buffer B (25 mM imidazole�HCl, 1.2 mM

MnSO4, 2 mM 2-mercaptoethanol, pH 7.5) and loaded

onto DEAE Sephacel (Pharmacia LKB, Uppasala,

Sweden) column. Elution was performed with a linear

gradient of zero to 0.8 M KCl and arginase activity

eluted around 0.4 M KCl. The peak activity fractions

were pooled, ammonium sulfate precipitated and

loaded onto Superdex 200 (HiLoad 16/60 prep grade,

GE Healthcare, United Kingdom) gel filtration

column, using 25 mM HEPES�NaOH at pH 7.5. The

Mn[II] ions were not included in this final step of

purification. This ensured that purified arginase pro-

tein containing only tightly bound metal ions was

isolated. Suitably chosen active fractions from this

column when pooled, provided the purified arginase

protein. The purified arginase protein was a hexamer

with a subunit molecular weight of about 40 kDa.

Preparation of arginase apo-enzyme

De-ionized water was used throughout for metal ion

stoichiometry and Mn[II] interaction studies. When-

ever the purified protein was needed for Mn[II]

interaction/specificity studies MnSO4 was omitted

from the gel filtration buffer (as above). The apoen-

zyme form was prepared using a reported protocol

(Lopez et al. 2005) with some modifications. Pure

arginase protein was incubated with 25 mM EDTA

and 3.0 M guanidinium hydrochloride in 10 mM Tris

HCl (pH 7.5) for 1.0 h at 25 �C. The sample was

immediately desalted using HiPrep 26/10 desalting

column (GE Healthcare) into 25 mM HEPES NaOH

buffer (pH 7.5) at 4 �C. The protein thus obtained had
negligible arginase activity in absence of MnSO4 and

was used as the apoenzyme.

Mn[II] estimation and calculations

All glassware required during mycelial growth and

other steps of Mn[II] estimation were washed with

20 % HNO3 and rinsed with de-ionized water. The

mycelia after filtration on muslin cloth were washed

(five times with de-ionized water), blot dried and

stored at -20 �C. Corresponding samples were also

dried in a hot air oven to constant weight and stored at

-20 �C. Crude extracts were prepared in Buffer A

(but without MnSO4), from wet weight samples by

crushing frozen mycelia in a pre-chilled mortar and

pestle, using acid washed sea sand. For obtaining the

soluble fraction devoid of macromolecule ligands,

crude extracts were ultra-filtered using a 3 kDa cut off

filtration device (Pall Corporation, USA). The strategy

for fractionation and the actual fractions analyzed are

shown Fig. 1.

For Mn[II] analysis, the samples were digested in a

microwave digester. The samples (about 1.0 g of

mycelia or 1.0 ml of protein/extract ? 6 ml

HNO3 ? 0.4 ml H2O2 ? 6 ml H2O) were digested

at 800 W (20 min), 1600 W (20 min), 0 W (20 min).

The digested sample was analyzed by ICP-AES or

ICP-MS.

The following conversion factors were used to

compute physiological Mn[II] concentrations. (i) For

mycelia grown on MM, 1.0 g dry weight = 2.54 ml

intracellular volume (Slayman and Tatum 1964), (ii)

for mycelia grown on AM, 1.0 g wet weight =

0.175 ml intracellular volume (Legisa and Kidric
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1989). The following average wet and dry weight

inter-conversions were arrived at experimentally.

(i) For mycelia grown on MM, 1.0 g dry

weight = 5.0 g wet weight, (ii) for mycelia grown

on AM, 1.0 g dry weight = 2.9 g wet weight. The

proportion of Mn[II] in various fractions was calcu-

lated using the following formulae:

(1) Soluble fraction ¼ Total solubleMn½II� in lM
Total mycelialMn½II� inlM

(2) ‘Soluble:unbound’ fraction

¼ ng Unbound Mn[II]=mg protein
ng Total soluble Mn[II]=mg protein

�Soluble fraction

(3) ‘Soluble:bound’ fraction ¼ Soluble fraction

�‘Soluble:unbound’ fraction

Arginase assay

Arginase activity was monitored by measuring urea

according to Archibald’s method (Dave et al. 2012).

