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Abstract The widespread occurrence of cadmium

in the environment continues to pose a threat to

human health despite attempts at limiting its techno-

logical uses. The biologically significant ionic form

of cadmium, Cd2?, binds to many bio-molecules and

these interactions underlie the toxicity mechanisms of

cadmium. Some of the molecules specialized in the

handling of alkaline earth (Mg2?, Ca2?) and transi-

tion metal ions (e.g. Zn2?, Cu2?/?, Fe3?/2?) should

be particularly sensitive to the presence of Cd2?,

because they enclose cationic sites to which the toxic

metal can bind. The possible molecular targets of this

kind for cadmium are considered herein. Whereas in

vitro evidence for native cation replacement by Cd2?

in bio-molecules has been largely provided, the

demonstration of such occurrences in vivo is scarce,

with the notable exception of metallothionein. One

reason might be that realistic low-level Cd2? con-

taminations involve cellular concentrations far smal-

ler than those of endogenous cations that usually

saturate their binding sites. It is very likely that

cadmium toxicity is most often mediated by biolog-

ical systems amplifying the signals triggered by the

presence of Cd2?. The interference of Cd2? with

redox sensitive systems acting at the transcriptional

and post-transcriptional levels is instrumental in such

processes. A better understanding of cadmium toxic-

ity to tackle the environmental challenges lying ahead

thus requires properly designed studies implementing

biologically relevant cadmium concentrations on

different cell types, improved knowledge of the

homeostasis of essential metals, and use of these

data in a theoretical framework integrating all cellular

aspects of cadmium effects.
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Abbreviations

DMT1 Divalent metal-ion transporter 1

(SLC11A2)

FPN Ferroportin (SLC40A1)

FT Ferritin

Hepc Hepcidin

IRP Iron regulatory protein(s)

MAPK Mitogen activated protein kinases

MT Metallothionein(s)

MTF-1 Metal-response element-binding

transcription factor

PKC Protein kinase C
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PPIX Protoporphyrin IX

ROS Reactive oxygen species

HO-1 Heme oxygenase 1

SOD Superoxide dismutase

Tf Transferrin

ZnT Zinc transporter (SLC30)

ZIP Zinc regulated and iron regulated metal

transporter-like protein(s) (SLC39)

Introduction

Cadmium is a widespread metal contaminating many

areas, either naturally or because of industrial use

(Lane and Morel 2000; Pan et al. 2010). Although

some forms of life adjust to the presence of this metal

(Morel 2008), most biological effects of cadmium are

deleterious, particularly to mammals and other spe-

cies located at the top of the evolution tree. The

modes of exposure to cadmium and its health effects

are considered elsewhere, e.g. (Järup and Åkesson

2009; Johri et al. 2010; Pan et al. 2010; Satarug et al.

2010; Nawrot et al. 2010).

Cadmium toxicity has historically been closely

associated with zinc homeostasis and oxidative stress

in mammalian cells. The reasons for this association

are to be found in the protection often afforded by

zinc against the deleterious consequences of cad-

mium exposure, as most recently restated (Jacquillet

et al. 2006; El Heni et al. 2009; Rogalska et al. 2009),

and in the chemical similarities between the two

metals. Experimental evidence for a shift of the

cellular redox balance induced by cadmium abounds

(Liu et al. 2008; Cuypers et al. 2010), and zinc has

well established antioxidant properties (Maret 2008).

The cellular redox potential depends on a large

number of parameters, but most transition metals

bearing unpaired electrons are very efficient catalysts

to convert relatively inert species into highly oxidiz-

ing compounds (see below Cadmium toxicity and

pathways modulating the homeostasis of essential

metals). Thus, deregulation of the homeostasis of

transition metals by cadmium, and cellular cadmium

traffic via pathways dedicated to transition metals

contribute to the toxicity mechanisms of cadmium.

The aim of the present review is to examine

cadmium toxicity interfering with the homeostasis of

essential metal cations in animal cells. The field of

metal homeostasis has been booming over the last

10–15 years, and many aspects of it are regularly

reviewed in details, as are new developments in

cadmium toxicity. They will not be reproduced here.

It is hoped that drawing the attention of readers to the

complex interplay between cellular handling of

essential and toxic metal cations will stimulate work

aiming at integrating experimental data into thorough

descriptions of the cellular behavior under cadmium

stress. Also, general concepts and observations will

be considered in priority, and the cellular context in

which they are relevant will only be indicated when

restrictions are important. Last, mainly biochemical

and cellular mechanisms of cadmium toxicity will be

presented, setting aside other interesting aspects of

cadmium toxicity that can be easily found elsewhere,

e.g. (Bhattacharyya 2009; Byrne et al. 2009; Edwards

and Prozialeck 2009; Järup and Åkesson 2009; Liu

et al. 2009; Hartwig 2010; Nawrot et al. 2010; Johri

et al. 2010; Satarug et al. 2010).

Replacement of biological metals by cadmium

An important aspect in exploring the mechanisms of

cadmium toxicity is to identify the most likely binding

sites for the toxic cation. Among them, the active sites

of different metalloproteins are prominent candidates

as they are designed to accommodate metal cations

(Fig. 1). Zinc and cadmium belong to the same

column of the periodic table. Both do not change

oxidation states (their d electronic layer is full) and

they occur as divalent cations in biological environ-

ments. A large diversity of bio-molecules can be

ligands of these divalent cations, as functional groups

with sulfur, nitrogen, or oxygen binding atoms can all

contribute to the first coordination sphere of cadmium.

For instance cadmium in metallothionein (MT) is

exclusively bound to sulfur, but cadmium coordina-

tion is mixed in one zinc site of alcohol dehydrogenase

(Fig. 1), or several zinc finger proteins. Also, replace-

ment of calcium ions by cadmium defines a mainly

oxygenated environment for the cation (Fig. 1).

Hydrolysis of water coordinated to cadmium is ca.

one order of magnitude faster than in the case of zinc

or most other ions of transition metals. This rate

constant is similar for cadmium and calcium. The

ionic radius of Cd2? is ca. 20% larger than that of
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Zn2?, but within 5% of that of Ca2? in similar

environments. All these chemical properties contrib-

ute to the dynamics of cadmium trafficking by ligand

exchange. The diversity of cadmium ligands implies

that many cation binding sites can accommodate

Cd2? under favorable conditions as can be achieved

in vitro. Although no strict general rule can be drawn

from the available data on proteins, cadmium binding

to mainly oxygen/nitrogen sites is generally weaker

than binding of the natural cation. This is the case for

the angiotensin-converting enzyme 1, for instance,

with a two orders of magnitude difference between

the apparent affinity constants of zinc and cadmium

(Carvalho et al. 1995). When the number of sulfur

atoms increases in the coordination sphere, so does

the association constant. Demonstration of this trend

is given by the variants of a zinc finger consensus

peptide: the peptide providing a His2Cys2 coordina-

tion sphere to zinc is more stable than with any other

metal tested, whereas that with a Cys4 site binds

cadmium more tightly. The affinities of zinc and

cadmium to the HisCys3 site are similar (Berg and

Godwin 1997).

Although many Cd2?-bound species can be

obtained in vitro in the presence of large metal

excess with pure bio-molecules (Fig. 1), demonstra-

tion of their occurrence in vivo, in mammalian cells

in particular, is not an easy task. To give a single

example among many, the inhibition of the transcrip-

tion factor p53 by cadmium, and other metals, has

been evidenced, including in MCF7 human breast

carcinoma cells, and cadmium interacts with the

protein (Méplan et al. 1999). However, the actual

proof of zinc replacement by cadmium in the protein

was not provided, and means to probe this aspect

were not implemented by the authors (Méplan et al.

