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Abstract  The German Bight in the southern 
North Sea receives nutrients, dissolved organic mat-
ter (DOM), and trace metals from rivers, porewa-
ter reflux, and porewater outwelling. We studied the 
marine, riverine, and porewater sources analyzing 
molecular transformations of solid-phase extracted 
(SPE) DOM in the German Bight. We applied a 
combination of ultrahigh-resolution mass spectrom-
etry (FT-ICR-MS) with quantitative data of dissolved 
organic sulfur (DOS), dissolved black carbon (DBC), 
dissolved trace metals (Ba, Co, Gd, Mo, Mn, W), and 
nutrients (nitrite, nitrate, phosphate, silicate). While 
aromatic DOM and DBC mainly originated from the 

rivers, nitrogen-containing, more saturated DOM was 
enriched offshore suggesting greater contributions 
of marine (algal) sources. Except for dissolved Mo, 
rivers were the primary source of trace metals and 
nutrients. However, tidal flats contributed to dissolved 
nutrient (e.g., dissolved phosphate), trace metal and 
DOS inventories of the southern North Sea. The 
input of DOS from intertidal flats was identified by 
the molecular index derived from sulfidic porewa-
ters (ISuP), non-conservative behavior of elemental 
sulfur-to-carbon ratio and sulfur content of molecular 
formulae (from FT-ICR-MS). Dissolved Mn and Si 
were removed in the German Bight, likely due to pre-
cipitation as Mn(hydr)oxides and biological uptake, 
respectively. Preliminary estimates suggest that DOS 
from porewater outwelling is approximately four 
times higher than DOS discharged by the three main 
rivers in the region. Our study therefore highlights 
the need to consider porewater discharge in addi-
tion to riverine sources to comprehensively assess 
elemental budgets within the complex interplay and 
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transformations of DOM, nutrients, and trace metals 
in coastal ecosystems.

Keywords  Ultrahigh-resolution mass 
spectrometry · Dissolved organic matter · Dissolved 
black carbon · Dissolved organic sulfur · Trace 
metals · Estuaries · Tidal cycle

Introduction

Land–ocean interfaces play a key role in controlling 
fluxes of dissolved organic matter (DOM), nutrients 
and trace metals in global biogeochemical cycles 
(Burnett et al. 2003; Moore et al. 2006; Canuel et al. 
2012). Yet, carbon dynamics and their connection 
to nutrients and trace metals in coastal ecosystems 
are still not fully understood, limiting our ability to 
accurately quantify global carbon fluxes (Ward et al. 
2017).

Coastal ecosystems and estuaries are hotspots 
for DOM cycling (Tzortziou et  al. 2008). Estuarine 
DOM originates from allochthonous (marine, river-
ine, groundwater, and atmospheric input) and autoch-
thonous sources (in situ production) (Osterholz et al. 
2016; Riedel et  al. 2016). The DOM composition 
in estuaries and coastal ecosystems is influenced by 
exchanges with intertidal systems (Letourneau et  al. 
2021), atmospheric deposition and microbial transfor-
mations (Carey and Fulweiler 2014; Tzortziou et  al. 
2008). Primary production in coastal environments 
is enhanced by the riverine supply of nutrients. This, 
together with estuarine DOM sources and transforma-
tions, make DOM dynamics in coastal environments 
extremely complex (Yamashita, et al. 2008). Not only 
large rivers have an influence on the biogeochemistry 
of coastal environments (Medeiros et  al. 2015b) but 
also small coastal tributaries (Beck et al. 2012), inter-
tidal beaches (Beck et  al. 2017; Santos et  al. 2008; 
Seidel, et  al. 2015a), and intertidal flats such as in 
the Wadden Sea of the southern North Sea (Beck and 
Brumsack 2012; Reckhardt et  al. 2015; Seidel et  al. 
2014). In all these systems, biogeochemical cycles 
are largely influenced by porewater outwelling, i.e., 
lateral fluxes or horizontal exports, including sub-
marine groundwater discharge (SGD) and advective 
transport across the water–sediment interface (Beck 
et al. 2008b; Moore et al. 2011; Santos et al. 2021a, 
2015). Because of higher porewater concentrations 

of dissolved organic carbon (DOC), inorganic nutri-
ents, and certain trace metals compared to river water, 
porewater outwelling is a major factor regulating their 
fluxes in coastal areas (Beck et al. 2008a; Grunwald 
et al. 2010; Moore et al. 2011; Reckhardt et al. 2015).

Oceanic DOM contains one of the largest active 
organic carbon pools on earth (Hansell 2013) and is 
mostly derived from marine primary producers such 
as phytoplankton (Carlson and Hansell 2015). How-
ever, terrestrial DOM input by rivers and porewater 
outwelling is important in coastal oceans (Santos 
et  al. 2021b, 2021a; Ward et  al. 2017). DOM is a 
highly complex mixture that is still not fully charac-
terized (Dittmar and Stubbins 2014; Koch et al. 2005; 
Nebbioso and Piccolo 2013). With ultrahigh-resolu-
tion Fourier-transform ion cyclotron resonance mass 
spectrometry (FT-ICR-MS) it is, however, possible 
to determine thousands of molecular formulae in the 
complex DOM mixture (Zark and Dittmar 2018). FT-
ICR-MS thus has become an important tool to study 
the DOM molecular composition in ecosystems rang-
ing from the oceanic water column (Gonsior et  al. 
2011; Hansman et  al. 2015; Medeiros et  al. 2015a), 
through estuaries (Medeiros et  al. 2015b; Osterholz 
et al. 2016), to porewater (Schmidt et al. 2009; Seidel 
et  al. 2014). The DOM molecular composition car-
ries valuable information of its sources and process-
ing such as photo- and bio-transformations (Medeiros 
et al. 2015b; Stubbins et al. 2012).

