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Abstract

Arsenic (As) and lead (Pb) are important inorganic toxicants in the environment. Frequently, humans are
exposed to the mixtures of As and Pb, but little is known about the expression of biomarkers resulting from
such mixed exposures. In this study, we analyzed serum proteomic profiles in a group of smelter workers with
the aim of identifying protein biomarkers of mixed As and Pb exposure. Forty-six male workers co-exposed
to As and Pb were studied. Forty-five age-matched male office workers were chosen as controls. Urine As and
blood Pb concentrations were determined. Serum proteomic profiles were analyzed by Surface-Enhanced
Laser Desorption/Ionization Time-Of-Flight (SELDI-TOF) mass spectrometer on the WCX2 ProteinChip.
Using Recursive support vector machine (RSVM) algorithm, a panel of five peptides/proteins (2097 Da,
2953 Da, 3941 Da, 5338 Da, and 5639 Da) was selected based on their collective contribution to the optional
separation between higher metal mixture exposure and non-exposure controls. Among these five selected
markers, the 3941Da was down-regulated and the four other proteins were up-regulated. Descriptive sta-
tistics confirmed that these five proteins differed significantly between metal exposure and non-exposure.
Interestingly, the combined use of the five selected biomarkers could achieve higher discriminative power
than single marker. These results demonstrated that proteomic technology, in conjunction with bioinfor-
matics tools, could facilitate the discovery of new and better biomarkers of mixed metal exposure.

Introduction

The health effects of chronic exposure to arsenic
(As) and lead (Pb) have been extensively studied and
well documented. Both are among the US EPA
Superfund top ten priority hazardous substances
(De Rosa et al. 1996). As is classified as a human
carcinogen by International Agency for Research
on Cancer (IARC) (Gebel 2000; Hughes 2002;
IARC 2003). Chronic As exposure has been impli-
cated in several non-cancerous conditions, in

particular, skin disease, diabetes mellitus, hyper-
tension and cardiovascular disease, perturbed
porphyrin metabolism, hyperpigmentation, hyper-
keratosis and irreversible noncirrhotic portal
hypertension (NRC, 2001). It has been long known
that As exposure is associated with skin, bladder
and lung cancer (WHO 2001). In the majority of
cases in which an internal cancer has been ascribed
to As exposure, a dermatologic hallmark of As
poisoningwas also identified (Tsai et al. 1999). Pb is
one of the oldest known and more widely studied
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toxicant and evidence of Pb poisoning can be found
dating back toRoman times. Pb can inducemultiple
adverse effects including reproductive toxicity, neu-
rotoxicity, carcinogenicity, nephrotoxicity, immu-
notoxicity, and hypertension (Gidlow 2004). In
occupationally unexposed adult populations, blood
Pb levels £ 250 lg/l were generally considered
allowable (WHO 1995). However, neurotoxic
effects have been detected in children with blood Pb
level <100 lg/l, suggesting that safe Pb levels
remain unclear (Koller et al. 2004).

In environmental and occupational settings,
humans are often exposed to combinations of
metals. For instance, As and Pb most often occur
together and are present in the top ten binary
combinations of contaminants in soil and water
(Fay & Mumtaz 1996); major exposures in metal
smelters would have included As and Pb (Lilis et al.
1985; Binks et al. 2005). Although different metals
have unique primary mechanisms of action that are
cell and/or tissue specific (Goyer 1996), studies have
suggested that metals can interact one another’s
cytotoxicity and/or carcinogenic potentials (Nord-
berg & Anderson 1981; Elsenhans et al. 1987; Bae
et al. 2001). As a result, we still lack a fundamental
understanding of the actions of metal mixtures at
the molecular level. Accurate risk assessment of
these highly relevant chemicals awaits progress in
this area, including biomarkers of preclinical dis-
turbances following exposure. However, much of
the effort in the past has centered largely on bio-
markers of a single hazard. Examples include As

levels in urine and nails as biomarkers of As
exposure (WHO 2003), Pb concentrations in blood/
urine/plasma, delta- aminolevulinic acid (ALA) in
urine/blood/plasma; coproporphyrin in urine (CP),
and zinc protoporphyrin (ZPP) in blood as bio-
markers of Pb exposure and effect (Sakai 2000).
Nevertheless, little progress has been made in
identifying biomarkers of metal mixture exposure.