1999, 2000). The conformational change induced by

cadmium (and other inhibitory metals) to give the so-

called ‘‘mutant’’ conformation may even be taken as

a sign of alternative binding for cadmium, since

isostructural replacement of zinc at HisCys3 binding

sites should not strongly impact folding (Berg and

Godwin 1997). Therefore, cadmium does inhibit p53,

including in cells (Méplan et al. 1999, 2000), but this

may not occur by the strict replacement of zinc. Of

particular interest in this respect is the report

Fig. 1 Structures of cadmium-substituted active sites of zinc

and calcium proteins, and other examples of zinc-binding sites

in proteins. LADH: liver alcohol dehydrogenase, native (zinc)

and cadmium-substituted catalytic site, Protein Databank ID

1HET and 1HEU, respectively. PARV: native (calcium) and

cadmium-substituted carp parvalbumin, PDB ID 5CPV and

1CDP, respectively. Lck: SH3 domain of human tyrosine

kinase Lck (2IIM). Note that the two residues on top (His70

and Gly58) belong to different polypeptides than the two

(Asp79 and His 76) at the bottom. Cu–ZnSOD: Cu-Zn human

superoxide dismutase (2VOA). Atoms color code for central

metal ions: zinc, gray; cadmium, magenta; copper, orange;

calcium, light gray; for ligand atoms: blue, nitrogen; red,

oxygen; green, carbon; yellow, sulfur. This Figure was

prepared with the PyMOL software (http://www.pymol.org)
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indicating that p53 is phosphorylated upon exposing

MCF7 cells to cadmium (Matsuoka and Igisu 2001).

Considering all cadmium substitutions at the metal

sites of metalloproteins performed in vitro and the

scarcity of data demonstrating such occurrences in

vivo, care should be exercised before interpreting

cadmium toxicity data with this simple molecular

explanation. Yet, cadmium replacement of other

metals in cellular proteins do occur, in MT (Margos-

hes and Vallee 1957) or carbonic anhydrase (Lane

and Morel 2000) for instance.

Exposure to cadmium does perturb the homeosta-

sis of other metals, and, reciprocally, cadmium

effects depend on the body status for essential metals

such as iron and zinc. This is regularly observed in a

variety of conditions, e.g. (Nakazato et al. 2008;

Wills et al. 2008; Kippler et al. 2009). A survey of the

relevance of metal homeostasis to cadmium toxicity

follows.

Cadmium toxicity and zinc homeostasis

Schematic overview of zinc involvement

in Biology

Although zinc is classified as a trace element in

Biology, the number and the diversity of biological

molecules with which it forms complexes are amaz-

ing. Rough estimates, mainly based on scans of

sequenced genomes for potential zinc binding sites in

proteins, have given values of zinc-interacting mol-

ecules in the thousands (Maret 2009; Maret and Li

2009). Accordingly, the biological functions in which

zinc takes part include gene expression, cellular

proliferation and differentiation, growth and devel-

opment, apoptosis, and the immune response to name

but a few (Vallee and Falchuk 1993).

Many of these functions rely on the presence of

zinc at the active sites of enzymes (Auld 2001), as

partly illustrated in Fig. 1. It is the case of the

numerous hydrolases, including metalloproteinases,

lyases, and dehydrogenases which leave a ‘free’

(actually water/hydroxide bound) coordination posi-

tion around the zinc atom for substrate binding and

catalysis. Zinc may also occur in combination with

other metals at the active sites of some enzymes such

as superoxide dismutase (SOD) (Fig. 1). Last, other

sites with a full coordination sphere for zinc assist in

protein folding and maturation, without any direct

role in catalysis.

Besides its involvement at the active site of

enzymes, zinc has been more recently associated with

an increasing number of regulatory functions. Zinc

plays a catalytic, inhibitory, or accessory role in

regulatory enzymes such as kinases or phosphatases. It

is a critical part of zinc-finger domains that regulate

scores of protein–protein or protein–nucleic acids

interactions. Furthermore, a single zinc cation can

bind to amino acid side chains belonging to different

proteins, and thus it can act as a cross-linking agent in

the assembly of large protein complexes. This occurs

when lymphocyte protein tyrosine kinase (Lck) is

recruited to the T cell receptor (TCR) complex upon

activation, as recently reviewed (Haase and Rink

2009) and illustrated in Fig. 1. Last, some specialized

cells transiently secrete large amounts of zinc from

acidic vesicles to communicate with nearby cells. For

instance, pancreatic b-cells abundantly accumulate

zinc, probably via ZnT-8 (SLC30A8), in insulin

granules and release them to adjust blood glucose

concentrations (Wijesekara et al. 2009). Genome-wide

association studies between the ZnT8 rs13266634

SNP and (mainly type 2) diabetes (Jansen et al.

2009) support the role of zinc in insulin regulation.

Also, some glutamatergic neurons release zinc in

synapses from vesicles filled via ZnT-3 (SLC30A3)

(Frederickson et al. 2005). This release regulates sev-

eral receptors, such as NMDA (N-methyl-D-aspartate)-,

GABA (c-aminobutyric acid)-, or glycine receptors,

and transporters and it explains the neuromodulatory

action of zinc (Sensi et al. 2009).

From the above summary, it appears that the

biological status of zinc has largely shifted over the

last few years from an exclusively catalytic/structural

element to a significant signaling atom with the role

of second messenger like calcium, in brain function

in particular (Frederickson and Bush 2001).

Molecular components involved in zinc traffic

With respect to the wide range of biological functions

fulfilled by zinc, progress in the identification of the

molecular components responsible for its traffic has

been comparatively slow. A schematic view of

cellular zinc homeostasis is relatively simple, and

most identified participants are likely cadmium

targets (Fig. 2).
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The initial discovery of the mammalian transporter

opposing the zinc-sensitivity of baby hamster kidney

cells (Palmiter and Findley 1995) has been followed

by the identification of a family of genes encoding

ZnT (SLC30). Ten such genes have been found in the

human genome and their products, differing by their

tissue expression and their sub-cellular localization,

exclude zinc from the cytosol (Lichten and Cousins

2009). The mechanism of Zn2? transport by ZnT

remains an open question, but it seems likely that the

traffic of the cation through membranes may be

coupled with that of other ions such as protons, Ca2?,

or Na? (Sekler et al. 2007; Ohana et al. 2009). No

evidence for cadmium transport by any ZnT has been

published.

In a mirroring function, another family of mem-

brane proteins is usually associated with zinc import

into the cytosol. The human genome contains four-

teen genes encoding proteins assigned this function,

and many homologous genes are found in other

organisms (Eng et al. 1998). These transporters are

also involved in the traffic of other metals (Lichten

and Cousins 2009). The detailed transport mechanism

has not been elucidated for all members, but it does

not seem to be coupled to other cations. Rather,

anionic (HCO3
-) symport has been proposed for

ZIP8 and ZIP14 (He et al. 2009). The role of ZIP

transporters in cadmium traffic is considered below

under the ‘‘Cadmium toxicity and manganese homeo-

stasis’’ section.

Despite the large number of ZnT and ZIP trans-

porters, different observations indicate that zinc can

cross membranes via other proteins, such as voltage-

(Gyulkhandanyan et al. 2006) or ligand-gated (Weiss

and Sensi 2000) cation channels, among others.

Interestingly, the evidenced or suspected transporters

for Zn2? obey different transport mechanisms,

whether anti-gradient energy driven, diffusion con-

trolled, or coupled anion- or cation- exchange for

instance (Haase and Beyersmann 2002; Sekler et al.

2007). It means that the actual mediators of Zn2?

transfer through membranes most likely vary with the

detailed cellular conditions, including the actual Zn2?

concentrations on both sides of the considered

membrane, and with the cell type. This variety of

potential Zn2? transporters is another similarity

between Zn2? and Ca2? homeostasis, and Cd2?

toxicity should be considered for all aspects of Zn2?

and Ca2? functions.

Intracellular handling of zinc

The large zinc-binding capacity of MT indicates that

Zn2? is extensively chelated in the cytosol (Maret

and Krę _zel 2007). MT were initially assigned a

detoxifying role (Hamer 1986), of cadmium in

particular, mainly because no data indicating a clear

function were rapidly obtained. It now appears that

MT are involved in at least two major types of

reactions: zinc buffering and zinc exchange between

proteins (Maret and Krę _zel 2007). Furthermore,

increasing intracellular zinc concentrations, and the

ensuing increase in MT production, seem to be

associated with partial translocation of the loaded

protein to the nucleus (Chimienti et al. 2001). The

function of MT redistribution upon heavy zinc load

and in other situations (Beyersmann and Haase 2001)

is not elucidated, but it may provide another level of

regulation of the intracellular zinc concentration.