Marine DOM contains dissolved black carbon 
(DBC) that is mainly generated through the incom-
plete combustion of organic matter on land, consist-
ing of polycyclic and condensed aromatics (Wagner 
et al. 2018). Non-pyrogenic sources are, for example, 
petroleum-derived (Podgorski et  al. 2021; Brünjes 
et al. 2022) as well as fungal compounds (Brodowski 
et  al. 2005). In fire-impacted catchments like in our 
study, charring and soot deposition are, however, 
quantitatively by far the most important sources of 
black carbon (Brodowski et  al. 2005; Coppola et  al. 
2022). Overall, the ocean stores about 14 Pg of DBC 
(Coppola et al. 2022), representing a carbon fraction 
that persists for several millennia due to its recalci-
trance (Coppola and Druffel 2016). Rivers and atmos-
pheric deposition are major transport pathways of 
DBC from land to the ocean (Bao et  al. 2017; Jaffé 
et al. 2013), whereas porewater sources remain poorly 
understood. Photo-degradation is a major sink for 
recalcitrant DBC in the surface ocean (Dittmar and 
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Paeng 2009; Stubbins et al. 2012) and DBC removal 
is enhanced in clear offshore waters where photo-
chemical reactions are the dominant pathway for 
DOM transformations compared to more turbid river 
plumes and coastal waters (Medeiros et al. 2015b).

Marine DOM contains about 7 Pg dissolved 
organic sulfur (DOS) (Ksionzek et  al. 2016; Long-
necker et al. 2020). It is mainly derived from marine 
primary production (Phillips et  al. 2022) but abiotic 
sulfurization of DOM (Pohlabeln et  al. 2017) is a 
considerable DOS source in sulfidic sediments (Sei-
del et al. 2014). Such addition of sulfur may protect 
organic matter from microbial alteration (Ander-
son and Pratt 1995), also determining mobility and 
bioavailability of trace metals (Marie et  al. 2015). 
Most marine DOS appears to be part of active bio-
geochemical cycling (Ksionzek et  al. 2016; Phillips 
et al. 2022), but a fraction of porewater-derived DOS 
is distributed globally and reaches the deep ocean 
as part of the refractory DOM (Phillips et al. 2022). 
However, riverine and porewater sources of DOS in 
coastal oceans are not well constrained yet.

In aquatic environments, redox-sensitive trace met-
als exist in soluble and particulate form, depending 
on factors such as pH, salinity, redox-condition, pro-
ductivity, DOM, and suspended matter (Chester and 
Jickells 2012). Sources include rivers, groundwater, 
and porewater reflux,  dust or aerosols (Bruland and 
Lohan 2003). Trace metal removal is controlled by 
biological uptake, scavenging onto particles, avail-
ability of ligands, and redox gradients (Bruland and 
Lohan 2003). Thus, studying redox-sensitive trace 
metals in the context of (dissolved) organic mat-
ter helps understanding redox characteristics of the 
depositional and diagenetic environments and DOM 
cycling (Miller et al. 2011; Morford et al. 2007; Mori 
et al. 2019; Tribovillard et al. 2006).

In detail, manganese (Mn) and iron (Fe) (oxyhydr-)
oxides scavenge DOM and trace metals (Berrang and 
Grill 1974; Bruland and Lohan 2003; Burdige 1993; 
Linkhorst et  al. 2017), and co-precipitation with Fe 
oxide minerals traps significant portions of DBC at 
sediment–water redox-interface (Riedel et  al. 2013) 
as well as nutrients such as phosphate (e.g. Slomp 
et  al. 1996). Manganese and Fe are delivered to the 
southern North Sea by rivers (Beck et al. 2020; Laxen 
et  al. 1984; Vuori 1995) and porewater outwelling 
from oxygen-deficient intertidal systems (Beck et al. 
2008b; Dellwig et  al. 2007a, b; Moore et  al. 2011; 

Mori et  al. 2019). The studied trace metals Cobalt 
(Co), molybdenum (Mo), tungsten (W), barium (Ba), 
and gadolinium (Gd) do not directly influence DOM 
concentrations or characteristics, but they are help-
ful tools to decipher environmental conditions and 
sources. Molybdenum generally behaves conserva-
tively in the open ocean (Collier 1985; Morris 1975). 
However, non-conservative behavior in coastal set-
tings such as the southern North Sea was related to 
phytoplankton blooms and possibly to scavenging 
in oxygen-deficient micro-niches of suspended par-
ticles (Dellwig et  al. 2007a; Kowalski et  al. 2013). 
Comparable to Mo, tungsten (W) behaves conserva-
tively in the oxygenated ocean (Firdaus et  al. 2008; 
Sohrin et al. 1999) but appears at a magnitudes lower 
concentration than Mo, most likely due to a lowered 
susceptibility to weathering, a lower solubility and 
a higher affinity to Fe–Mn oxyhydroxides represent-
ing the dominating oceanic sink of W (Dellwig et al. 
2019; Kashiwabara et  al. 2017). Dissolved barium 
(Ba) is used in coastal ocean studies as a tracer for 
porewater outwelling because it shares geochemical 
similarities with porewater tracers such as radium 
(Gonneea et al. 2013) and is released from intertidal 
sediments (Moore 1997; Mori et al. 2019; Seidel et al. 
2014). Similarly, Mn, Co, and W are enriched in oxy-
gen-depleted or sulfidic porewater and are released 
to the open water column by porewater outwelling 
(Cui et al. 2021; Dellwig et al. 2019, 2021; Mohajerin 
et  al. 2016). Gadolinium is a specific tracer for 
anthropogenic input due to the usage of organic Gd 
complexes as contrast agents in magnetic resonance 
imaging (Kulaksiz and Bau 2007; Rogowska et  al. 
2018) leading to positive anomalies in rivers (Kulak-
siz and Bau 2007), terrestrial groundwater (Johannes-
son et al. 2017), and coastal waters (Hatje et al. 2016; 
Pedreira et al. 2018).