Proteomic analysis is a powerful technology,
developed recently to enhance research on the
diagnosis, treatment and prevention of human
diseases (Röcken et al. 2004). By examining com-
prehensively different protein profiles (expression
level, post-translational modification, and
interaction) between normal and diseased or drug-
treated samples, proteomics may provide infor-
mation on new biomarkers, disease-associated
targets and the process of pathogenesis (Xiao et al.
2005). This technique has been used successfully to
identify specific serum proteomic biomarkers that
could discriminate cancer from non-cancer in
bladder (Vlahou et al. 2001), lung (Zhukov et al.
2003), breast (Li et al. 2002), and ovarian cancers
(Petricoin et al. 2002).

Because proteins are gene products, it is logi-
cal to expect that specific serum proteomic pat-
terns might reflect an underlying pathological
state in humans. The objective of the present
study was to apply proteomic technology to ex-
plore potential proteomic biomarkers in workers
exposed to As and Pb mixture. Our results
showed that proteomic methods, in combination

Table 1. General characteristics of the investigated groups.

Metal workers Controls

No. 46 45

Sex Male Male

No. of smokersa 24 22

No. of nonsmokers 22 23

No. of alcohol drinkerb 28 28

Age, years (±SD) 39.9±8.1 40.6±8.5

Years of metal exposure 14.8±10.2 0

As levels in urine (lg/ml) 0.22±0.09 0.07±0.03

Pb levels in blood (lg/l) 410.31±106.88 83.98±27.65

Mean air concentration of Pb at work places (mg/m3)c 1.67 (0.18–11.31) <0.004d

Mean air concentration of As at work places (mg/m3)c 0.56 (0.11–0.71) <0.018d

aSubjects smoked ‡1 cigarette/day were defined as smokers.
bIndividuals took alcohol ‡100 ml/week were considered as alcohol drinker.
cThe Hygienic Standards in China are 0.05 mg/m3 for Pb and 0.02 mg/m3 for As.
dThe detectable limit of the analytical methods (CNCC, 1995, 1997).
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with bioinformatics, could lead to identification
of new biomarkers that differentiate subjects ex-
posed to high metal mixture from non-occupa-
tionally exposed individuals.

Materials and methods

Study population

The study group consisted of 46 male workers
actively employed in a metal smelter in Guangxi,
China. This refinery extracts antimony and tin from
tin mine produced by Dachang Tin mine Co., a
mine previously known for high prevalence of lung
cancer and high content of As in the raw mines
(Chen & Chen 2002). Environmental monitoring in
this smelter showed that the mean air concentra-
tions of Pb and As at workplaces were higher than
the National Hygienic Standards of China (Minis-
try of Health, China, 2002). Subjects in this study
were workers who had been found to have either
higher level of blood Pb or urine As, in routine
occupational health surveillance. In this group, 74%
(34/46) had blood Pb >400 lg/l (a value used for
the diagnosis of occupational chronic Pb poisoning
according to China criteria; CNCC 2002), and 46%
(21/46) had urine As level >0.24 lg/ml (the local
community background urine As level, Li et al.
2004). The control group included 45 male office
employees who had no previous history of occu-
pational exposure to metals. No As- or Pb-con-
tainingmaterial has been handled in their office, and
the air concentrations of As and Pb in their office
were undetectable. The general characteristics of
the population are shown in Table 1.

Protocols for this study were reviewed and
approved by the Institutional Review Board (IRB)
of Guangxi Institute of Occupational Health,
China. After giving informed consent, each subject
completed a questionnaire to provide information
on demographics, occupational and medical his-
tories. All subjects underwent a medical examina-
tion including physical exam, chest X-ray, liver
function, blood and urine routine tests, ultraso-
nography of the liver and kidney. To obviate the
influences of possible confounding factors, sub-
jects with abnormal findings in liver function, chest
X-ray, blood/urine routine, higher body tempera-
ture, hypertension, and those who used of medi-
cation in the month prior to this investigation were

excluded from the study. For all subjects, blood
and urine samples were collected in the morning of
the same day before going to work. A blood
sample was collected by venipuncture into tubes
and spun at 2500 rpm at 4 �C for 10 min and then
stored at )80 �C until analysis. Subjects were
asked to wash their hands before supplying the
urine, in order to reduce contamination. All
urine sample containers were immersed in liquid
nitric acid for 48 h to eliminate contaminating
metals before they were used for collecting urine
samples.