Considering the tight binding of Cd2? by MT and the

sensitivity of the expression of MT genes to stressful

conditions, these proteins may mediate cadmium

toxicity in various ways (Sabolić et al. 2010),

including by decreasing the zinc buffering ability of

cells in different compartments, by changing the

dynamics of zinc exchanges, and by decreasing the

cellular antioxidant defense.

Cd
Cd?

Cd?

Cd
Cd

Cd

DNA

Zn2+

Zn2+

Zn2+

Fig. 2 Schematic representation of zinc homeostasis relevant

to cadmium toxicity. Arrows indicate the direction of zinc flow.

Targets of cadmium are shown with a Cd symbol within a blue
star for those being demonstrated and within a circle for those

without in vivo experimental evidence. These associations do

not necessarily mean direct interactions between Cd2? and the

indicated target

Biometals (2010) 23:877–896 881

123



Although metal regulation is widespread through-

out all forms of life, only one transcription factor is

believed to be directly (i.e. by direct binding)

responsive to a transition metal in mammalian cells.

This transcription factor is MTF-1 (metal-responsive-

element-binding transcription factor-1), a large mul-

tidomain-protein with a series of six zinc-finger

modules in the DNA binding domain and another part

with transcriptional activation domains (Laity and

Andrews 2007). MTF-1 (up)regulates a range of

genes, with those encoding MT and ZnT-1 prominent

among them (Lichtlen et al. 2001), and it is activated

by different stimuli including, but not restricted to,

high metal (zinc, cadmium, or copper) concentra-

tions. Zinc (Laity and Andrews 2007) and copper

(Chen et al. 2008) ions have been shown to directly

bind to MTF-1. Cadmium binding to the zinc finger

domains, with zinc displacement, seems possible,

although it has not been formally demonstrated in

cells. But cadmium activation of MTF-1 may use

other mechanisms (Saydam et al. 2002; Zhang et al.

2003), as reviewed in (Martelli et al. 2006). Indeed, if

cellular conditions are such that Cd2? expels Zn2?

from MT or if any of these cations activates

transduction pathways regulating MTF-1, activation

of the latter transcription factor may appear as a

direct consequence of cadmium exposure. The com-

plexity of MTF-1 regulation (Lindert et al. 2009)

leaves room for a diversity of mechanisms.

Intracellular zinc stores

None of the known zinc-binding proteins can be

considered a storage protein. The 7:1 stoichiometry of

Zn:MT is on the upper limit of the specific binding

capacity of proteins, and, although many bio-mole-

cules may display non-specific zinc binding sites, no

evidence for heavily zinc-decorated proteins has been

produced up to now. Hence the large intracellular

reservoirs of zinc, that seem mandatory for some

functions such as massive excretion from zinc vesicles

(see Schematic overview of zinc involvement in

Biology), are ill-defined. The sub-cellular zinc distri-

bution spreads over different organelles (Fig. 2) and it

is in dynamic equilibrium (Haase and Beyersmann

2002). Few comparative studies between zinc and

cadmium distributions are available for mammalian

cells. Using fluorescent probes for these metals, both

Cd2? and Zn2? seem to be distributed similarly. For

instance, 5-nitrobenzothiazole coumarin (BTC-5N), a

fluorescent chelator of both of these cations, affords

similar patterns for each of them with clear perinuclear

spots, and an increase of the fluorescent intensity with

the amount of added cadmium (Rousselet et al.

2008b). Such experiments indicate that BTC-5N has

access to cations located in similar places, but it is not

clear if all forms of the metals are visualized with such

fluorescent probes. Therefore, easily mobilized Cd2?,

i.e. the fraction displaced by the probe, overlaps with

easily mobilized Zn2?, but the consequences of

accumulated Cd2? ions on the distribution and

dynamics of exchange of the intracellular Zn2? pools

is not known. This open question should be the topic of

further studies.

Cadmium toxicity and iron homeostasis

Salient features of iron homeostasis relevant

to cadmium toxicity

The knowledge gained about mammalian iron

homeostasis has been tremendous over slightly more

than a decade. The field is regularly covered by

frequent reviews, and only features that can be

predicted or have been demonstrated to be relevant

for cadmium toxicity are recalled here (Fig. 3).

By far, the prominent role of iron in mammalian

biology is to convey oxygen to tissues to fuel the

cellular machinery. Oxygen is bound to hemoglobin

and myoglobin, and erythrocytes are responsible for

its proper distribution throughout the body. Anemia is

among the various symptoms of cadmium intoxication

(Järup 2003; Nordberg 2009), albeit as a relatively late

sign after the onset of cadmium exposure (Rousselet

and Moulis 2008). Erythropoiesis is a complex and

gradual process requiring many different steps and

associated molecular mechanisms, from progenitors to

mature red blood cells in the bone marrow (Tsiftsog-

lou et al. 2009). A major erythropoiesis-stimulating

agent is erythropoietin, a mainly renal-produced and

hypoxia-promoted hormone (Fried 2009). Kidney is a

target organ of cadmium toxicity, and erythropoietin

synthesis is decreased by accumulation of the metal

(Horiguchi et al. 2000). Iron is also found at the active

site of many proteins and enzymes involved in

functions that are critical for life. Therefore mammals,

and most other forms of life, have developed
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sophisticated means to ensure provision of proper iron

concentrations.

Cadmium traffic and iron transport

In contrast to zinc that does not seem to be driven to a

specific organelle for biosynthetic and other needs, a

majority of cellular iron has to reach mitochondria for

heme and iron-sulfur clusters biogenesis (Fig. 3). A

breakthrough in iron homeostasis was the discovery

of the transporter responsible for iron absorption

(Gunshin et al. 1997). This membrane protein

(DCT1, DMT1, Nramp2, or SLC11A2) is likely to

be the main mediator of iron entry for cells exposed

to external sources of iron, such as enterocytes or

pneumocytes (Garrick and Garrick 2009). DMT1 is a

proton symport which displays optimal transport

activity at low pH. DMT1 is not a very selective gate

for iron, and absorption of other cations, including

cadmium, via this transporter has been put forward

(Bressler et al. 2004; Kim et al. 2007). This lack of

selectivity of DMT1 is a major aspect of cadmium

toxicity that has been reported elsewhere (Mackenzie

et al. 2007; Kim et al. 2007) and will not be further

discussed here.

Partly because DMT1 efficiently operates at low

pH, most cells acquiring iron from the circulation rely

on transferrin (Tf) and interaction with its receptor for

their iron supply. The complex is internalized by

endocytosis and iron is liberated at low pH in

endosomes. The oxidation level of Tf-bound iron

being ferric, the highly charged (trivalent) metal ion

has to cross the endosomal membrane to reach the

cytosol. From presently gathered evidence, ferric

iron is first reduced in endosomes (Scheiber and

Goldenberg 1993), probably by the ferric reductase

Steap3 (Ohgami et al. 2005). Thus, ferrous iron

crosses the endosomal membrane, again via DMT1

(Fleming et al. 1998), the same transporter involved in

iron absorption by the body. The endosomal DMT1

form may be translated from an alternatively spliced

transcript (Hubert and Hentze 2002), but none of the

different DMT1 isoforms show strong divalent metal

specificity in reconstituted systems (Mackenzie et al.

2007). Therefore DMT1 may also transport internal-

ized Cd2? from endosomes (Abouhamed et al. 2007)

as it does for external cations. More recently, an

alternative mediator of ferrous iron release from

endosomes and lysosomes has been proposed (Dong

et al. 2008). The TRPML1 (mucolipin 1, also known

as MCOLN1) channel that is mutated in one type (IV)

of mucolipidosis was associated with iron transport,

and a large current was also measured with ferrous

iron in TRPML2 transfected cells (Dong et al. 2008).

