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Abstract

Acute and chronic arsenic exposure results in toxicity in humans and causes many neurological and other manifest-
ations. For the first time the present study reports that zinc decreases arsenic-induced apoptosis and also confirms a
single report of apoptosis induced by arsenic in a neuronal cell line. Apoptosis measured by DEVD-caspase activity
peaked between 10 µM and 20 µM of arsenic trioxide. Higher concentrations of arsenic up to 40 µM caused
increasing cell death with diminishing DEVD-caspase activity. The beneficial effect of zinc was proportional to
its concentration with a significant decrease in arsenic-induced DEVD-caspase activity at 50 µM and 75 µM zinc
(P < 0.05). This finding may be of therapeutic benefit in people suffering from chronic exposure to arsenic from
natural sources, a global problem especially relevant to millions of people on the Indian subcontinent.

Introduction

In addition to its deliberate use in acute and chronic
poisoning, arsenic has therapeutic applications in
western medicine. In the 18th to 20th century it was
used to treat illnesses such as syphilis, eczema, leuk-
emia and Vincent’s angina (Ratnaike 2003). Safer and
more effective drugs have replaced the use of arsenic.
Currently arsenic trioxide is the drug of choice in the
treatment of acute promyelocytic leukemia (Sun et al.
1992; Shen et al. 1997; Soignet et al. 1998).

The present interest in arsenic toxicity arises from
the large number of people in more than 18 countries
who are exposed to arsenic; the majority from natural
sources in aquifers supplying drinking water (Ratnaike
2003). A major clinical feature of arsenic poisoning is
toxicity to the central and peripheral nervous systems
(Le Quesne 1982; Campbell & Alvarez 1989). The
manifestations are cognitive impairment, encephalo-
pathy and damage to the peripheral nervous system
that leads to peripheral neuropathy (Abernathy et al.
1999; Hall 2002).

Arsenic is not a component of human biological
systems, and is toxic to human cells with the poten-

tial to cause apoptosis. Apoptosis, or programmed
cell death, is the physiological, gene-controlled pro-
cess whereby individual cells in multicellular animals
are deliberately eliminated to achieve homeostasis and
normal tissue and organ development (Chinnaiyan &
Dixit 1996). Apoptosis occurs by controlled proteo-
lysis of cellular components and a family of enzymes
known as caspases are the principal proteases in-
volved; measurement of their activation reflects apop-
totic activity.

Arsenic causes apoptosis by damaging the DNA
of cells, perhaps through induction of reactive oxy-
gen species (Pelicano et al. 2002; Shen et al. 2003).
Arsenic also has a direct effect on mitochondrial mem-
branes, leading to the release of an apoptosis-inducing
factor (Larochette et al. 1999; Lorenzo et al. 1999;
Susin et al. 2000).

There is only one report of arsenic-induced apop-
tosis in a neurological cell line (Akao et al. 1999). The
present study seeks to confirm arsenic-induced apop-
tosis in a neuroepithelial cell line. A second part of
the study explores whether zinc has a beneficial effect
on arsenic-induced apoptosis in these cells, based on
the fact that we have shown in this laboratory that zinc
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prevents butyrate-induced apoptosis in a neuronal cell
line (Ho et al. 2000).

Materials and methods

Materials

Major materials used included reagent grade so-
dium butyrate, sodium bicarbonate and NaOH
(Merck), fetal bovine serum (FBS; Chase Laborat-
ories), gentamicin (Pharmacia and Upjohn), peni-
cillin, streptomycin and trypsin-EDTA (ICN Bio-
medicals), carbobenzoxy-asp-glu-val-asp-7-amino-4-
trifluoro-methyl-coumarin (zDEVD-AFC; Calbiochem)
and 6-well tissue culture plates (Falcon, Becton
Dickenson). All other materials, including RPMI-
1640 powdered medium, As2O3 (arsenic-III oxide),
HEPES, EDTA, CHAPS, NP-40 (Igepal CA-630 no-
nionic detergent) and ZnSO4 were reagent grade
sourced from Sigma-Aldrich Co., unless otherwise
specified.