Measurements of blood Pb and urine As

Blood lead (BPb) level was quantifiedusing graphite
furnace atomic absorption spectrophotometer
(SollaarM6,ThermoElectronCorp.,USA)with the
methodsrecommendedbyChinaNationalStandard
Committee (CNCC2002; comparable toprotocol of
NIOSH 1994). Urine As was determined using
spectrophotometer according to the protocol of
CNCC(1996; comparable tomethodofMazur et al.
1983). To ensure the accuracy of analysis, quality
control procedures were applied to all measure-
ments. Briefly, a standard curvewas generated using
known concentrations of As or Pb. The reference
standards of As and Pb were purchased from the
National Research Center for Certified Reference
Materials (NRCCRM), Beijing, China. Values for
samples were determined using the linear portion of
the curves for standards run in parallel with each
batch of assays. In addition, a sample of blind ref-
erence material was included in each batch of anal-
ysis. When the value of the reference material was
within the expected range, the result of the sample
was considered acceptable.

SELDI TOF analysis of serum protein profiles

Protein profiling of the serum samples was per-
formed using the eight-spot format WCX2 (weak
cationic exchange) ProteinChip Arrays (Ciphergen
Biosystems, Fremont, CA, USA). Frozen serum
samples were thawed and spun at 10,000 rpm for
5 min at 4 �C. Twenty microliter of U9 buffer was
added to 10 ll of each serum sample then shacked
on ice for 30 min, before adding 360 ll WCX-2
buffer. Arrays were prepared as follows: each array
was pre-equilibrated 2 · 5 min in 200 ll WCX-2
buffer on a horizontal shaker (MSI Minishaker)

605



before sample addition. Sample supernatant was
added and incubated for 1 h on shaker. After
incubation, the sample was removed, and each spot
was washed with 200 ll WCX-2 buffer for

2 · 5 min with agitation. After washing, array was
dismantled carefully from the bioprocessor and
washed briefly with deionized water. Sinapinic acid
(SPA) of 0.5 ll was deposited on the array spots
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Figure 2. Representatives of serum protein profiles on WCX2 protein chips. The protein peaks of 5338 kDa, 5639 kDa, 5907 kDa,
and 6116 kDa were up-regulated in the sample from metal worker (a) comparing to that from control (b). X-axis, mass/charge (m/z) in
daltons; Y-axis, relative intensity.
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Figure 1. Reproducibility of proteomic spectra. Representative mass spectra from a serum specimen processed on the same chip array
on the same day (a and b) and on a different chip analyzed one month later (c). X-axis, mass/charge (m/z) in Daltons; y-axis, relative
intensity.
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and allowed to air dry. The ProteinChip Arrays
were read by surface-enhanced laser desorption/
ionization time-of flight (SELDI-TOF) mass
spectrometry (ProteinChip PBS II reader, Cipher-
gen), and time-of-flight spectra were generated by
averaging laser shots with a laser intensity of 185,
detector sensitivity of 8. Mass accuracy was cali-
brated externally using the All-in-1 peptide
molecular weight standard (Ciphergen). Peak
detection and alignment were performed with Bi-
omarker Wizard function in Ciphergen Protein-
Chip Software V 3.0. Protein peak intensity was

expressed as mass to charge ration (m/z). Peak
intensities were normalized according to total ion
current after background subtraction. For Bio-
marker Wizard setting, the signal-to-noise ratio
was set between 2 and 5. Reproducibility was
estimated using four representative serum samples:
two from healthy controls and two from metal-
exposed workers. Each representative serum sam-
ple was divided into three parts. Two parts were
run in parallel on the same protein chip; the other
part was tested one month later on different WCX2
chip under the same experimental conditions.