Previous studies have demonstrated the importance 
of intertidal flats and rivers as drivers of nutrient, 
carbon (e.g. methane and chromophoric DOM) and 
trace metal dynamics in the North Sea (e.g. Beck and 
Brumsack 2012; Grunwald et al. 2010, 2009; Kowal-
ski et al. 2009; Lübben et al. 2009; Moore et al. 2011; 
Painter et al. 2018). However, it remains a major chal-
lenge to decipher the different DOM sources, i.e., 
marine, estuarine, fluvial, and porewater in highly 
complex coastal settings such as the southern North 
Sea. Our study therefore aims to differentiate sources 
and sinks of DOM in the German Bight (southeastern 
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North Sea) from the three main estuaries (rivers Elbe, 
Weser, and Ems) and the intertidal flats. We hypoth-
esize that sulfate-reducing intertidal sediments are 
hotspots of abiotic sulfurization of DOM, producing 
DOS that is carried via porewater outwelling into the 
coastal zone. We further hypothesize that, besides riv-
erine input, porewater outwelling is a source of DBC 
due to the mobilization of previously deposited black 
carbon from intertidal sediments. In this context, 
we address how the molecular DOM composition is 
linked to the environmental and redox conditions at 
the formation sites as characterized by concentrations 
of chlorophyll a, dissolved oxygen (DO), dissolved 
trace metals (Ba, Co, Mn, Mo, W, and Gd), and pH 
values. In addition to nutrients (dissolved nitrogen 
species, phosphate, and silicate), dissolved trace met-
als such as Ba, Co or Mn can escape from intertidal 
sediments to the coastal ocean via porewater out-
welling, and we hypothesize that the transport of the 
released trace metals and their potential precipitation 
further offshore are connected to the export of DOM 
to the German Bight.

Material and methods

Study site

The coastal area of the German Bight in the south-
eastern North Sea (Hofmann et  al. 2005) covers 
the Islands and Wadden Sea of East and North Fri-
sia (Fig.  1). The Wadden Sea, extending from Den 
Helder (Netherlands) to Esbjerg (Denmark), forms 
the largest uninterrupted stretch of sand and mud-
flats in the world (Marencic 2009). Water depths 
in the German Bight sector range between < 10  m 
nearshore to > 40  m offshore increasing in direction 
to the Atlantic Ocean to ~ 200 m (Becker et al. 1992; 
OSPAR 2000). Semidiurnal tides range between 
2 to 4 m, with macro-tidal estuaries at the Elbe and 
Weser Rivers and meso-tidal coasts at East and 
North Frisia (Zeiler et al. 2008). Water masses origi-
nate from the Atlantic Ocean north of Scotland and 
through the English Channel, rivers such as Hum-
ber, Thames, Scheldt, Rhine, Ems, Weser, and Elbe 
(Becker et  al. 1992), and finally outflow of brackish 
waters from the Baltic Sea (Painter et al. 2018). Main 
freshwater sources to the German Bight are the riv-
ers Elbe, Weser, and Ems, but contributions also 
occur via smaller fluvial watercourses that drain the 
hinterland and are connected to the tidal flat areas by 

Fig. 1   Map showing the 
German Bight in the south-
ern North Sea (a) the coasts 
of North and East Frisia and 
the rivers Elbe, Weser, and 
Ems (b) and the stations of 
tidal cycle sampling (S1–
S3) close to the islands of 
Spiekeroog and Langeoog 
and the tidal inlet Otzumer 
Balje (arrow), respec-
tively (c). The color codes 
of the sampling stations 
refer to clusters that were 
determined by multivariate 
statistical analysis: River 
1 (light green) and River 2 
(dark green), Wadden Sea 
(light brown) and coastal 
transition (dark brown) as 
well as marine offshore 1 
(light blue) and offshore 2 
(dark blue) stations
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flood-gates, depending on precipitation in the drain-
age area (Beck et  al. 2012). The Elbe River is the 
largest freshwater source (861 m3 s−1) to the German 
Bight followed by the rivers Weser (323 m3 s−1) and 
Ems (80 m3 s−1) (Lübben et al. 2009; Schmidt et al. 
2011 and references therein). Barrier islands sepa-
rate the backbarrier tidal flat areas from the nearshore 
North Sea. Most of the barrier islands are separated 
by tidal inlets (< 5 to 15 m deep) such as the Otzumer 
Balje between the islands of Langeoog and Spieker-
oog (Fig. 1c; Valle-Levinson et al. 2018). During low 
tide, the backbarrier tidal flats are exposed thereby 
discharging porewater into the tidal channels (Moore 
et al. 2011).

Sampling

Sampling in the German Bight and the estuaries was 
carried out from 19th to 31st March 2019 aboard R/V 
Heincke (leg HE527) (Supplementary Table  S1), at 
the onset of the phytoplankton bloom but before the 
main phytoplankton bloom (around April). A total 
number of 78 water column samples were collected 
at 71 stations along transects close to the East- and 
North-Frisian Islands, in the offshore part of the Ger-
man Bight and in the Ems, Weser and Elbe estuar-
ies (Fig.  1; Supplementary Table  S1). Tidal cycles 
were sampled at three stations over ~ 50 h, with a 
time interval of 1.5 h, off the islands of Langeoog 
and Spiekeroog close to the tidal inlet Otzumer Balje 
(Fig.  1c). Samples were taken with a rosette water 
sampler equipped with twelve Niskin bottles and a 
CTD (conductivity, temperature, pressure). Sam-
ples were taken in acid-rinsed pH 2 (HCl 25%, p.a.) 
20 L HDPE carboys, filtered with a Masterflex peri-
staltic pump using a Causa pure pre-filter cartridge 
(CPR-001-09-DOX, 1 µm, 10-inch, PP, Infiltec) and a 
Causa-PES filter cartridge (CPS-S10-10-DOV-A, 0.1 
µm, 10-inch, PES, Infiltec), in Causa PP blue filter 
holders (PBD-10-GFE, 10 inches, Infiltec) connected 
via Masterflex Chem-durance tubing. After filtration, 
an aliquot was taken for the measurements of fluores-
cent DOM (FDOM). For DOM extraction, 1 L of fil-
tered sample was acidified to pH 2 (HCl 25%, p.a.). 
Triplicates of filtered samples were taken in 30 mL 
HDPE bottles for DOC analysis. Samples for trace 
metal and nutrient analyses were filtered through 0.45 
μm SFCA (surfactant-free cellulose acetate) syringe 
filters into polyethylene bottles (acid-washed and 