The standard assay conducted at 37 �C involved a pre-

incubation step with 0.8 mM MnSO4 for 10 min,

followed by addition of buffered arginine (150 mM)

and incubation for 15 min. Unless stated otherwise,

arginase assays were performed at pH 7.5 and in

presence of 1 mg/ml BSA. One unit (U) of arginase is

the amount of enzyme that liberates 1.0 lmol of urea

per min under the respective assay conditions.

Estimations

Citric acid in the spent medium was estimated by an

enzymatic (citrate lyase) method as earlier (Dave et al.

2012). Protein estimation was done with the Bradford

method (Bradford 1976) using bovine serum albumin

as a standard. For metal stoichiometry analysis,

arginase protein concentration was additionally mea-

sured using the extinction co-efficient (280 nm) of

25,440 M-1 (obtained from ExPASy ProtParam

software).

Western blot

Arginase protein from A. niger crude extracts was

detected after the samples were run using native

polyacrylamide gel electrophoresis. An enriched

anti-arginase from rabbit serum served as the

primary antibody. The anti-rabbit IgG tagged with

alkaline phosphatase was used and detected using

Nitro-blue tetrazolium/5-bromo-4-chloro-30-in-
dolylphosphate (Roche Diagnostics, Mannheim,

Germany). The band intensities were quantified

using ImageJ software.

Fig. 1 Strategy to assess the distribution of Mn[II] ions in mycelial fractions. The Mn[II] concentration in the fractions highlighted in

gray were experimentally measured
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Results and discussion

A. niger arginase is a Mn[II] activated enzyme

The A. niger arginase was expressed in E. coli BL21

(DE3) and purified in a buffer without Mn[II] ions.

This enzyme showed significant activity even without

Mn[II] added in the standard assays (see Materials and

methods). The activity was enhanced further (about

5-fold) by including 0.8 mM of Mn[II] ions in the

assay (Fig. 2a). Analysis of such an enzyme prepara-

tion by ICP-MS indicated that Mn[II] was the major

metal ion tightly bound to the enzyme (Table 2) and a

Mn[II] stoichiometry of about 3 Mn[II] ions per

hexamer could be calculated. This stoichiometry is

lower than that observed for mammalian arginases

(one Mn[II] per subunit) (Orellana et al. 2002),

whereas a much lower value is reported for the N.

crassa arginase (Davis 1986).

The A. niger enzyme preparation (containing only

the tightly bound Mn[II]) was also assayed by addition

of different metal ions; the activity with Mn[II] was

the highest followed by Ni[II] and Co[II], while Zn[II]

showed a slight inhibitory effect (Fig. 2a). However,

the apo-enzyme form generated by stripping off the

tightly bound Mn[II] ions, was virtually inactive in the

absence of added metal ions. The apo-enzyme was

maximally activated by Mn[II] followed by Ni[II] and

Co[II] (Fig. 2b). Clearly, the A. niger arginase prefers

Mn[II] for optimal activity. The protein does retain

tightly bound Mn[II] and is best activated by pre-

incubation with Mn[II] ions; the pre-incubation may

allow the weaker Mn[II]-binding sites to be occupied.

Removal of the tightly bound metal ion appears to

affect arginase irreversibly since the activity of the

apoenzyme could not be fully reconstituted by pre-

incubation with Mn[II] ions (Fig. 2). The metal ion

preference is similar to that for well-studied arginases

(Ash 2004), whereas Helicobacter pylori and Bacillus

anthracis arginases are exceptions and prefer Co[II]

and Ni[II], respectively (Mendz et al. 1998; Viator

et al. 2008).

Arginase and mycelial Mn[II] levels in A. niger

The A. niger arginase is a Mn[II] enzyme and displays

Mn[II] specificity in vitro. It was of interest to see if

this translates into an effect on Mn[II] metabolism of

the fungus. The contribution of the arginase protein

towards A. niger manganese metabolism was investi-

gated using arginase knockout (D-42), arginase over-

expressing (DXCA-29) strains and the parent A. niger

NCIM 565. Both the arginase activity (Dave et al.