Cell line

2.3D cells are an immortalised adherent cell line that
can be induced by fibroblast growth factor to dif-
ferentiate into astrocytes and neurons (Bartlett et al.
1988). The morphology and antigenic phenotype of
the cloned cell line is characteristic of normal neur-
oepithelium (Bartlett et al. 1988).

Cell cultures

2.3D cells were grown in culture flasks in a humidified
atmosphere containing 5% CO2 in RPMI-1640 tissue
culture medium, pH 7.4 supplemented with 25mM
HEPES, 24mM sodium bicarbonate, 100 IU/ml peni-
cillin, 100 µg/ml streptomycin, 160 µg/ml gentamicin
and 10% heat-inactivated FBS (called medium for con-
venience). Cells were harvested with trypsin-EDTA
before cell confluence occurred. A count of viable
cells was done using a hemocytometer and 0.15%
trypan blue (Searle Diagnostic). A starting cell con-
centration of 105 cells/ml was obtained by adding
an appropriate volume of medium. Two millilitres of
this suspension was pipetted into each well of 6-well
plates.

The culture plates were incubated until the cells
were between 25% and 50% confluence in 5% CO2
at 37 ◦C. Plates showing uneven growth of cell lay-
ers were discarded. The wells were replenished with

fresh medium containing arsenic and/or zinc to final
volumes of 2 ml. The cultures were incubated for 20 h
after the addition of arsenic and/or zinc to triplicate
wells.

Arsenic trioxide

Each experiment used fresh dilutions made in RPMI-
1640 of As2O3 from a stock solution in 1 N NaOH.
The pH was adjusted to 7.4 with HCl (APS Finechem,
Aust.) and sterilised by microporous membrane filtra-
tion (Millipore) before adding FBS to 10%. Dilutions
of As2O3 between 5 µM and 40 µM were made. In
regard to apoptosis, a standard positive control was so-
dium butyrate dissolved in RPMI-1640 and membrane
sterilised (Ho et al. 2000).

Zinc sulfate

To determine the beneficial effects of zinc, a series
of concentrations of ZnSO4 from 12.5 µM to 75 µM
were made in medium from a 25 mM aqueous stock.
An initial dilution of 1:10 in H2O avoided precipita-
tion of salts.

Controls

Sodium butyrate at concentrations from 1 to 12 mM
were positive controls to induce apoptosis. Negative
controls were medium without added arsenic or zinc.
All culture wells were set up in triplicate.

Buffers

Lysis buffer was prepared fresh, using milli-Q wa-
ter containing 0.5% NP-40, 0.05 M Tris and 0.05 M
EDTA, pH adjusted to 7.4. Caspase buffer was pre-
pared with 50 mM HEPES, 1% sucrose and 0.1%
CHAPS in milli-Q water, pH adjusted to 7.4 with 5M
NaOH, then used for up to two weeks. Fresh dithio-
threitol and zDEVD-AFC were added to the caspase
buffer to final concentrations of 10 mM and 2.5 µM
respectively to assay DEVD-caspase activity in lysate
samples.

Harvesting of cells

Cells were harvested from supernatants that con-
tained nonadherent cells by centrifugation at 900 g for
10 minutes and the pellet washed twice with phos-
phate buffered saline (PBS, pH 7.4). The remaining
adherent cells in the wells were treated with 0.8ml of
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fresh lysis buffer for at least 20 min and the contents
were pipetted out and added to the pellets obtained
above. The pellets were resuspended and allowed to
stand overnight at 4 ◦C for lysis to complete. Lysed
cell material was then transferred to microcentrifuge
tubes (Sorenson BioScience) and spun at 12000 g for
6 min at 4 ◦C to sediment debris.

Cell viabilities were checked on replicate wells
harvested in the same manner except that adherent cell
fractions were washed gently in situ with RPMI alone,
harvested with trypsin-EDTA and washed twice with
PBS. Cells resuspended in 0.5 ml of medium were
counted using a haemocytometer with equal volumes
of 0.3% trypan blue.