rinsed with ultrapure water prior to usage for trace 
metal samples). Saturated mercury(II)chloride solu-
tion (HgCl2) was added to the nutrient samples for 
preservation after Schnetger and Lehners (2014). 
Trace metal samples were acidified using concen-
trated ultrapure HNO3 to obtain a concentration of 
1% (v/v). All trace metal samples were stored in the 
dark at 4°C and were measured within eight months, 
nutrient measurements were done within a week after 
sampling. The storage of fixed seawater samples over 
several months does not affect the stability of the 
trace metal inventory (Dellwig et al. 2019).

Bulk geochemical analyses

Humic-like FDOM was measured in filtered water 
samples (without acidification) using an AquaFluor 
handheld Fluorometer/Turbidimeter 8000-010 made 
by Turner Designs (excitation 350 nm, emission 450 
nm) and results are given in relative fluorescence 
units (rfu). The handheld fluorometer semi-quantita-
tively targets humic-like fluorescence DOM (peak C) 
(Coble 1996; Waska et  al. 2019). Dissolved organic 
carbon (DOC) and total dissolved nitrogen (TDN), 
which is the sum of nitrate (NO3

−), nitrite (NO2
−), 

ammonia (NH4
+), and dissolved organic nitrogen 

(DON), were measured with the high temperature cat-
alytic oxidation (HTCO) method on a DOC Analyzer 
(Shimadzu TOC-VCPH) equipped with a TDN unit. 
Analytical precision and trueness were better than 5% 
(tested against deep-sea reference material provided 
by Dennis Hansell at the University of Miami, USA) 
and low-carbon ultrapure water. Solid-phase extrac-
tion (SPE) of DOM from 1 L water samples (adjusted 
to pH 2, HCl 25%, p.a.) was performed as described 
by Dittmar (2008) using styrene divinyl benzene pol-
ymer filled cartridges (Agilent Bond Elut PPL, 1g). 
After drying the cartridges, DOM was eluted with 6 
mL methanol (HPLC grade). The SPE-DOM extracts 
were stored in brown glass vials at -20°C for further 
analyses. The extraction efficiency was calculated as 
DOC concentrations in original water samples com-
pared to DOC concentrations in methanol extracts by 
drying an aliquot of the extract at 40°C and re-dis-
solving it in ultrapure water. The average extraction 
efficiency was 52.7 ± 5.9% of total DOC. Concentra-
tions of dissolved inorganic phosphorus (DIP), dis-
solved silicate (DSi), nitrogen oxides (NOx, which is 
the sum of NO3

−and NO2
−), and NO2

− were analyzed 
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using a Multiscan GO Microplate Spectrophotom-
eter (Thermo Scientific) and an EasyChem Plus dis-
crete analyzer (AMS-SYSTEA) after Schnetger and 
Lehners (2014), Reckhardt et  al. (2015), and Mori 
et  al. (2021). Nitrate concentrations were calculated 
as the difference between NOx and NO2

−. Precision 
and trueness were verified using solutions containing 
defined concentrations of NOx, NO2

−, PO4
3−

, and DSi 
and were better than 10%.

Further oceanographic and biogeochemical param-
eters were measured continuously (1 min interval) in 
the surface water using a FerryBox system (Petersen 
et al. 2003). The water intake of the systems was in 
the moon pool of the ship at ~ 4 m depth. The Ferry-
Box contained sensors for salinity and temperature 
(Teledyne Citadel), chlorophyll a (Chl a) fluorescence 
(SCUFA, Turner Designs), DO (optode, Aanderaa), 
and a pH-electrode (Meinsberg). The pH-electrode 
was calibrated before the cruise using three different 
standard solutions (pH 5, 7, and 9, respectively). The 
salinity and temperature sensor as well as the oxygen 
optode were used with their manufacturer calibra-
tions. Fluorescence readings of Chl a were converted 
into Chl a concentration using discrete sample data 
(R2 of the linear correlation: 0.67). For these data, 
water samples from ~ 4 m depth were collected with 
a rosette water sampler equipped with Niskin bottles. 
A water volume of 0.2 to 6.5 L (depending on con-
centration of particulate matter) was filtered through 
GF/F filters (0.7 µm pore size), which were fro-
zen immediately at -80° C until laboratory analysis. 
Pigments were extracted within 6 months after the 
cruise by incubating the filters in 90% acetone–water 
solution overnight at 4° C. Additionally, empty fil-
ters were extracted as blanks. Extracts were centri-
fuged for 10 min at 3,020 × g and the fluorescence 
of the supernatant was determined at 665 nm before 
and after acidification of the samples using a pre-
calibrated TD-700 laboratory fluorometer (Turner 
Designs). On the basis of these measurements, Chl a 
concentration was calculated according to Arar and 
Collins (1997), taking into account the results from 
the blank filters.