Because these channels are not very selective among

divalent cations, they may well help Cd2? permeation

through endosomal/lysosomal membranes, but this

has not yet been addressed.

Distribution of cadmium in the body relies on its

binding to carrier molecules in the circulation. Such

molecules are proteins (Nordberg 2009), and serum

Tf has been shown to bind Cd2? (Harris and Madsen

1988). However, considering the apparent binding

constant for Cd2? compared to Fe3?, the proportion

of Cd2?-bound Tf is probably very small, and the

ability of the Tf receptor to bind and internalize Cd2?

loaded Tf has not been reported. The same is true for

another Tf receptor, cubilin, that is most probably

involved in the catabolism of the protein (Kozyraki

et al. 2001). Cd2? is also bound to other proteins than

Tf in the circulation (Scott and Bradwell 1983).

Among them, Cd2? loaded MT is released by the

liver and it is internalized also by cubilin in cells of

the kidney proximal tubules (Abouhamed et al. 2007;

Nordberg et al. 2009). This pathway contributes to

accumulation of cadmium in the kidneys, but the

interaction with iron homeostasis via this pathway is

not documented.

The few other identified intracellular iron trans-

porters have not been reported to be involved in Cd2?

Cd? Cd?

Cd?

Cd?

Cd?

Cd?

Cd

HO-1Cd

Cd

Cd
Cd

translation

Fig. 3 Schematic representation of iron homeostasis relevant

to cadmium toxicity. The symbols and cautious note of the

legend of Fig. 2 are also valid for this figure. Dotted arrows
point to the proteins, the mRNA of which are regulated by Iron

Regulatory Proteins. Abbreviations: FPN, ferroportin; FTH1-

FTL, FT subunits; Tf, transferrin; TfR1, transferrin receptor;

Hepc, hepcidin
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trafficking. Surprisingly, the Cd2? transport proper-

ties of the only well characterized iron exporter,

ferroportin (FPN or MTP1, Ireg1, SLC40A1), are not

yet known. This membrane protein releases ferrous

iron into the circulation, from enterocytes, macro-

phages, and other cells, and it has a key regulatory

role in systemic iron homeostasis (Ganz and Nemeth

2006). The involvement of FPN in Cd2? distribution

can now be probed with available tools (Rice et al.

2009), and it is of note that upregulation of the

transporter upon Cd2? exposure has been evidenced

in enterocytes, macrophages, neurons, and other cells,

e.g. (Min et al. 2008).

Iron homeostasis: regulation and cadmium

interference

The nutritional iron status has a clear effect on Cd2?

absorption (Åkesson et al. 2002; Ryu et al. 2004). It

follows that the mechanisms of cadmium toxicity

must be considered with reference to the systems

regulating different aspects of iron turnover in the

body. Two specific systems are dedicated to iron

homeostasis.

Systemic iron regulation is commonly associated

with the synthesis and action of hepcidin (Hepc). This

small hormone is mainly produced in the liver where

iron needs and availability are detected, and it targets

FPN for degradation at the basolateral membrane of

enterocytes in particular (Ganz and Nemeth 2006).

Therefore, Hepc represses iron absorption. Regula-

tion of Hepc does not only depend on the iron status,

as modified by anemia or hypoxia, but also on a

number of other signals, such as inflammatory

cytokines, with complex mechanisms that are being

elucidated (Knutson 2009; Lee and Beutler 2009).

Regarding the biochemistry of cadmium toxicity,

Hepc may appear as an easy target of Cd2? as

cysteines make one-fourth of the mature Hepc amino

acid sequence. However, no direct binding of Cd2? to

Hepc has been reported (Tselepis et al. 2010), and the

effects of cadmium on fish Hepc synthesis and

function (Chen et al. 2008) need to be extended to

mammals and rationalized. As Hepc is a secreted

hormone, its cysteines are involved in disulfide

bridges, but the dynamics of this compact structure

(Jordan et al. 2009) may leave room for coordination

of cations under specific conditions (Tselepis et al.

2010). Also, precursor intracellular Hepc is likely to

display free cysteines that may be reactive with any

labile Cd2? present inside Hepc-synthesizing cells. It

will be necessary to discriminate between potential

direct binding of Cd2? to Hepc and mediated

expression of cadmium intoxication on Hepc pro-

duction to fully evaluate the impact of cadmium on

systemic iron homeostasis.

Another level of regulation occurs in mammalian

cells managing their individual iron supply and use.

Cellular iron sensing is organized around cytosolic

proteins, called Iron Regulatory Proteins (IRP) (Cairo

and Recalcati 2007; Muckenthaler et al. 2008). Iron

depletion or other stimuli, such as nitric oxide or

hydrogen peroxide, activate IRP binding to regulated

mRNA. Cadmium interacts with NO and redox

signaling (Thévenod 2009), but Cd2? and Zn2? have

also been shown to decrease IRP1 solubility (Martelli

and Moulis 2004). Whereas the patho-physiological

consequences of the latter observation remain to be

fully explored, the cellular buildup of large Cd2?

concentrations, as observed in kidney cells of the

proximal tubules for instance (Järup and Åkesson

2009), increases the turnover of IRP1 (Rousselet and

Moulis 2008). In addition, the impact of cadmium on

signaling pathways (see below) might also provide

another way to influence the activity of Iron Regu-

latory Proteins, as they are substrates of kinases

(Fillebeen et al. 2005; Wallander et al. 2006).

Iron use and cadmium interference

Cellular iron use is another process that may be

perturbed by cadmium. Biosynthesis of iron-sulfur

clusters mainly occurs in mitochondria, and it

requires a machinery involving molecules containing

reactive thiols, such as glutathione and glutaredoxin 5

(Rouault and Tong 2008; Lill 2009). It may thus be

conceived that Cd2? binds to some of these mole-

cules and impairs the range of activities depending on

iron-sulfur cofactors, especially cytosolic ones

including IRP1 described above. The other biosyn-

thetic pathway using large amounts of iron is heme

production, predominantly for hemoglobinization of

erythroblasts. Iron insertion into protoporphyrin IX

(PPIX) is catalyzed by ferrochelatase in the mito-

chondrial matrix and Cd2? inhibits this reaction

(Fadigan and Dailey 1987). It should be noticed that

iron deficiency is associated with ZnPPIX release, a

marker of iron deficiency anemia (Labbé et al. 1999).
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Occurrence of CdPPIX has not been detected, but

exposure of humans to a cadmium contaminated

environment has been associated with increased, non

iron-containing though metallated, PPIX derivatives

(Staessen et al. 1996). Another step of heme biosyn-

thesis may be sensitive to cadmium: d-aminolevulinic

acid dehydratase is a zinc-containing enzyme in

mammals (Shoolingin-Jordan et al. 2002) which

experiences changes of its kinetic properties in the

presence of Cd2? (Sommer and Beyersmann 1984).

Whereas the evidence for interference between

cadmium exposure and either iron-sulfur or heme

biosynthetic pathways is relatively scarce or indirect,

other steps in heme turnover are sensitive to the toxic

metal. Human erythrocytes experience increased

apoptosis (eryptosis) when they are exposed to lM

concentrations of CdCl2 for 2 days (Sopjani et al.

2008). From the two heme oxygenase isoforms,

ubiquitous isoform 1 (HO-1) is strongly inducible at

the transcriptional level by a large range of signals

(Syapin 2008), including CdCl2 which enhances HO-

1 transcription in HeLa cells via a short upstream

cadmium response element (Takeda et al. 1994). The

finding that several proteins bind to the cadmium

response element (Sikorski et al. 2006; Koizumi et al.

2007) leaves open the question of how activation

occurs, by the direct binding of cadmium to some

transcription factor or by the stress enhancement of

heat shock factor 1 or other transcriptional enhancer.

In any case, the increase of HO activity induced by

cadmium may contribute to signs of heme shortage,

including anemia, observed upon cadmium insult,

and it is a significant part of the cellular response to

this oxidative stress.