Measurement of apoptosis using the DEVD-caspase
assay

Apoptosis was measured using a DEVD-caspase activ-
ity assay. DEVD-caspase activity collectively refers
to both caspase-3 and caspase-7 activity as both cas-
pases recognise the common tetrapeptide motif DEVD
(Krzyzowska et al. 2002).

The DEVD-caspase assay was performed on cell
lysates with the caspase activity buffer described
above. In this assay, caspases cleave the fluorogenic
substrate zDEVD-AFC creating a fluorescent AFC
molecule whose fluorescence was measured. One mil-
lilitre of caspase activity buffer was added to 50 µl
of sample in disposable semi-micro cuvettes (Greiner,
Austria), incubated for 18 h at 20 ◦C and the fluor-
escence measured in a Perkin-Elmer LS50 spectro-
fluorometer at 490 nm using 400 nm incident light and
a 5nm slit width (Ho et al. 2000). Raw caspase activit-
ies expressed as fluorescent units were converted into
DEVD-caspase activity units. One unit of DEVD-
caspase activity is defined as 1 fluorescence unit per
mg of protein per hour of caspase assay. EDTA from
the lysis buffer was present in the reaction mix at a
final concentration of 1.25 mM, sufficient to prevent
inactivation of the caspase activity by trace metals
(Stennicke & Salvesen 1997).

Protein concentrations were then determined by a
modified Lowry method using detergent-compatible
protein assay reagents (Bio-Rad Laboratories) and
fraction V bovine serum albumin serially diluted over
the range 0.1 to 3.2 mg/ml to create a standard curve.
This enabled expression of DEVD-caspase activity per
mg of protein in the lysates, thus reflecting varied
cell growth in different wells. Optical densities were
plotted and the line of best fit determined. The res-

Figure 1. Shows DEVD-caspase activity induced in 2.3D cells
stimulated with arsenic trioxide in the presence of no added zinc
(closed circles) or 75 µM ZnSO4 (open squares). Thick error bars
show standard deviation for each mean. Asterisks show which
DEVD-caspase activities differed significantly from the nil ad-
ded zinc activity of the control at the same arsenic concentration
(P < 0.02). The middle curve with cross-hair points shows the
mean DEVD-caspase activity of 13 experiments using 2.3D cells
stimulated in triplicate with arsenic trioxide and the thin error bars
indicate standard errors for each mean.

ulting linear equation (optical density = slope of line
* protein concentration) was used to convert optical
densities of lysate samples into protein concentrations
(in mg/ml).

The final DEVD-caspase activity was calculated
by dividing the fluorescent AFC activity (in fluores-
cent units per ml) by the protein concentration (in
mg/ml) measured in each lysate sample. This method
is used to correct for the effect of growth inhibition
(Mundle et al. 1999; Haridas et al. 2001; Kwon et al.
2001; Feng & LeBlanc 2003).

Results

Butyrate and Zinc controls

Controls with sodium butyrate caused activation of
DEVD-caspase activity in the concentration range 4
to 12 mM. The activity of ZnSO4 alone is shown in
Figures 1 and 2 at the points marked 0 µM arsenic tri-
oxide, and is not significantly different from baseline
activity in medium alone.

Response to arsenic

The morphological changes in cells treated with 5 µM
As2O3 were withdrawal of cell processes. At 10 µM
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Figure 2. Shows DEVD-caspase activity induced in 2.3D cells stim-
ulated with arsenic trioxide in the presence of no added zinc (closed
circles), 25 µM ZnSO4 (open circles) or 50 µM ZnSO4 (triangles).
Error bars show standard deviation for each mean. Asterisks show,
at the same arsenic concentration, the significant differences in
DEVD-caspase levels between 50 µM zinc and when no zinc was
added (P < 0.02).