SPE‑DOS and DBC analyses

DOS was quantified in SPE-DOM extracts using 
methanolic extracts containing ~ 70  µg organic car-
bon. Aliquots were dried in an oven at 50 °C and 

redissolved in 2% HNO3 (suprapur). Samples were 
measured with inductively coupled plasma optical 
emission spectrometry (ICP-OES) using a Thermo 
Scientific iCAP 6000 Series ICP. Dissolved black 
carbon (DBC) was quantified in SPE-DOM extracts, 
with high-performance liquid chromatography 
(UPLC) by detection of benzenepolycarboxylic acids 
(BPCA) as described previously (Dittmar 2008; Stub-
bins et al. 2012). For this study, only benzenepenta-
carboxylic acid (B5CA) and benzenehexacarboxylic 
acid (B6CA) were considered, because benzene rings 
substituted with three and four carboxylic acid groups 
(B3CA and B4CA) may be produced after the oxida-
tion of non-pyrogenic organic matter (Kappenberg 
et al. 2016). Aliquots of the methanolic extracts con-
taining 5 µmol organic carbon were dried at 50 °C, 
redissolved with 500  µL of 65% HNO3 (p.a.) and 
sealed in glass ampoules. For oxidation, the ampoules 
were heated to 170 °C for 9 h. The HNO3 was evapo-
rated at 50 °C using a centrifugal evaporator (RVC 
2–18, Christ, Germany) equipped with a vacuum 
pump. The samples were redissolved with 100 µL 
phosphate buffer solution (5 mM NaH2PO4 and 5 mM 
Na2HPO4, pH 7.2) and analyzed on a Waters Acquity 
UPLC (Ultra Performance Liquid Chromatography) 
system composed of binary solvent manager, a sam-
ple manager, a column manager, and a photodiode 
array light absorbance detector (PDA eλ).

Molecular DOM analysis

The molecular SPE-DOM composition was analyzed 
using FT-ICR-MS (solariX XR, Bruker Daltonik 
GmbH, Bremen, Germany), connected to a 15 Tesla 
superconducting magnet (Bruker Biospin, Wissem-
bourg, France). Details on analytical conditions and 
molecular formulae assignment are provided in the 
supplementary material. All intensities of identi-
fied mass peaks with assigned molecular formulae 
within each sample were normalized to adjust differ-
ent peak intensities to the same scale (0 to 1) between 
samples. The aromaticity index (AImod) and double-
bond equivalents (DBE) were calculated after Koch 
and Dittmar (2016; 2006), and the intensity-weighted 
averages of the molar ratios (hydrogen-to-carbon, 
H/C; oxygen-to-carbon, O/C), DBE and AImod, as 
well as nitrogen (N), sulfur (S), and phosphorus (P) 
were calculated as previously described (Seidel et al. 
2014). Compound groups were defined as described 
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in Merder et  al. (2020): Aromatics (AImod > 0.5), 
highly unsaturated (AImod < 0.5, H/C < 1.5), 
unsaturated (1.5 ≤ H/C ≤ 2), unsaturated with N 
(1.5 ≤ H/C ≤ 2, N > 0) and saturated (DBE = 0). Only 
molecular formulae present in duplicate measure-
ments were considered for further evaluation. The 
intensity-weighted relative abundances of the DOM 
compound groups (aromatic, highly unsaturated, 
unsaturated, unsaturated with N, saturated) were cal-
culated. Furthermore, the normalized DOM molecu-
lar formulae data were used to calculate indexes to 
assess the degradation state of DOM (IDEG) (Flerus 
et al. 2012), the presence of terrigenous DOM (ITerr) 
(Lechtenfeld et al. 2014; Medeiros et al. 2016) and a 
novel molecular porewater DOM index (ISuP) (Knoke 
et  al. 2024). In brief, 40 molecular formulae identi-
fied by Medeiros et  al., (2016) as marine molecular 
formulae (Mar) and 40 molecular formulae previ-
ously identified to be enriched in mangrove porewater 
samples (Map) were used to calculate the ratio of the 
sums of the normalized intensities (sum magnitudes 
Map/sum magnitudes (Map + Mar), which we refer 
to as ISuP (Knoke et al. 2024). The ITerr by Medeiros 
et al. (2016) and IDEG by Flerus et al. (2012) increase 
with higher contributions of terrestrial and degraded 
marine DOM, respectively. The ISuP index increases 
with the increasing contribution of porewater-derived 
(terrestrial) DOM. The relative standard deviation of 
the DOM indexes and intensity-weighted averages of 
molar ratios in replicate measurements was ≤ 3%.

Dissolved trace metal analyses

Barium was measured by inductively coupled plasma-
optical emission spectrometry (ICP-OES, iCAP 7400 
Duo, Thermo Fisher Scientific) using matrix-matched 
external calibration and Sc as internal standard. The 
concentrations of dissolved Co, Mn, Mo, W, and Gd 
were measured by quadrupole inductively coupled 
plasma-mass spectrometry (Q-ICP-MS, iCAP Q, 
Thermo Fisher Scientific) coupled to a seaFAST pico 
pre-concentration and matrix removal module (Ele-
mental Scientific) using kinetic energy discrimination 
(KED) mode with He as collision gas and external 
calibration as generally described in Dellwig et  al. 
(2019, 2021). Masses of 157Gd, and 184W were cor-
rected for polyatomatic interferences by 141PrO+, and 
168ErO+ by measuring a solution containing 20  µg 
L−1 of the interfering elements at the beginning of 

each run. Corrections were smaller than 0.6%, and 
0.1%, for 157Gd, and 184W because of low oxide for-
mation rates in KED mode. Precision and trueness 
of ICP measurements were determined with the ref-
erence materials NASS-7, CASS-6, SLEW-3 and 
SLRS-6 (NRCC) and were better than 9% and -10%, 
respectively (except for W in CASS-6 with a trueness 
of + 15%). Because no certified values are available 
for Ba, W and rare earth elements (REE) we used 
published data (Ebeling et  al. 2022) and a mean of 
own measurements for Ba (details in Supplementary 
Table S2).