; , y

Figure 3. Representative spectra (a) and gel views (b) of the selected biomarkers. The serum samples from metal worker (-E) and
control (-F) were run side by side on the same Proteinchip. The 5907-Da protein up-regulated in metal worker but down-regulated in
control. X-axis, mass/charge (m/z) in daltons; Y-axis, relative intensity.
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Data analysis

A linear recursive support vector machine
(RSVM) algorithm was used to search for a
combination of biomarkers that could segregate
normal samples from highly exposed samples,
and estimated the model prediction error at the
same time (Xu et al. 2004). This feature selection
algorithm was designed to avoid bias in the esti-
mation of classification error. RSVM used the
mean-weighted support vector machine (SVM)
kernel to evaluate the relative importance of
peaks, eliminates peaks iteratively by backward
feature elimination process, and estimates the
prediction error by unbiased external CV Scheme.
Finally, this method generates a list of important

peaks by frequency-based selection method (Xu
et al. 2004). For details of the RSVM algorithm,
please refer to: http://www.biostat.harvard.edu/�
xzhang/R-SVM/R-SVM.html.

Comparison of the peak intensity between the
controls and metal-exposed workers were per-
formed using the Student t-test. The power of
protein peak to discriminate subjects with higher
metal exposure from healthy controls was esti-
mated by the area under the curve (AUC) of
receiver operating characteristic (ROC) (Eng J),
which ranges from 0.5 (no discrimination) to 1.0
(absolute prediction) (Hanley & McNeil 1982).
The peaks with an AUC<0.60 were excluded from
further data analysis. Sensitivity was defined as
the conditional probability of predicting metal

Figure 4. Representative spectra (a) and gel views (b) of the selected biomarkers. The serum samples from metal worker (-C) and
control (-B) were run side by side on the same Proteinchip. The 3941-Da protein down-regulated in metal worker but up-regulated in
control. X-axis, mass/charge (m/z) in daltons; Y-axis, relative intensity.
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exposure given the gold standard is urine
As>0.24 lg/ml or blood Pb>400 lg/l (the 95%
upper limit values of the local population).
Likewise, we defined specificity as the condi-
tional probability of predicting non-metal expo-
sure given that the gold standard as non-metal
exposure (urine As <0.24 lg/ml or blood Pb<
400 lg/l).

Results

Protein peak detection and data preprocessing

Serum proteins retained on the WCX2 array were
analyzed on a PBS II mass reader. The high mass to
acquire was set to 50 kDa, with an optimization
range from 1.5 to 15 kDa, because this range
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Figure 5. ROC curve analysis of the five RSVM selected protein markers (b, c, d, e, and f) and logistic-derived composite index (a); M,
mass in daltons.
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contained the majority of the resolved protein/pep-
tides. A mass accuracy of 0.1% was achieved by
external calibrationusing theStandard (Ciphergen).

Among a total of 327 qualified mass peaks
(signal-to-noise ratio>5) detected, 256 peaks had
m/z values between 1.5 and 5 kDa, 58 peaks had
m/z values between 5 and 10 kDa, and 13 peaks
were between 10 and 15 kDa. Peaks with a m/z
<1.5 kDa were mainly ion noise from the matrix
and therefore excluded. Peak intensity was nor-
malized to total ion current, and logarithmic
transformation was applied.

Figure 1 shows the reproducibility of three
SELDI protein spectra obtained either from the
same run on the same chip or from another run on
another protein chip for the serum sample of the
same subject. Figure 2 illustrates the comparison
of proteomic profiles between a sample of metal
worker and that of control. Protein patterns gen-
erated from both samples were virtually similar
with regard to the peaks detected, but the relative
mass intensities of some markers were different.

Selection of significant biomarkers and classification
of proteomic patterns using the RSVM algorithm

To identify biomarkers with potential for dis-
crimination of higher metal mixture exposure, a
RSVM algorithm was used to select a panel of
statistically significant biomarkers and to segre-
gate sample classes. There were in total 37,223
data points in the whole spectrum. Since there
was hardly any signal in the region above
20 kDa and too much noise below 1.5 kDa, only
the region between 1.5 and 20 kDa was used in
the following analysis, where there were 29,757
data points.

The biomarker detection function of Ciphergen
software detects 327 biomarkers from the region
between 1.5 and 20 kDa. From the comparison
between metal-exposed worker and control sam-
ples, the RSVM feature selection algorithm
identified five important protein markers:
2097 Da, 2953 Da, 3941 Da, 5338 Da, and
5639 Da.