Figure 3. (A): Unstained control 2.3D cells photographed with
phase contrast in situ on the culture plate showing the normal phen-
otype including extended cellular processes. (B): Cells treated with
10 µM As2O3 showing withdrawal of cell processes and membrane
blebbing characteristic of early apoptosis.

and above, cells began to lose adherence, and mi-
croscopic examination of cells showed condensation
and fragmentation of chromatin and blebbing of cell
membranes in proportion to the concentration of ar-
senic (see Figures 3 and 4). Staining with trypan blue
showed decreasing viability with increasing arsenic
concentration.

Figure 4. Cells were gently lysed and stained to reveal intracellu-
lar structures — (A): Control 2.3D cells showing no condensation
of nuclear material. (B): Cells treated with 10 µM As2O3 show-
ing nuclear changes of chromatin condensation and fragmentation,
characteristic of early apoptosis.

DEVD-caspase activation occurred over a range of
As2O3 concentrations from 10 µM to 40 µM. The
peak activity was between 10 µM and 20 µM As2O3
(Figure 1). Concentrations between 25 µM and 40 µM
induced lower DEVD-caspase activity. Experiments
using As2O3 at 80 µM resulted in cell death without
measurable DEVD-caspase activation.

Cultures with higher cell concentrations, reflected
by higher protein concentrations, required increased
concentrations of arsenic to induce maximal DEVD-
caspase activity. This relationship was positive but
low, with a coefficient of correlation of 0.27.

Effects of ZnSO4 on arsenic-induced DEVD-caspase
activity

Adding either 50 µM or 75 µM of ZnSO4 to As2O3 at
a range of concentrations produced a statistically sig-
nificant decrease in DEVD-caspase activity at 10 µM
arsenic and above (P values from < 0.05 to < 0.01) in
each of three experiments. Figure 1 shows results from
a typical experiment with 75 µM of ZnSO4 and its
nil-zinc control, superimposed on the mean response
of 13 experiments using arsenic without zinc present.
Figure 2 shows a second series of experiments using
25 µM or 50 µM ZnSO4 with the same concentrations
of arsenic.

These results indicate a beneficial role of high con-
centrations of ZnSO4 in reducing the level of DEVD-
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caspase activity induced by arsenic. The decrease
in DEVD-caspase activity was greater with 75 µM
than with 50 µM zinc. The addition of 25 µM of
ZnSO4 did not significantly decrease arsenic-induced
DEVD-caspase activity.

Discussion

Chronic arsenic toxicity affects most organ systems
of the body and is associated with malignancies (Hall
2002; Ratnaike 2003). The nervous system manifesta-
tions are toxic delirium, encephalopathy, seizures and
peripheral neuropathy due to demyelination and severe
axonal loss (Le Quesne 1982; Campbell & Alvarez
1989; Abernathy et al. 1999; Hall 2002).

Our study confirms a report of apoptosis caused
by As2O3 in a neuroblastoma cell line (Akao et al.
1999). We have established that apoptosis, measured
by DEVD-caspase activity, occurs maximally within a
narrow range of 10 µM to 20 µM of As2O3. Although
still significantly above the zero arsenic control, there
was diminishing DEVD-caspase activity at 25 µM
and 33 µM arsenic, which may reflect that intra-
cellular damage is occurring due to arsenic toxicity.
At arsenic concentrations of 40 µM and above, no
significant activation of DEVD-caspase occurred and
the cells showed very low viability. Indeed, as ar-
senic concentrations increased, DEVD-caspase activ-
ity peaked and then decreased while viability declined
continuously, accompanied by cell changes character-
istic of apoptosis such as cell membrane blebbing and
condensation and fragmentation of chromatin.

Shen’s group (1997) treated APL patients with
arsenic trioxide and achieved serum concentrations
ranging from 5.5 µM to 7.3 µM (Shen et al. 1997).
Our experiments required a higher level of arsenic to
effect apoptosis in the neuroepithelial cell line we used
in vitro.

Arsenic causes apoptosis by a variety of mech-
anisms. One mechanism is through direct activation
of caspase-8, which then initiates the apoptotic pro-
cess (Cohen 1997). Apoptosis also occurs by arsenic
producing reactive oxygen species that inactivate en-
zymes and damage DNA molecules by direct chemical
attack on their structure (Pelicano et al. 2002; Shen
et al. 2003).