More generally, the change in the cellular redox

balance occurring in cells accumulating cadmium is

likely to deregulate iron control by these cells. In

contrast to zinc leakage, release of ferrous or ferric

iron from metalloproteins is a major event maintain-

ing and enhancing oxidative stress, for instance by

conversion of oxygen derivatives into highly reactive

hydroxyl radicals. Ferritin (FT) is the scavenger of

liberated, otherwise uncontrolled, iron ions, and the

strong expression of the FT genes under stress is an

important cellular defense mechanism in a variety of

conditions. Different binding sites for Cd2? have

been located in the mammalian FT structure (Granier

et al. 1998), and some evidence for ex vivo cadmium

binding to FT has been obtained from iron replete

animals (Huebers et al. 1987). Cadmium-loaded sites

may affect the exchange properties of FT with iron

ions. Iron loaded FT is degraded by lysosomes and

the proteasome with iron fluxes between vesicles and

the cytosol (De Domenico et al. 2009), and lysosomes

accumulate hemosiderin under conditions of iron

overload. Whether FT-bound Cd2? interferes with the

cellular dynamics of FT-derived iron has not been

reported, but cadmium association with this storage

protein may help translocate the toxic metal. The role

of FT in Cd2? distribution remains to be addressed.

The variety of biological roles for iron is matched

by the number of steps of iron homeostasis which can

be perturbed by the presence of cadmium. From the

preceding paragraphs, the experimental evidence for

some possibilities (e.g. Cd2? transport by DMT1, HO

upregulation) is stronger than for others. But it should

be clear from the above that the often proposed Fe/Cd

metal substitution at the active sites of iron enzymes

is not easy (see above Replacement of biological

metals by cadmium) and it does not explain most

aspects of cadmium perturbation of iron homeostasis.

Cadmium toxicity and manganese homeostasis

All other essential transition metals than zinc and iron

occur at lower concentrations in Biology. The reason

is probably that these other metals are mainly needed

at the active sites of selected enzymes, whereas zinc

and iron play additional roles, signaling for zinc,

massive oxygen transport for iron, which require far

larger amounts.

Very important biological reactions are catalyzed

by manganese-containing enzymes. They mainly fall

in four groups involved (i) in mitochondrial antiox-

idant defense via Mn-superoxide dismutase (Mn-

SOD), (ii) in processing of nucleic acids with a range

of nucleases, transposases and other enzymes having

nucleic acids as substrates, (iii) in post-translational

protein modifications with glycosyl- and sulfo-trans-

ferases, and (iv) in the conversion of glutamate and

ammonia into glutamine by glutamine synthase. As

this list shows, these activities occur in different

cellular compartments, implying several transporters

in different membranes permitting efficient traffick-

ing of the metal.

Of note, it is still impossible today to assign an

exclusive manganese transport activity to any
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membrane protein (Roth 2006), and the molecular

pathways of manganese homeostasis are not fully

identified in mammalian cells. Several oxidation

states of manganese are accessible under physiolog-

ical conditions. It thus can be proposed that the

uptake mechanism by endocytosis of the Tf–Tf

receptor complex allows manganese uptake as indi-

cated for iron in Fig. 3. However, the experimental

evidence for Mn3? entry into cells via this route is

contradictory, and it may not be active in many cases.

For instance the role of Mn2? oxidation and that of

ceruloplasmin in manganese distribution may not be

as simple as described above for iron (Jursa and

Smith 2009). Furthermore, impairment of Tf endo-

cytosis does not seem to be an important step in

cadmium toxicology (see above Cadmium traffic and

iron transport), and manganese/cadmium interference

should not be looked for in this direction. Another

less contradictory pathway for manganese entry into

cells is via DMT1, the proton symport first identified

for iron import (Gunshin et al. 1997) (see Cadmium

traffic and iron transport). The involvement of iron

transporters in manganese trafficking would imply

that cadmium competes with both essential metals, to

cross membranes at least.

But various observations in different cell types or

animal models indicate that DMT1 cannot be the only

manganese transporter (Erikson et al. 2007). Assum-

ing that serum manganese is associated with organic

anions (citrate, amino acids…) available in blood and

other body fluids, manganese uptake may be mediated

by organic anion transporters. But no tight binding

chelators for manganese in the circulation have been

identified with the exception of Tf for the Mn3?

oxidation state (Jursa and Smith 2009). Therefore,

ionic manganese species may be substrates for other

transporters (Roth 2006), and the ability of calcium

channels to mediate manganese traffic is supported by

pharmacological inhibition studies in some cell types

(Heilig et al. 2006). Careful examination of cadmium

sensitive tissues also identified transporters of the ZIP

family (see above Molecular components involved in

zinc trafficking) as mediators of cadmium uptake.

Various levels of experimental evidence have been

obtained for ZIP7 (Eide 2004), ZIP8, and ZIP14 (He

et al. 2009; Himeno et al. 2009) involvement in

cadmium transport. Cells derived from MT-deficient

mice revealed that manganese and cadmium were

competing for cellular uptake (Himeno et al. 2002),

and further reports confirmed competition between

Mn2? and Cd2? transport (Rousselet et al. 2008b;

Himeno et al. 2009). A co-transport of Cd2? and

bicarbonate anion by ZIP8 is likely (He et al. 2009).

However, Cd2? uptake is inhibited by Zn2? and other

metal cations in Xenopus oocytes injected with ZIP8

cRNA, but not by Mn2? or Fe2? (Liu et al. 2008).

ZIP8 may not be the only member of the family

transporting Cd2? since ZIP14 overproducing fibro-

blasts experience increased uptake of the toxic cation

and of Mn2? (Girijashanker et al. 2008; He et al.

2009). A possible difference between ZIP8 and ZIP14

is that the latter also transports Fe2? (Lichten and

Cousins 2009). It thus seems likely that Cd2? toxicity

can target manganese homeostasis at the level of ZIP

transporters, but details and conditions under which

this occurs have not yet been fully explored.

The initial characterization of ZIP8 in mice inbred

strains and in adapted MT-null cells indicated large

mRNA variations that were correlated with transport

activity (Dalton et al. 2005; He et al. 2009; Fujishiro

et al. 2009). However, the transporter responsible

for Cd2? uptake under different conditions and in

different cells, whether ZIP8 or another molecule, is

probably not simply regulated at the transcrip-

tional level (Rousselet et al. 2008b; Satarug et al.

2008; Martin and Pognonec 2010). In the case of

manganese, there is no known ‘manganese sensor’

in mammalian cells, as there are in bacteria

(Papp-Wallace and Maguire 2006) or for iron in

mammalian cells with IRP (see above Iron homeo-

stasis: regulation and cadmium interference). It is

thus not yet possible to propose that cadmium

interference with manganese homeostasis concerns

a specific manganese regulator in mammalian cells.

As stated above, once inside cells, manganese has

also to reach different compartments. Candidate

transporters for manganese loading into the Golgi

apparatus belong to the secretory-pathway Ca2?-

ATPases family. Despite their names, these ATP

hydrolysis pumps of the P1B-type may have other

physiological substrates than calcium, including Mn2?

(Vangheluwe et al. 2009) and cadmium. Although in

vitro studies have addressed the effects of divalent

metal ions on transferase activities found in the Golgi

apparatus, the toxicological importance of manganese

replacement by cadmium has not been demonstrated

in vivo. The observation that cadmium intoxication

impairs the proper folding of proteins (Kitamura and
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Hiramatsu 2010), including membrane and secreted

ones, suggests that the presence of Cd2? in the Golgi

apparatus may inhibit some of these transferase

activities.

It thus appears that different steps of manganese

trafficking are sensitive to cadmium, and that manga-

nese transporters seem privileged mediators of cad-

mium movements through biological membranes.

However, it is not yet known whether cadmium

toxicity is due to direct metal substitution at the active

site of manganese-binding enzymes in mammalian

cells, or to less direct mechanisms evoked by cadmium

exposure and targeting manganese enzymes.