Table 2. Serum proteomic peaks and mean values between controls and metal-exposed workers.

Molecular mass (m/z) Peak intensity (con-

trols) n=45

Peak intensity (metal

workers) n=46

p-value AUC

Mean SD Mean SD

3941a 5.29 3.67 2.97 2.82 <0.0001 0.76

5338a 4.28 2.31 8.71 5.66 <0.000 0.82

5907 19.02 10.83 28.64 14.19 0.001 0.69

5639a 12.00 5.52 15.72 6.45 0.002 0.69

5809 1.18 0.56 1.82 1.13 0.005 0.69

8136 1.82 1.02 1.32 0.73 0.007 <0.61

2953a 4.15 2.42 6.58 5.80 0.011 0.61

6116 2.15 1.13 3.13 1.91 0.013 0.66

5920 5.40 6.09 7.62 7.82 0.020 0.68

8183 1.19 0.76 0.92 0.64 0.020 <0.61

15,305 0.40 0.26 0.83 0.96 0.021 <0.61

1860 1.78 1.05 1.33 1.16 0.024 <0.61

5855 2.35 2.76 2.64 1.86 0.025 0.65

3960 1.96 1.07 1.52 1.10 0.027 <0.61

4103 8.56 6.36 5.84 4.54 0.030 <0.61

11,812 0.43 0.15 0.55 0.28 0.031 <0.61

1776 1.23 1.36 1.87 1.92 0.038 <0.61

2097a 1.42 1.29 2.42 2.51 0.043 0.63

2127 3.40 5.19 2.10 2.22 0.047 <0.61

4299 4.87 2.78 3.78 2.31 0.048 <0.61

10,264 0.83 0.48 0.65 0.46 0.048 <0.61

aBiomarkers selected by RSVM.
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Biomarker discovery and identification using
descriptive statistics

The Student t-test was used to evaluate the dif-
ferences of single peak intensity between metal
workers and controls. Among 327 protein peaks,
the intensities of 12 proteomic peaks were signifi-
cantly higher and 9 significantly lower in the sera
of metal workers than that in controls ( p-value
<0.05; Figures 3 and 4). Thus, 21 serologic pro-
teomic peaks were statistically significant
(Table 1), but not necessarily all at the highest
ranking. Interestingly, the RSVM-selected five
serum protein markers were all significantly dif-
ferent between metal workers and controls as cal-
culated by t-test.

To estimate the power of the potential bio-
markers, we performed receiver operating charac-
teristic (ROC) analysis on 21 candidate peaks
identified by t-test. In this analysis, ten protein
peaks possessed an AUC value ‡0.60 (Table 2).
Again, the AUCs of RSVM-selected five protein
peaks were among these ten top markers. How-
ever, the values of AUCs for individual marker
were generally moderate, suggesting that the
power of single protein marker to differentiate
higher metal exposure to non-exposure was rela-
tively low. To show the collective power of mul-
tiple biomarkers, multivariate logistic regression
was used to combine the RSVM-selected five bio-
markers to form a single-value composite index.
ROC curve analysis of the composite index
showed a much stronger AUC (0.93, sensitiv-
ity=87%, specificity=89%) compared with the
AUCs from individual biomarkers (Figure 5). This
result illustrated the power of the combination of
multiple important markers.

Discussion

In this study, we attempted to search for biomar-
kers of mixed As and Pb exposure, using a serum
proteome-based approach. Using SELDI Protein-
Chip technology, we were able to analyze compre-
hensive protein profiles of subjects exposed tometal
mixture. The machine-learning algorithm allows
evaluation of each mass according to its collective
contribution toward the maximal separation of
mixed metal exposure at higher levels from non-
exposure. The two methods led to the identification

of five discriminatory protein peaks (2097 Da,
2953 Da, 3941 Da, 5338 Da, and 5639 Da). These
five proteins formed a proteomic signature that, in
combination, achieved higher sensitivity and spec-
ificity in detecting higher metal mixture exposure
from non-exposure than single protein marker.