Statistical analysis

The DOM molecular formulae from normalized FT-
ICR-MS data were used to perform a principal coor-
dinate analysis (PCoA) on a Bray Curtis dissimilarity 
matrix using the R statistical platform (R core team 
2022) as described in Seidel et al. (2017). The param-
eters of the DOM molecular data, environmental data, 
dissolved trace metals, as well as FDOM, DBC and 
SPE-DOS measurements were centered (mean = 0, 
standard deviation = 1) and then fitted post-hoc to the 
PCoA scores using the envfit function of the vegan 
package (Oksanen et al. 2022) within the R statistical 
platform (R core team 2022) as described by Seidel 
et al. (2017). The correlation of the parameters to the 
DOM molecular composition (PCoA) was tested with 
10,000 permutations and was considered significant 
if p < 0.1. The vectors represent correlations of the 
parameters with the sampling points and close spatial 
arrangement in PCoA plots visualizes sample simi-
larity. Perpendicular projections of sampling points 
onto vector arrows depict maximum correlations with 
the molecular parameters. In the PCoA, the sample 
stations were grouped with colors in DOM clusters, 
based on a Bray Curtis dissimilarity matrix (vegdist) 
using Ward’s hierarchical clustering (hclust). Sur-
face plots and maps were produced using Ocean Data 
View (Schlitzer 2022).

Conservative mixing analyses

To evaluate the different contributions of the three 
main rivers draining into the German Bight, we per-
formed conservative two-endmember mixing analy-
ses for the concentrations of dissolved trace metals, 
DOC, SPE-DOS, DBC, NO3

−, NO2
−, DIP and DSi, 
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and the relative fluorescence of humic-like FDOM. 
The mixing analysis was performed separately with 
three estuarine endmembers because the riverine end-
members at near-zero salinity were not covered (sta-
tions: Elbe 03 with salinity 1.3, Ems 04 with salinity 
12.9, Weser WS01 with salinity 5.2) and the two off-
shore endmember stations ES01 and ES02 (samples 
591 and 593 in Supplementary Table S1). To evaluate 
how the relative values of the ITerr and ISuP indexes, 
DOS/DOC ratio and average sulfur content of molec-
ular formulae (from FT-ICR-MS) deviated from val-
ues expected from conservative mixing along the 
estuarine to North Sea gradient, we further calculated 
the theoretical values assuming fully conservative 
mixing. As a first step, we calculated the (linear) two-
endmember conservative mixing scenarios for the 
numerators and denominators of the various ratios. 
As a second step, we divided the respective com-
puted values for a given endmember mixing ratio, as 
determined via salinity. Ratios and molecular DOM 
indices do not mix linearly and follow a curved trend 
when plotted against salinity.

Results

Bulk geochemical parameters

As expected, the lowest salinity was observed in the 
estuaries (Fig.  2a; Supplementary Table  S1). Fur-
ther offshore, salinity increased to open ocean levels 
around 35. The pH was also lowest in the estuaries 
of the rivers Elbe and Ems and increased offshore 
(Fig. 2b; no pH for Weser estuary available). Satura-
tion of DO was lowest in the Ems estuary at 73% and 
increased in the North Frisian region and offshore to 
94% (Fig. 2c). The concentrations of DO were high-
est in the Elbe estuary and lowest in the Ems estuary 
(Fig. 2d).

Concentrations of Chl a were highest in Elbe and 
Ems River mouths (no data for Weser River mouth; 
Fig. 2e). Lower values were found in the North Fri-
sian region and offshore (Fig.  2e). Relative humic-
like FDOM fluorescence was highest in the estuar-
ies and decreased offshore (Fig.  2f; Supplementary 
Table  S3). Likewise, concentrations of DOC were 
highest in the estuaries and close to the North Frisian 
region and decreased offshore (Fig. 2g).

Concentrations of TDN were highest in the 
estuaries and close to the North Frisian region 
and decreased offshore (Fig.  2h; Supplementary 
Table  S3). Concentrations of NO2

− and NO3
− were 

highest in the less saline reaches of the rivers Elbe, 
Ems and Weser and strongly decreased offshore, 
with values often falling below the limit of detection 
(LOD NO2

− 0.16 µM and NOx1 µM; Supplementary 
Fig. S1a, b). Highest DIP and DSi concentrations 
again appeared in the Elbe, Weser and Ems estuar-
ies, whereas lowest levels were observed during tidal 
cycles and offshore transects (LOD DIP 0.1 µM and 
DSI 0.3 µM; Supplementary Fig. S1c, d). High SPE-
DOS concentrations were measured in the estuaries 
with a maximum in the Ems estuary (Supplementary 
Fig. S1e), and lower values in the North and East Fri-
sian areas, and the offshore stations. The S/C ratio 
(DOS/DOC ratio in SPE-DOM, in %) ranged from 
0.6 to ~ 1% in the estuaries, the North and East Frisian 
area and were lowest offshore (Supplementary Fig. 
S1f). Concentrations of DBC were lowest offshore 
and highest in the estuaries (Fig.  3a). The B6CA/
B5CA values, percentage of DBC in DOC (Fig.  3b, 
c), as well as concentrations of B5CA and B6CA 
(Supplementary Fig. S1g, h) were higher close to the 
coast and in the rivers compared to offshore stations.

Mixing analysis revealed nearly conserva-
tive behavior for DOC, FDOM, SPE-DOS, DBC, 
NO3

− and DSi (Fig. 4), whereas NO2
− and DIP were 

above the values expected from conservative mixing 
(Fig.  4). Tidal cycle sampling at station S2 close to 
the tidal inlet Otzumer Balje (Fig. 1c) covered diur-
nal cycles (indicated, for example, in Supplemen-
tary Figs. S2, S3, S4). A noticeable relationship of 
the measured parameters with day-night-cycles was 
not observed, except for Chl a and the concentration 
and saturation of DO (Supplementary Fig.  S2e–g). 
Salinity varied between 29.8 (low tide) and 30.9 
(high tide) during the tidal cycle sampling (Supple-
mentary Fig. S2). Concentrations of DOC, TDN, 
relative fluorescence of FDOM (Supplementary Fig. 
S2a–c), NO2