2012) as well as the arginase protein (Fig. 3) in the

three strains grown onMM, followed the pattern, D-42

(none)\NCIM 565\DXCA-29. Since these strains
differ only in their arginase protein contents, any

change in Mn[II] levels could be attributed either

directly or indirectly to arginase itself. The total

Mn[II] content of D-42 strain was 10 % lower while

that of DXCA-29 strain was 15 % higher than in the

parent strain (Fig. 4a).

A systematic analysis of the Mn[II] content of

various A. niger mycelial fractions (Fig. 1) was

Fig. 2 Metal ion specificity of A. niger arginase. The arginase

activity was measured in the presence of different metal ions

(0.8 mM, as chlorides) for a purified arginase and b apoenzyme

form of purified arginase Data are representative of two

independent experiments (each performed in duplicates)

Table 2 Estimation of metal ions bound to purified A. niger

arginase

Metal iona Me[II] subunit-1 Me[II] hexamer-1

Mn[II] 0.45 2.72

Co[II] 0.01 0.06

a The divalent metal ions (Me[II]) were estimated by ICP-MS
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undertaken. The total mycelial Mn[II] was broadly

divided into particulate and soluble components. The

soluble component consists of Mn[II] ions: (a) bound

to various macromolecules (‘soluble.bound’) and

(b) free in solution consisting of all Mn[II] species

either unbound or complexed with small cellular

metabolite chelators (‘soluble.unbound’). This ill-

defined Mn[II] buffer consists of small molecules

such as amino acids, glutathione, organic acids and

inorganic ligands (Foster et al. 2014). The arginase

content of A. niger mycelia significantly affected the

total soluble as well as the ‘soluble.unbound’ Mn[II]

levels (Fig. 4). This was anticipated since arginase is a

cytosolic protein. Accordingly, the total soluble

Mn[II] in D-42 strain was 30 % lower than in the

parent strain; and it was 55 % higher in the DXCA-29
strain (Fig. 4b). The ‘soluble.unbound’ Mn[II] levels

in these three strains also followed a similar pattern

(Fig. 4c). The results indicate that arginase protein

levels influence mycelial Mn[II] levels. It is therefore

likely that arginase may well function as a Mn[II]

reservoir in A. niger. Fungal cytosolic arginine

concentration during growth on MM (as was done

here) is too low for significant catabolism by arginase

(Davis 2010). Therefore, the effect of arginase on

manganese metabolism appears to be independent of

its catalytic function. This is the first study of arginase

involvement in manganese metabolism and the effects

are significant. The only other example which con-

sidered the effect of a Mn[II]-enzyme on Mn[II]

metabolism is manganese superoxide dismutase (in

yeast, E. coli andDeinococcus radiodurans); but there

appears to be no agreement on the extent of superoxide

dismutase contribution to cellular Mn[II] pools

(Sharma et al. 2013; Tabares and Un 2013).

Interestingly, changes in the arginase content

affected the absolute Mn[II] levels but not its distri-

bution in the three fractions (Fig. 5). About 60 % of

Fig. 4 Mn[II] contents in various fractions of A. nigermycelia.

a Total mycelial Mn[II] normalized with mycelial dry weight

(d.w.), *P\ 0.01, n = 13, **P\ 0.05, n = 8, b total soluble

Mn[II] normalized with protein content in the crude extract,

*P\ 0.1, n = 6; **P = 0.05, n = 6, c ‘soluble.unbound’

Mn[II] normalized with protein content in the corresponding

crude extract, *P\ 0.1, n = 4. Results are presented as

average ± SEM. P values are from paired t tests performed

with corresponding Mn[II] values of NCIM 565 within the same

experiment. Samples for a and bwere analyzed by ICP-AES and
c by ICP-MS

Fig. 3 Western blot of crude extracts of the three strains of A.

niger. Crude extracts of strain D-42, strain NCIM 565, strain

DXCA-29 were loaded as equal amount of protein (45 lg). Pure
arginase protein (0.19 lg) served as positive control

100 Biometals (2016) 29:95–106

123



the total Mn[II] was in the soluble fraction while the

remaining 40 % as the insoluble (particulate) form.