In this study we demonstrated a previously unre-
ported finding that zinc decreased arsenic-induced ap-
optosis. Both 50 µM (Figure 2, triangles) and 75 µM
of ZnSO4 (Figure 1, open squares) caused a significant

decrease in DEVD-caspase activity. Lower concentra-
tions of ZnSO4 did not show this effect (Figure 2,
open circles), either because the concentration was
insufficient or because of the differences set out be-
low, relating to the cellular uptake of arsenic and zinc.
As2O3 enters cells by simple diffusion, proportional
to its extracellular concentrations and independent of
energy consumption (Huang & Lee 1996). The highly
charged, hydrophilic ion Zn++ does not cross biolo-
gical membranes as easily and the entry of zinc is
determined by the availability and concentration of
membrane-spanning zinc transport proteins (Kambe
et al. 2004). In contrast to arsenic, zinc may be lost
easily from within the cell, as it is not tightly bound in-
side the cell, but labile (Cousins 1986) while arsenic is
highly reactive, binding to sulfhydryl groups in intra-
cellular and membrane proteins (Menzel et al. 1999;
Zhang et al. 2000).

The findings of our study may be of potential
value to those suffering from chronic arsenic expos-
ure, though further study relating to zinc is necessary.
It may be of interest to note that the zinc tolerance
test uses a fasting oral dose of zinc of 50 mg with
no ill effects and induces concentrations in serum of
43 µM +/− SD of 7 µM (Sullivan et al. 1979). Doses
of 150 mg for short periods of time are within pre-
scription limits (Sweetman 2002). The concentration
of zinc in our experiments that best prevented apop-
tosis (75 µM) is thus equivalent to an 85 mg oral dose
of elemental zinc.

Zinc has been demonstrated to prevent apoptosis,
though not induced by arsenic (Zalewski et al. 1993;
Sunderman 1995; Fraker & Telford 1997; Ho et al.
2000). Zinc may act at several points in the cascade of
enzymes involved in the activation of caspases. At re-
latively low physiological concentrations zinc blocks
the activation of caspase-3 by cytochrome c in cell-
free systems (Truong-Tran et al. 2000) possibly by
affecting the activity of caspase-6, which zinc inhib-
its completely at 10 µM (Stennicke & Salvesen 1997;
Takahashi et al. 1996). Caspase-6 initiates the dissol-
ution of the cell nuclear membrane via cleavage of
lamins and also cleaves and activates the proenzyme
form of caspase-3 (Srinivasula et al. 1996). Since ar-
senic is known to affect the mitochondrial membrane
potential (Larochette et al. 1999; Lorenzo et al. 1999;
Susin et al. 2000), the point at which zinc is acting in
our cells may be after the arsenic-induced release of
mitochondrial factors such as cytochrome c.

Zinc also manifests antioxidant properties inside
cells (Vallee & Falchuk 1993), which may directly
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oppose the oxidising effects of arsenic. Zinc may also
act to stabilise the cytoskeleton, preventing arsenic-
induced disruption of cell membranes (Pfeiffer & Cho
1980; Johanning & O’Dell 1989). Zinc may also re-
duce arsenic-induced DEVD-caspase activity by indu-
cing the synthesis of metallothionein, a metal-binding
protein that binds seven zinc ions per protein molecule
(Durnam & Palmiter 1981; Vallee & Falchuk 1993).
Metallothionein has the potential to scavenge for ar-
senic and reduce its damaging effects by binding up
to six As(III) moieties per molecule (Toyama et al.
2002).

In summary, we have shown that arsenic induces
apoptosis in a neuronal cell line, 2.3D, and that zinc
reduces arsenic-induced apoptosis as measured by
DEVD-caspase activity. This beneficial effect of zinc
suggests a possible role for zinc in arsenic toxicity, as
a preventative or as a therapeutic agent.
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