Cadmium toxicity, copper and other transition

metals

Another transition metal of major importance in

mammalian metabolism is copper. Very much like

manganese, copper is involved at the active site of

several enzymes, in most of which the electron

exchange properties of copper (Cu?/2?) provide

oxidoreductase activities. Examples are the largely

distributed Cu–ZnSOD (Fig. 1), complex IV of the

mitochondrial respiratory chain, multi-copper oxi-

dases, such as ceruloplasmin and tyrosinase, and the

secreted lysyloxidase. Again, as for manganese,

distribution of copper must occur between different

cellular compartments (Fig. 4).

Cellular copper import is mainly carried out by

specific transporters of the Ctr family (SLC31) at the

plasma membrane (Petris 2004). Reciprocally, the

P1B-ATPases ATP7A and ATP7B, that are deficient

in Menkes and Wilson diseases, respectively, are

involved in cellular copper efflux from the cytosol.

All these transporters are post-transcriptionally reg-

ulated as a function of intracellular copper concen-

tration (van den Berghe and Klomp 2010). Pumps of

the ATP7 family do not seem to efficiently transport

cadmium, from the liver to the bile at least (Dijkstra

et al. 1996), maybe because intracellular copper is

mainly cuprous (1?) whereas cadmium is a divalent

cation. Interestingly, although cadmium transport by

P1B-ATPases is frequent throughout evolution up to

plants (Morel et al. 2009), cation selectivity for some

of them does occur (Lewinson et al. 2009). Exposure

of animal cells to cadmium modifies the details of

copper homeostasis, including for the above

transporters (Chou et al. 2007), without any clear

evidence for cadmium traffic via copper transporters

in mammalian cells.

A likely point of convergence between cadmium

toxicity and copper homeostasis is at the level of MT,

the small protein that plays a central role in zinc

homeostasis (see above Intracellular handling of

zinc). Copper binding to thionein is even tighter than

that of zinc or cadmium (Kägi and Schäffer 1988),

and a role for copper-thionein in copper sensing

coupled to metal-responsive transcription factor 1

(Chen et al. 2008) (see above Intracellular handling

of zinc) may be proposed. The potential cadmium

toxicity mechanism discussed above at this level for

zinc may also apply to copper. However, an addi-

tional complexity of eukaryotic copper homeostasis is

with the specialized proteins (the ‘copper chaper-

ones’) that ferry copper to the enzymes needing it:

examples are Atox1, Ccs, and Cox17 for ATP7A and

B, Cu–ZnSOD, and cytochrome c oxidase, respec-

tively, with intermediate proteins in the latter case

(Kim et al. 2008). It follows that a set of high-affinity

and selective proteins can compete for copper

entering cells or copper released into the cytosol.

Although MT on the one hand and chaperones on the

other hand do not bind copper in the same redox state

(cupric and cuprous, respectively), it is difficult to

assign a copper-sensing function to any single

protein. This statement includes Copper metabolism

MURR1 domain containing (COMMD) or X-linked

Cd

Cd?

Cd?

Cd?

Cd

Cd

Cu2+

Cu2+

Cu+

Cu+

Fig. 4 Schematic representation of copper homeostasis rele-

vant to cadmium toxicity. The symbols and cautious note of the

legend of Fig. 2 are also valid for this figure. Abbreviations not

defined in the text: APP, amyloid precursor protein; PrP, prion

protein
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inhibitor of apoptosis (XIAP), proteins that may

fulfill a similar sensing role (Maine and Burstein

2007; Mufti et al. 2007), and other proteins, such as

the Amyloid Precursor Protein or the Prion Protein,

the roles of which in copper homeostasis remain

unclear. This complexity of copper regulation with

proteins of seemingly overlapping functions does not

help finding at which level cadmium may interrupt

the finely tuned cellular use of copper.

However interaction between Cd2? and copper

chaperones cannot be dismissed (Takenouchi et al.

1999; Wernimont et al. 2000). Furthermore, cadmium

transcriptionally upregulates the Prion Protein, as

copper does, in rat PC12 pheochromocytoma cells

(Varela-Nallar et al. 2006), and the toxic cation

interferes with APP processing in the same and other

cell lines (Smedman et al. 1997).

Therefore, the perturbation of copper homeostasis

by cadmium has received experimental support, but

the exact steps that are most sensitive to Cd2? and that

may determine the cellular response to the presence of

the toxic cation are not clearly established.

Other essential transition metals, such as cobalt and

molybdenum, participate in cellular metabolism but

their concentrations are low in mammalian cells.

Consequently perturbation of their homeostasis by

cadmium is difficult to demonstrate. Vitamin B12

deficiency after cadmium accumulation cannot be

ruled out (Frank et al. 2004), and some protection from

cadmium toxicity may be afforded to rats by supple-

mentation of cyanocobalamine (Couce et al. 1991).

Also, mammalian molybdoenzymes can be inacti-

vated by Cd2? (Neumann and Leimkühler 2008), but

such reactions have yet to be observed in vivo.

Cadmium toxicity and non-transition metals

For the sake of completeness, it must be clearly stated

here that cadmium toxicity mechanisms do not only

concern pathways that are responsible for the cellular

control of transition metals. The other most signifi-

cant essential metal cations in Biology are sodium,

potassium, magnesium, and calcium. Cadmium has

often been used as an in vitro pharmacological agent

to study ion channels (Elinder and Arhem 2003), but

the physiological relevance of the cadmium effects

has virtually never received experimental support.

This leaves open the possibility that the presence of

Cd2? modulates the activity and the transport prop-

erties of some of these channels in vivo (van

Kerkhove and Swennen 2010). When compared with

alkali and alkaline-earth metals, Cd2? is most similar

to Ca2? with respect to size (see Replacement of

biological metals by cadmium), implying that the

desolvated ions can be competing substrates for

calcium channels (Martelli et al. 2006).

But calcium transporters are not the only compo-

nents of calcium homeostasis that are sensitive to

cadmium. Several types of calcium-binding proteins,

such as E–F hand proteins (calmodulin, troponin and

others), c-carboxyglutamic acid (Gla)-containing

region of certain (prothrombin, factor IX…) vitamin

K–dependent proteins, or calcium-dependent endo-

nucleases, have been shown to bind Cd2? at their

calcium site (Fig. 1). Although it may be argued that

most of these studies were carried out in vitro with

purified proteins and with large cadmium concentra-

tions, the occurrence of osteomalacia and osteoporo-

sis upon human cadmium exposure (Bhattacharyya

2009) strongly suggests that several calcium depen-

dent processes and proteins involved in bone resorp-

tion and formation are perturbed by the presence of

cadmium. Beyond the osteotoxicity of cadmium,

extracellular calcium proteins are more likely to

suffer from cadmium insult than intracellular ones, as

the toxic metal may be more readily available outside

cells. In this respect, it is noteworthy that (E-)

cadherin can bind Cd2? with ensuing disruption of

cell–cell junctions (Prozialeck and Edwards 2007).

The ligands of Ca2? in cadherins are mainly carbox-

ylates (aspartates and glutamates) and a small number

of amides (asparagines and glutamines) providing

together a fully oxygenated coordination sphere for

the cations. The dissociation constants for Ca2? are a

few tens of lM, suggesting a relative ease of

substitution if the calcium concentration is not

saturating. Indeed, examples of such substitutions in

vitro have been shown (Fig. 1). Therefore, the direct

cadmium binding to cadherins is probably among the

most convincing examples of metal replacement as a

toxicity mechanism for cadmium in vivo (Prozialeck

and Edwards 2007). However, even in the case of

adhesion molecules, it is not the only one at work to

explain the effects of cadmium on mammalian cells.

Recently reviewed experimental evidence (Prozialeck

and Edwards 2007; Lee and Thévenod 2008) indi-

cates that many calcium dependent pathways and
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proteins are sensitive to cadmium in an indirect way,

with involvement of signaling cascades and other

regulatory mechanisms.