About 20 % of the total Mn[II] was unbound to any

macromolecular ligand (‘soluble.unbound’). This dis-

tribution of Mn[II] ions in the soluble versus the

insoluble fractions is similar to that of Saccharomyces

carlsbergensis (Okorokov et al. 1977). A higher level

of control(s) seems to operate in sub-cellular man-

ganese distribution in fungi.

Arginase kinetics under physiological Mn[II]

concentrations

From the Mn[II] measurements reported above, the

physiological concentrations of Mn[II] in A. niger

NCIM 565 could be computed, albeit with certain

assumptions about intracellular volume (see Materials

and methods). The total mycelial Mn[II], soluble

Mn[II] and ‘soluble.unbound’ Mn[II] concentrations

of 100, 60 and 20 lM, respectively were estimated.

The total A. niger mycelial Mn[II] concentration is

comparable to that in S. cerevisiae (Luk and Culotta

2001). Much higher concentrations were found in D.

radiodurans (radiation resistance; Sun et al. 2010) and

mushrooms (metal bioaccumulation; Tuzen 2003).

Near physiological concentrations of arginine and

Mn[II] when used, are known to significantly influ-

ence the observed kinetic parameters in some

arginases (Carvajal et al. 1982; Davis et al. 1978;

Maggini et al. 1992). A knowledge of mycelial Mn[II]

distribution permitted the kinetic evaluation of A.

niger arginase under near-physiological conditions.

The enzyme would experience around 20 lM of

Mn[II] ions in the cytosol. Therefore, arginine satu-

ration was performed at this near in vivo Mn[II]

concentration; the saturation was hyperbolic with a

KM for arginine of 20 mM and a Vmax of around 200

U/mg protein (Fig. 6a). The near-physiological Mn[II]

concentrations appear adequate for efficient function-

ing of arginase over a wide range of arginine

concentrations. At 150 mM arginine, pure arginase

displayed a hyperbolic activity pattern over an initial

range of Mn[II] concentrations; a Mn[II] dissociation

constant (KMn[II]) of 15 lM was obtained (Fig. 6b).

Higher concentrations ofMn[II] were inhibitory with a

KI of 250 lM. Since the pure protein contains tightly

bound Mn[II] as well (see earlier section), the KMn[II]

determined byMn[II] saturation represents the affinity

Fig. 6 Arginase kinetic features under simulated physiological

conditions. a Arginine saturation of purified arginase with

20 lM Mn[II] in the assay. b Mn[II] saturation kinetics using

150 mM arginine. Circles represent actual data points while the

line represents the best fit using SigmaPlot 11.2 Enzyme

Kinetics software. Data are representative of three independent

experiments, each performed in duplicates

Fig. 5 The distribution of mycelial Mn[II] in A. niger: The

proportions of Mn[II] in the ‘soluble.bound’ (gray), ‘solu-

ble.unbound’ (white) and insoluble (black) fractions have been

shown. The total soluble component includes the ‘solu-

ble.bound’ and the ‘soluble.unbound’ fractions. The proportions

were derived from data in Fig. 4, see ‘‘Materials and methods’’

section for details of calculations
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of arginase to loosely bound Mn[II]. Interestingly, the

KMn[II] closely mirrors the ‘soluble.unbound’ Mn[II]

concentration in A. niger. Yet another key enzyme

from this fungus namely, glutamine synthetase also

responds to Mn[II] concentration in the lower lM
range (Punekar et al. 1985). That arginase activity

in vivo can be modulated by changes in Mn[II]

availability appears feasible. This may hold particular

significance when the fungus experiences diverse

Mn[II] environments.

The A. niger arginase is a cytosolic enzyme. Based

on the observed values for KMn[II] and [Mn[II]]

(15 lM and 20 lM, respectively), the Mn[II] binding

equilibrium for arginase (at the looselyMn[II]-binding

site) could be estimated. About one half of the total

arginase protein in A. niger (grown on MM) would be

in fully Mn[II]-bound state. The rest would contain

only the tightly boundMn[II]. The actual proportion of

fully Mn[II]-saturated arginase will depend on the

concentration of free Mn[II] in the fungal cytoplasm.