−, NO3
−, SPE-DOS (Supplementary 

Fig. S3a–c), DBC, B5CA, B6CA, and relative abun-
dance of DBC (%DOC) (Supplementary Fig. S4a–e) 
were highest at low tide, whereas pH values (Supple-
mentary Fig. S2d) were lowest at low tide. Values of 
S/C of SPE-DOM (Supplementary Fig. S3d), B6CA/
B5CA (Supplementary Fig. S4b), Chl a (Supplemen-
tary Fig. S2e), and DO saturation and concentration 
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Fig. 2   Distribution of salinity (a), pH values (b), oxygen satu-
ration  (c), concentrations of dissolved oxygen (d), concentra-
tions of chlorophyll a (e), FDOM in relative fluorescence units 

(rfu) (f), dissolved organic carbon (DOC) (g), and total dis-
solved nitrogen (TDN) (h). Black circles represent sampling 
stations in the German Bight
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(Supplementary Fig. S2f, g) showed no clear tidal 
patterns.

Dissolved trace metals

Concentrations of the dissolved trace metals Ba, Co, 
Mn, Gd, and W were elevated in the estuaries com-
pared to the adjacent East and North Frisian coastal 
areas and showed lowest levels offshore (Fig. 5, Sup-
plementary Fig. S5; Supplementary Table  S4). The 
concentrations of dissolved Gd and W were high-
est in the low salinity reaches of the Elbe estuary, 
whereas Ba, Co, and Mn were highest in the Weser 
estuary. In contrast, Mo revealed an expected oppo-
site behavior with an ocean-like level between 91 
and 103  nM in the offshore region decreasing to a 

minimum concentration of 11.7 nM in the Elbe estu-
ary at a salinity of 1.2 (Supplementary Fig. S5f). 
Dissolved Mn showed negative deviations from con-
servative behavior, whereas dissolved Ba, Co, as well 
as W, and Gd revealed positive deviations regarding 
the estuarine Weser and Elbe endmembers, respec-
tively (Fig.  5). Dissolved Ba, Co and Gd revealed a 
tidal pattern with highest concentrations during low 
tide (Fig.  6), which was less pronounced for Mn. 
In contrast, dissolved W and Mo showed no clear 
tidal patterns (Fig.  6e, f). There was no noticeable 
relationship of the measured parameters with day-
night-cycles. Positive anomalies of Gd (compared 
to Post Archean Australian Shale, PAAS, rock refer-
ence material)  (e.g., Nance and Taylor 1976) due to 
anthropogenic contribution were found in all three 

Fig. 3   Distribution of concentrations dissolved black carbon 
(DBC)  (a), the ratio of benzenepentacarboxylic acid (B5CA) 
and benzenehexacarboxylic acid (B6CA) (B6CA/B5CA) of 

DBC (b), and the percentage of dissolved black carbon (DBC) 
in dissolved organic carbon (DOC) (c) in the German Bight. 
Black circles represent sampling stations

Fig. 4   Mixing plots of bulk and DOM surface water param-
eters versus salinity. Solid lines indicate the theoretical con-
servative mixing line between estuarine and marine endmem-
bers of bulk parameters: dissolved organic carbon (DOC) (a), 
fluorescent dissolved organic matter (FDOM) (b), solid-phase 

extractable dissolved organic sulfur concentrations (SPE-
DOS)  (c), dissolved black carbon (DBC) (d), nitrate (NO3

−) 
(e), nitrite (NO2

−) (f), dissolved phosphate (DIP) (g), and dis-
solved silicate (DSi) (h). “Offshore” data points include the 
Offhosre and Transition cluster stations
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estuaries and were most pronounced for the on aver-
age less saline samples of the Elbe estuary (Supple-
mentary Fig. S6). 

DOM molecular characterization

The total number of assigned molecular formulae was 
12,748, ranging between 3270 and 8445 per sample 
(Supplementary Table  S5). Intensity-weighted aver-
ages of aromaticity (AImod) molecular formulae were 
highest in the estuaries and decreased offshore (Sup-
plementary Fig. S7a, Table  S5). Accordingly, inten-
sity-weighted averages of H/C values were highest 
offshore and lowest in the estuaries (Supplementary 
Fig. S7b). In contrast to the Elbe and Weser estuaries, 
intensity-weighted averages of the O/C values were 
highest in the Ems estuary, offshore and North Fri-
sia (Supplementary Fig. S8b). The intensity-weighted 
averages of molecular masses (m/z) were between 
380 and 447  Da. Lower masses were found in tidal 
cycle and estuarine samples, whereas higher masses 
appeared offshore (Supplementary Table  S5). Inten-
sity-weighted averages of the N-content in molecu-
lar formulae were lowest in the estuaries and highest 
offshore (Supplementary Fig. S7d). In contrast, the 
S-content was highest in the estuaries and near the 

North Frisian sampling stations, with decreasing val-
ues offshore (Supplementary Fig. S7c).

Values of ITerr and ISuP were highest in the estuar-
ies and decreased offshore (Supplementary Fig. S7e, 
f). In contrast, IDEG values were highest offshore and 
lowest at the North and East Frisian Wadden Sea sta-
tions (Supplementary Table  S5). Highest intensity-
weighted abundances of aromatic compounds were 
found in the estuaries (Supplementary Fig. S8a; Sup-
plementary Table  S6). The intensity-weighted rela-
tive abundances of highly unsaturated compounds 
increased from the Elbe estuary to the offshore realm 
(Supplementary Fig. S8c). Unsaturated compounds 
and unsaturated compounds containing N increased 
from the estuaries to the North Frisian and offshore 
stations (Supplementary Fig. S8d, e).

The ITerr index showed mostly conservative mix-
ing behavior for the combined Elbe and Weser but 
pronounced positive deviations for the Ems stations 
(Fig. 7a). The ISuP index showed mostly conservative 
behavior including the river Ems (Fig. 7b). The DOS/
DOC values of SPE-DOM and the average S-content 
of molecular formulae (from FT-ICR-MS) showed a 
non-conservative behavior with strong positive devia-
tions especially at a salinity > 25, i.e., in samples from 
the tidal cycle (East Frisia), North Frisia and offshore 
(Fig. 7c, d).