Cadmium toxicity and pathways modulating

the homeostasis of essential metals

In line with the conclusion of the preceding paragraph,

it should be emphasized that many mechanisms of

action of cadmium on mammalian cells are not

directly interacting with pathways dedicated to the

homeostasis of other metal cations. Cellular exposure

to cadmium has been shown to change the status of a

wide range of signaling systems. This topic has been

thoroughly reviewed, including recently (Beyersmann

and Hechtenberg 1997; Martelli et al. 2006; Thévenod

2009). A fast transient increase of intracellular Ca2?

concentration, with increased inositol-1,4,5 triphos-

phate, has been detected in different cell types exposed

to low Cd2? concentrations (sub-lM) before any

transport may be significant. These features charac-

terize ion-sensing G-protein coupled receptors that

have been identified as calcium receptors (Chang and

Shoback 2004). Cd2? activates other receptors at the

plasma membrane, such as the estrogens, the andro-

gens, and other hormone receptors (Byrne et al. 2009;

Iavicoli et al. 2009). Cd2? binding to such receptors is

more than three orders of magnitude tighter (dissoci-

ation constants below 1 nM) than binding to metal-

loproteins such as cadherins (dissociation constants in

the lM range, see Cadmium toxicity and non-transi-

tion metals). Although details remain to be established

(Höfer et al. 2009), the high affinity interaction of

Cd2? with surface receptors provides a tantalizing

explanation to many cadmium effects, especially at

low doses. Cd2? also perturbs various intracellular

signaling pathways including the different families of

mitogenic protein kinases (MAPK), cAMP-dependent

and calmodulin-dependent pathways (Thévenod

2009). Many of the cadmium-sensitive signaling

pathways are zinc dependent (MAPK, PKC, etc.),

most often with participation of zinc finger motifs. But

lack of data in cellulo does not allow claiming that

replacement of zinc by cadmium is responsible for the

direct activation of these kinases. In any case, all the

above signaling pathways are responsive to changing

metal, including cadmium, concentrations with con-

sequences on the homeostasis of essential metals. For

instance, activation of MAPK and PKC induces

MnSOD synthesis, and therefore manganese needs,

in HepG2 hepatoma cells (Bianchi et al. 2002). Also,

the activities of both IRP are modulated by phosphor-

ylation events in which PKC may play a part

(Fillebeen et al. 2005; Wallander et al. 2006).

The same phenomena just described for signaling

pathways also pertain to transcription factors, such as

NF-jB, products of the oncogenes c-jun, c-myc, egr-1

(Beyersmann and Hechtenberg 1997), and others

(Nrf2, Sp1, CREB, etc.), most of them bearing zinc

binding motifs (fingers). A list of genes sensitive to

cadmium exposure in hepatocytes has been recently

published (Hsiao and Stapleton 2009). Many of these

transcription factors enhance the expression of genes

encoding Cd2? sensitive proteins (Murata et al.

1999). MT and HO have been presented above. The

limiting enzyme of glutathione (GSH) biosynthesis,

c-glutamyl-cysteine synthase, and heat shock proteins

belong to the same list. The corresponding activities

contribute to intracellular cadmium management and

to minimize impairment of cellular functions such as

protein folding. Also, transcription of many genes

encoding metalloproteins is under the dependence of

cadmium-activated transcription factors. Examples

are expression of the MnSOD gene by AP-1 (dimers

of c-Jun, c-Fos and other proteins), and those of Cu-

ZnSOD, HO-1, and FT by Nrf2. Consequently, the

homeostasis of metals have to adjust to the transcrip-

tional changes induced by cadmium.

Intracellular Cd2? may bind to a variety of bio-

molecules (see Replacement of biological metals by

cadmium), especially when the binding capacities of

MT and glutathione are exceeded. In particular the

shielding of reactive cysteine thiolates is expected to

interfere with proper building of disulfide bridges in

proteins and with the cellular buffering potential

against oxidative species. This is thought to be the

main underlying mechanism for the pro-oxidant

properties of cadmium, at least upon acute exposure

(Liu et al. 2009; Cuypers et al. 2010). Under these

conditions, enhanced production of partly reduced

and highly reactive oxygen species (the reactive

oxygen species: ROS) alters expression of genes

under the dependence of redox-sensitive transcription

factors (see above), impacts signal transduction

pathways, and ROS, particularly at high concentra-

tions, can liberate metal cations from proteins and

enzymes. The released cations should be scavenged
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by metal-trapping molecules such as GSH, MT, FT,

and a few others. But, under relentless ROS produc-

ing conditions, iron, copper, and manganese catalyze

an even larger production of these species via the so-

called Fenton reactions. Cadmium does not have to

replace the endogenous metals at the active sites of

enzymes to abolish biological activities, since ROS

are the most convincing mediators of the above

effects.

The mechanistic scenarios presented in the pre-

ceding paragraph may apply to other aspects of

cadmium toxicity such as inhibition of DNA repair

and perturbed protein processing. These topics are

discussed in more detail elsewhere (Beyersmann and

Hartwig 2008; Kitamura and Hiramatsu 2010; Liu

et al. 2009; Hartwig 2010).

Cellular resistance to cadmium

Most mechanisms of cadmium toxicity studied in the

laboratory mainly apply to the acute, and often heavy,

exposure of naive mammalian cells to the toxic

metal. However, it is likely that under chronic

exposure additional modes of action are at play.

Different types of cell death have been observed by

exposing cells to cadmium, but long term contact

may allow survival and even growth, often after a

period of quiescence. For cells continuously exposed

to cadmium, sustained upregulation of protection

molecules has been observed (Hart et al. 2001), with

adjustment of signaling pathways (Oh et al. 2009).

Decreased apoptosis does not always correlate with

increased production of anti-oxidant molecules.

Overproduction of calbindin D28 in human U937

monocytes (Jeon et al. 2004), decreased phosphory-

lation of c-Jun N-terminal kinase in rat pulmonary

epithelial cells (Lau et al. 2006), and Bcl-2 and Bax

over and down-expression, respectively, in mouse

testicular Leydig cells (Singh et al. 2009) all led to

the same outcome of decreased apoptosis. MT

depleted cells have provided useful models in which

removal of the most immediate cellular response to

cadmium revealed alternative pathways of resistance.

Fibroblasts of MT-/- murine embryos adapted to

cadmium evidenced inhibition of a T-type voltage-

dependent cationic channel as a way of decreasing

Cd2? uptake (Leslie et al. 2006) and competition of

Cd2? import by Mn2? addition (Himeno et al. 2002,

2009). Inhibition of ZIP8 and ZIP14 transcription was

detected in such cells (Fujishiro et al. 2006, 2009).

A more realistic situation in a polluted environ-

ment than exposure to only cadmium is that of a

combination of different compounds interacting with

cells. For instance, human populations living in

regions where zinc smelters are or were in use

(Thomas et al. 2009), workers involved in treating

spent nickel–cadmium batteries, or the general pop-

ulation in heavily industrialized areas (Järup 2003)

experience concomitant exposure to several metals

among many pollutants.

Therefore, instead of selecting cells having devel-

oped resistance against cadmium, it may be relevant

to expose them to large concentrations of a more

abundant and ‘safer’ metal that occurs with cadmium

in the environment. Zinc in areas surrounding smelt-

ers is an example. HeLa cells were grown for several

weeks in the presence of increasing zinc concentra-

tions (Chimienti et al. 2001). The selected cellular

population displayed accumulation of intracellular

zinc and upregulation of MT, but also increased

sensitivity to oxidative stress in the form of hydrogen

peroxide (Chimienti et al. 2001). The resistance

against high zinc concentrations developed by

adapted HeLa cells imparts these cells with high

resistance against cadmium salts (Rousselet et al.

2008b). But, instead of safely accumulating the metal

as in the case of Zn2?, resistant cells have developed

the ability to repress Cd2? uptake upon long-term

high zinc exposure. The transporter responsible for

cadmium uptake appears to be the same as the one for

manganese entry into HeLa cells (Rousselet et al.

2008b). This result is similar to the conclusion

obtained with MT-/- fibroblasts (Himeno et al.

2002), but the regulatory level at which this trans-

porter is inhibited seems different (Rousselet et al.

2008b; Fujishiro et al. 2006). In addition, a proteomic

study evidenced an unexpected link between adapta-

tion to high zinc concentrations and increased

catabolism of tyrosine, a process which has a role

in the sensitivity to cadmium (Rousselet et al. 2008a).