The cytosolic manganese availability can vary

because of factors such as sequestration by the fungal

vacuole (Okorokov et al. 1977; Reddi et al. 2009),

buffering by polydisperse metal ion buffers and other

environmental cues (Foster et al. 2014). For instance,

the Mn[II] levels in a bacterial cytosol can vary; the

Mn[II] is elevated in response to oxidants, to correctly

metallate manganese superoxide dismutase (Imlay

2014).

Acidogenesis—an altered Mn[II] metabolism?

Acidogenesis (citric acid production) is a well known

example of Mn[II]-deficient growth of A. niger. This

process is highly sensitive to the presence of Mn[II]

ions in the growth medium; presence of C50 ppb of

Mn[II] reduce citric acid yields significantly in various

strains of A. niger (Karaffa and Kubicek 2003).

However, the primary roles of Mn[II] deficiency in

citric acid accumulation remain unclear even today.

We therefore analyzed A. niger NCIM 565 mycelia,

harvested during maximal growth phase on AM (48 h)

and MM (24 h), for their Mn[II] content. The mycelia

committed to acidogenic growth contained about

8-fold lower Mn[II] content (in both the total and the

soluble fractions) when compared to normal mycelia

(Table 3). The proportion of Mn[II] ions in the

mycelial soluble fraction was similar when the fungus

was grown either on AM or onMM. Nevertheless, this

Mn[II] content of acidogenic mycelia is notable as it is

found despite the fact that AM is a manganese limited

growth medium (see Materials and methods). The

growth of A. niger is very sensitive to Mn[II]

availability and its ability to cadge this micronutrient

was exploited for manganese bioassay (Sulochana and

Lakshmanan 1968). Efficient and specific manganese

transporter(s) is reported to function under citric acid

production conditions (Hockertz et al. 1987). The

degradation of Mn[II] transporters may be inhibited in

yeast starved of manganese (Bleackley and Macgil-

livray 2011). Such factors may be at play and thereby

resulting in significant mycelial Mn[II] levels during

acidogenic growth of A. niger.

Arginase during acidogenic growth

In terms of mechanistic details, citric acid fermenta-

tion by A. niger continues to be an enigma. Many

morphological, physiological and biochemical studies

are reported over the years to explain acidogenesis.

These include bulbous, branched mycelia with pellet

morphology, metabolic and enzyme regulation at the

level of glycolysis, Krebs cycle and sub-cellular

compartments, altered membrane phospholipids and

b-glucan content of the cell wall etc., (Karaffa and

Kubicek 2003). These effects are a cumulative

outcome of the fermentative growth of A. niger on

AM and not addressed by manganese limitation alone.

Despite extensive physiological/biochemical litera-

ture the metabolic circuits leading to acidogenesis are

ill defined; the contribution from nitrogen metabolism

is poorly understood (Kubicek and Rohr 1986; Papa-

gianni et al. 2005; Punekar et al. 1985). A possible

involvement of A. niger arginase in the acidogenic

metabolism is suggested by the following:

Table 3 Mn[II] levels in acidogenic mycelia of A. niger

NCIM 565

Fraction Content

(lg Mn[II]/g d.w.)

Concentrationa

(lM)

On MM On AM On MM On AM

Total mycelial 14.2 1.8 100 65

Soluble 8.7 1.3 60 48

a See ‘‘Materials and methods’’ section for conversion factors

used for calculating mycelial concentrations. Mycelia grown

on MM and AM were analyzed by ICP-AES and ICP-MS,

respectively
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(a) acidogenesis is a manganese sensitive process and

manganese deficiency leads to elevated amino acid

pools (and arginine in particular) during acidogenic

growth (Kubicek and Rohr 1986), (b) arginase is a

Mn[II] enzyme and its levels influence the fungal

Mn[II] pool (this study) and (c) arginase is the sole

route for arginine degradation in this fungus (Dave

et al. 2012).