Biomarker discovery using proteomics not only
involves the simultaneous analysis of proteomic
profiling, but also sophisticated bioinformatics
tools for complex data analysis and pattern recog-
nition. The vast amount of spectral data generated
by SELDI technology demands implementation of
advanced data management and analysis strategies.
Another concern remains whether the discovered
biomarkers and the derivedmultivariate models are
truly associated with the disease process. Recent
reports examined and highlighted the importance of
such issues (Baggerly et al. 2004; Diamandis
2004a, b). To address these issues, biomarker
discovery in the present study was done in two
independent ways to cross-validate discoveries:
descriptive statistics and the machine-learning
algorithms (RSVM scheme). RSVM distinguishes
itself from another SVM-based algorithm, the
SVM-RFE method (Guyon et al. 2002), in three
aspects: (1) difference in the scheme of cross-vali-
dation, (2) difference in criteria for ranking contri-
butions of a feature to the detection function, and
(3) difference in final important marker list is based
on frequency-based selection. These three features
of RSVM enhance the accuracy of final marker
selection, leading to the identification of biomarkers
that, in combination, achieved both higher sensi-
tivity and specificity in detecting metal-exposed
workers from the non-exposed controls.

Because of the multi-mechanisms of metal
toxicology, it is very likely that a combination of
several markers will be necessary to effectively
detect and diagnose early metal poisoning. Taking
advantage of the recent development in SELDI
and of the ProteinChip technology, we were able
to simultaneously analyze the comprehensive
protein profiles in the serum samples from mixed
metal-exposed workers and controls. The use of
RSVM, which screens potential marker directly on
raw spectrum data, allows evaluation of each mass
peak according to its cumulative contribution to-
ward the maximal separation of metal mixture
exposure from non-exposure. This led to the
identification of the five discriminatory biomar-
kers, with results confirmed by descriptive
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statistical analysis. The ROC analysis showed that
the AUCs for single selected biomarker were
generally moderate, suggesting that the power of
single protein peak to discriminate metal exposure
from non-exposure was relatively low. However,
when multivariate biomarkers were combined to
form a single proteomic signature, an increased
AUC, along with higher sensitivity and specificity
was achieved. The approach of using multiple bi-
omarkers to differentiate disease from non-disease
has been used previously in other diseases. For
instance, a combination of three serum proteomic
markers has been found to reach higher sensitivity
and specificity to detect ovarian cancer (Zhang
et al. 2004). Similarly, a proteomic signature
comprising of three serum proteins was reported
to be able to detect prostate cancer (Li et al. 2002).

The sensitivity and specificity of the proteomic
signature found in this study were somewhat lower
than those protein markers detected in cancer
subjects (Li et al. 2002; Zhang et al. 2004), not
surprising since we studied asymptomatic, exposed
individuals and not patients. Additionally, As and
Pb exist in the biological fluids in almost all human
beings. The protein signature in the present study
may be able to discriminate higher vs. low level
(i.e. background) of metal exposure.

It should be pointed out that current knowledge
about proteomic biomarkers is just in its infancy.
Special cautions should be taken when interpreting
the results from the present study. Firstly, the
identification of the proteomic signature in this
study is not necessary for making a clinical diag-
nosis. Knowing the identities of the protein bio-
markers are, however, more essential from a
discovery perspective. Further studies are required
to identify the nature of these markers individually
and in combination, and to understand the bio-
logical role of these proteins in the pathogenesis of
metal mixture exposure. Secondly, the classifica-
tion power of RSVM in protein biomarker
screening needs to be reproduced in future inde-
pendent studies of larger population. Thirdly, the
present study focused only on adult males with
mixed metal exposure at higher levels, the charac-
teristics of proteomic biomarkers in lower exposure
subjects, in females and children require to be fur-
ther defined. Finally, proteomic biomarkers, like
any other molecular biomarkers, can be considered
as biological indicators of environmental exposure.
Thus, the relationship between proteomic

biomarkers and exposure can only be established
on the basis of well-defined exposure information.

In summary, we have showed that proteomic
technology in combination with bioinformatics
tools is a promising novel approach for the dis-
covery of new and better biomarkers for metal
mixture exposure. Using multiple serum proteomic
markers, we could achieve higher sensitivity and
specificity than single marker for detection of
higher metal mixture exposure.
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