This example shows that all details of the cellular

response to cadmium must be further investigated.

Although zinc often affords protection against cad-

mium toxicity, HeLa cells adapted to high zinc

concentrations display changed cellular handling of

cadmium, manganese, and calcium (Rousselet et al.

2008a, b). This cellular model also illustrates the
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conclusions of a review written more than 10 years

ago (Beyersmann and Hechtenberg 1997) emphasiz-

ing the interference between cadmium toxicity and

the homeostasis of essential metals, and indicating

the gaps in the knowledge about the mechanisms of

cadmium toxicity. The last decade has seen progress

in further discovering the complexity of these mech-

anisms but the integration of all observations in a

general and convincing model of cadmium toxicity is

still awaited.

Open questions and outlook

Although many important industrial uses of cadmium

have now been banned, the cleaning of the metal

from polluted areas is difficult, and natural or

anthropogenic dispersion of cadmium in the environ-

ment will continue in the years to come. Some of the

unique properties of this metal will probably be hard

to replace by safer substitutes for some present or

future applications. Therefore, human contact with

cadmium will not stop soon, and a deeper insight into

the mechanisms of cadmium toxicity appears as the

only way of designing proper protective actions for

exposed populations. Beside the health problems

generated by this ubiquitous pollutant, the range of

bio-molecules targeted by cadmium raises valuable

biological questions, some of which have been

detailed above.

Focusing on biological cations, the main question

is not whether cadmium impacts the homeostasis of

metals, but how it does so and to what extent.

Although there should be no doubt that Cd2? can

replace other cations at different sites in proteins and

other biological molecules, the single explanation by

substitution fails to explain the toxicological effects

of cadmium, particularly at low dose. Indeed, in most

instances, the exogenous pollutant cannot quantita-

tively compete with endogenous essential cations,

especially calcium, zinc, iron, and even copper or

manganese. Cadmium does accumulate mainly in

specific organs of the body throughout life (Järup and

Åkesson 2009; Nawrot et al. 2010; Nordberg et al.

2009; Satarug et al. 2010), but under which actual

chemical form(s) remains unknown. Part of it is

clearly associated with MT, some is likely bound to

GSH, but such interactions are dynamic, both as for

the binding of Cd2? and the localization of the

cadmium containing complexes. Furthermore, intra-

cellular stores of cadmium (endoplasmic reticulum,

acidic vesicles, mitochondria, nucleus) have been

phenomenologically suggested, but their relative ease

of mobilization has been rarely figured out. This

question is key to understand biological Cd2? effects,

but efficient and direct tools are still lacking for such

studies. Therefore, no strong biological evidence of

metal substitution by Cd2? affords a convincing

conceptual frame to explain biological effects.

The impact of cadmium on the homeostasis of

other metals reviewed here goes far beyond mere

metal substitutions, and they include indirect effects

mediated in part by redox sensitive transcription and

transduction pathways. Transport (Fe2? and DMT1,

Mn2? and ZIP8 …) and distribution (Zn2? and

thioneins) of endogenous metals (Figs. 2, 3, 4)

provide efficient ways for Cd2? traffic. Once Cd2?

is in the vicinity of cells or inside them a variety of

biological interferences occur.

However, a detailed knowledge of these interfer-

ences is still limited by pending questions. Among

them, the following, most closely related to the topics

of this review, can be listed:

• Which transporters allow Cd2? to cross biological

membranes, in which cells, and under which

conditions? What determines the cation specific-

ity of these transporters?

• How (in what kind of molecular association) is

Cd2? accumulated inside cells? in which com-

partments? How does Cd2? build-up changes the

dynamics of exchange for other cations such as

Ca2?, Zn2?, and Fe2?/3??

• Is Cd2? targeting regulatory molecules dedicated

to the homeostasis of specific metals, such as

Hepc, FT, or IRP for iron, or chaperones for

copper?

These questions, some of which are indicated in

Figs. 2, 3, 4, arise in part from the still large gaps in

the available knowledge in the homeostasis of

essential metals. Topics such as zinc molecular

sensing and distribution, copper regulation, manga-

nese traffic, and many others are only emerging.

Furthermore, which mechanism of cadmium toxicity

predominates and which metal homeostatic and

signaling pathways are impacted are likely to be cell

specific and dependent on the detailed cellular

environment. At the end of this review we must
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admit that the extent to which any process contributes

to the overall cellular toxicity of cadmium is most

often not known. It is certainly a major challenge of

the years to come to frame cadmium, and other

toxics, studies within a global description of cellular

behavior. Then it must be hoped that the emerging

methods of Systems Biology as applied to predictive

toxicology will help reaching this goal.
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Järup L, Åkesson A (2009) Current status of cadmium as an

environmental health problem. Toxicol Appl Pharmacol

238:201–208

Jeon HK, Jin HS, Lee DH, Choi WS, Moon CK, Oh YJ, Lee

TH (2004) Proteome analysis associated with cadmium

adaptation in U937 cells: identification of calbindin-D28k

as a secondary cadmium-responsive protein that confers

resistance to cadmium-induced apoptosis. J Biol Chem

279:31575–31583

Johri N, Jacquillet G, Unwin R (2010) Heavy metal poisoning:

the effects of cadmium on the kidney. BioMetals. doi:

10.1007/s10534-010-9328-y

Biometals (2010) 23:877–896 893

123

http://dx.doi.org/10.1007/s10534-010-9330-4
http://dx.doi.org/10.1007/s10534-010-9330-4
http://dx.doi.org/10.1007/s10534-010-9328-y


Jordan JB, Poppe L, Haniu M, Arvedson T, Syed R, Li V,

Kohno H, Kim H, Schnier PD, Harvey TS, Miranda LP,

Cheetham J, Sasu BJ (2009) Hepcidin revisited, disulfide

connectivity, dynamics, and structure. J Biol Chem

284:24155–24167

Jursa T, Smith DR (2009) Ceruloplasmin alters the tissue

disposition and neurotoxicity of manganese, but not its

loading onto transferrin. Toxicol Sci 107:182–193
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Labbé RF, Vreman HJ, Stevenson DK (1999) Zinc protopor-

phyrin: a metabolite with a mission. Clin Chem 45:2060–

2072

Laity JH, Andrews GK (2007) Understanding the mechanisms

of zinc-sensing by metal-response element binding tran-

scription factor-1 (MTF-1). Arch Biochem Biophys

463:201–210

Lane TW, Morel FM (2000) A biological function for cad-

mium in marine diatoms. Proc Natl Acad Sci USA

97:4627–4631

Lau AT, Zhang J, Chiu JF (2006) Acquired tolerance in cad-

mium-adapted lung epithelial cells: roles of the c-Jun N-

terminal kinase signaling pathway and basal level of

metallothionein. Toxicol Appl Pharmacol 215:1–8

Lee PL, Beutler E (2009) Regulation of hepcidin and iron-

overload disease. Annu Rev Pathol 4:489–515
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Faller P, Vašák M, Schaffner W (2003) Activity of metal-

responsive transcription factor 1 by toxic heavy metals

and H2O2 in vitro is modulated by metallothionein. Mol

Cell Biol 23:8471–8485

896 Biometals (2010) 23:877–896

123


	Cellular mechanisms of cadmium toxicity related to the homeostasis of essential metals
	Abstract
	Introduction
	Replacement of biological metals by cadmium
	Cadmium toxicity and zinc homeostasis
	Schematic overview of zinc involvement in Biology
	Molecular components involved in zinc traffic
	Intracellular handling of zinc
	Intracellular zinc stores

	Cadmium toxicity and iron homeostasis
	Salient features of iron homeostasis relevant to cadmium toxicity
	Cadmium traffic and iron transport
	Iron homeostasis: regulation and cadmium interference
	Iron use and cadmium interference

	Cadmium toxicity and manganese homeostasis
	Cadmium toxicity, copper and other transition metals
	Cadmium toxicity and non-transition metals
	Cadmium toxicity and pathways modulating the homeostasis of essential metals
	Cellular resistance to cadmium
	Open questions and outlook
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /ESP <>
    /ETI <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