Arginase activity could be detected in A. niger

NCM 565 mycelia throughout the course of growth on

AM. The arginase content (expressed as total U/g wet

weight) was lower in acidogenic mycelia when

compared to mycelia grown on MM (Fig. 7, top

panel). However, the arginase specific activity pat-

terns were comparable on the two growth media

(Fig. 7, bottom panel). Growth on AM results in very

different mycelia morphology and significantly low-

ered protein content and intracellular volume per unit

biomass (see Materials and methods). Clearly, active

arginase protein does exist during acidogenic growth

and sufficient Mn[II] is available in these mycelia (see

Table 3; Figs. 6a, 7) for arginase to function in vivo.

Therefore, it is unlikely that elevated arginine pools

observed during acidogenic growth is due a compro-

mised arginase activity because of Mn[II] deficiency.

Comparable citrate yields (between 6 and 10 mM)

were obtained for NCIM 565, D-42 and DXCA-29
strains of A. niger, suggesting that lack or over-

expression of arginase did not affect the ability of the

fungus to produce citric acid. The A. niger NCIM 565

studied here produces citric acid but is not an industrial

strain. While it may be worthwhile extending this

study to other high yielding A. niger strains, that there

is a strain-to-strain variation in the manganese effect

(for example, see Gupta and Sharma 1995) makes the

analysis difficult.

Arginase and Mn[II] toxicity

Variations in mycelial Mn[II] pools consequent to

altered arginase levels can potentially influence

aspects of fungal physiology including Mn[II] toxic-

ity. The effect of a range of Mn[II] concentrations on

the growth of A. niger on MM was assessed. Despite

their differences in mycelial Mn[II] levels, the three

Fig. 7 Arginase activity during acidogenic and normal growth

of A. niger. Arginase total activity (top panel) and arginase

specific activity (bottom panel) in mycelia grown on AM (open

circles) and MM (filled circles) were measured. The arginase

assays were performed at pH 10.6 using 1 mM MnSO4. Citric

acid concentration in the spent medium at the corresponding

time points for AM (open triangles) and MM (filled triangles) is

shown in the bottom panel. Data are representative of three

independent experiments, each performed in duplicates

Fig. 8 Effect of Mn[II] on growth of A. niger strains. Radial

growth (after point inoculation with equal number of conidia)

was recorded at 60 h as a function of Mn[II] concentration

supplemented to MM. High Mn[II] concentrations made the

MM turbid and subsequent radial growth was surrounded by

zones of clearance possibly due to chelation of Mn[II] ions by

secreted organic acids. (0.01 mM of Mn[II] is normally present

in MM)
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A. niger strains (D-42, NCIM 565 and DXCA-29)
showed similar growth and Mn[II] toxicity profiles

(Fig. 8). Concentrations higher than 5 mM were toxic

to A. niger. The intracellular Mn[II] contents are

affected in the Mn[II] transport mutants of S. cere-

visiae and D. radiodurans and they display signifi-

cantly altered growth responses to Mn[II] toxicity

(Lapinskas et al. 1995; Sun et al. 2010). The mycelial

Mn[II] pool changes due to differing arginase levels

may not be this drastic and the effects may become

apparent only under specific physiological states.

Fungal vacuoles play a significant role is sequestering

Mn[II] ions (Okorokov et al. 1977) and may account

for masking any growth effects in these A. niger

strains. Nevertheless, a change in cellular Mn[II]

levels may have implications for manganese home-

ostasis (Reddi et al. 2009) and/or mis-metallation of

enzymes (Foster et al. 2014).

Conclusions

Access to three A. niger strains (D-42, NCIM 565 and

DXCA-29)which differ in their arginase content served
to evaluate the contribution of arginase to manganese

metabolism of this fungus. Changes in the cellular

arginase protein and the total Mn[II] content were

directly correlated. The A. niger arginase is a Mn[II]-

enzyme and forms an important fraction of soluble

Mn[II] pool of the mycelia. Despite the manganese

deficient nature of AM, acidogenic mycelia harbor

significantMn[II] levels and a functional arginase. This

study brings out the relevance of arginase in cellular

Mn[II] homeostasis and suggests that arginase regula-

tion could occur via manganese availability.
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