Fig. 5   Mixing plots of dissolved trace metals versus salinity. 
Solid lines indicate the theoretical conservative mixing line 
between estuarine and marine endmembers of dissolved trace 
metals: barium (Ba) (a), cobalt (Co) (b), gadolinium (Gd) (c), 

manganese (Mn) (d), tungsten (W) (e), and molybdenum (Mo) 
(f) in the German Bight. “Offshore” data points include the 
Offhosre and Transition cluster stations
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We did not observe a clear trend for the satu-
rated DOM group (Supplementary Fig. S8f). Val-
ues of ITerr, ISuP, AImod, intensity-weighted aver-
ages of H/C, and N- and S-content were generally 
highest during low tide and lowest during high tide 
(Supplementary Fig. S9). In contrast, values of 
IDEG and O/C were highest at high tide and lowest 
at low tide (Supplementary Fig. S9c, e).

Statistical analysis

We analyzed the relationship between DOM molecu-
lar composition, environmental parameters, and trace 
metal concentrations using PCoA (Figs.  8, 9, 10) in 
combination with cluster analysis (Supplementary 
Figs. S10, S11). The first two PC axes, explaining 
68% variability, revealed distinct clusters: River 1 

Fig. 6   Tidal cycle sampling at station S02 in the Otzumer 
Balje (Fig.  1c) over ~ 50 h. The gray area represents salinity. 
The black data points connected by lines show the concentra-
tions of dissolved barium (Ba) (a), cobalt (Co) (b), manganese 

(Mn) (c), gadolinium (Gd) (d), tungsten (W) (e), and molybde-
num (Mo) (f) in the German Bight. Day-night cycles are indi-
cated by white-black bars on the time axis
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Fig. 7   Conservative mix-
ing plots of the terrestrial 
index (ITerr) (a), porewater-
derived DOM index (ISuP) 
(b), dissolved organic 
sulfur to dissolved organic 
carbon (DOS/DOC) (c) 
and average sulfur content 
in molecular formulae (d). 
Solid curves indicate the 
theoretical conservative 
mixing between estuarine 
and marine endmembers 
in the German Bight. Note 
that for ratios and relative 
abundances conservative 
mixing results in a non-
linear relationship with 
salinity. “Offshore/Transi-
tion” data points include 
the Offhosre and Transition 
cluster stations

Fig. 8   PCoA based on Bray–Curtis dissimilarities of the rela-
tive abundance of DOM molecular formulae. The percentages 
give the DOM molecular variability as explained by the axes 
(PC1 and PC2). The colored dots represent the sample stations 
that can be grouped into six different DOM clusters: River 1, 

River 2, Wadden Sea, Transition, Offshore 1, and Offshore 2. 
The environmental parameters were fitted onto the ordination 
posthoc (black arrows) and were considered significant with 
p ≤ 0.1. Station numbers and cluster analysis are shown in Sup-
plementary Figures S10 and S11
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(Elbe and Weser estuaries), River 2 (Ems estuary), 
North and East Frisian Wadden Sea, Transition, 
Offshore 1, and Offshore 2 (Fig.  8). The explained 
variability was 6% for PC3 and 3% for PC4. We did 
not identify significant trends with environmental 
parameters other than those that were explained by 
PC1 and PC2. PC1 separated the Offshore from the 
River clusters, while PC2 separated River and Off-
shore clusters, as well as the Wadden Sea cluster from 

the Transition cluster. PC1 was correlated to salin-
ity, DOC, DBC, SPE-DOS, FDOM, and S/C values. 
The parameters salinity, DO saturation, and pH were 
related to the Offshore clusters, whereas Chl a, DSi, 
NO3

−, TDN, and DIP concentrations were associated 
with the River 1 cluster, and NO2

− with the River 2 
cluster (Fig.  8). River clusters were further related 
to aromatic compounds, AImod, ITerr, and ISuP values 
(Fig. 9). The Transition cluster was related to higher 

Fig. 9   PCoA based on 
Bray–Curtis dissimilarities 
of the relative abundance of 
DOM molecular formu-
lae with sample stations 
clustered as in Fig. 8. DOM 
compound groups (aro-
matic, saturated, unsatu-
rated, highly unsaturated, 
and unsaturated with nitro-
gen), values of aromaticity 
(AImod), number of molecu-
lar formulae (number), 
intensity-weighted averages 
of molecular masses (m/z), 
sulfur (S), nitrogen (N), 
O/C and H/C ratios, as 
well as ITerr, ISuP, and IDEG 
indexes were fitted onto the 
ordination posthoc (black 
vectors, considered signifi-
cant with p ≤ 0.1)

Fig. 10   PCoA based on 
Bray–Curtis dissimilarities 
of the relative abundance of 
DOM molecular formulae 
with sample stations clus-
tered as in Fig. 8. Dissolved 
trace metals molybde-
num (Mo), barium (Ba), 
cobalt (Co), manganese 
(Mn), tungsten (W), and 
gadolinium (Gd) were fitted 
posthoc onto the ordination 
(black vectors, considered 
significant with p ≤ 0.1)
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molecular formulae counts, S-content, O/C, and IDEG 
values. Finally, the Offshore 1 cluster was related to 
saturated and N-containing compounds, whereas Off-
shore 2 cluster was related to unsaturated and highly 
unsaturated DOM compounds, as well as H/C values 
(Fig. 9). The dissolved trace metals Ba, Co, Gd, Mn, 
and W were linked to the River clusters, while Mo 
concentrations were associated with Offshore clusters 
(Fig. 10).  

Discussion

Biogeochemical dynamics of nutrients and bulk 
parameters in the German Bight

In the German Bight, rivers significantly influence 
physicochemical parameters and the distribution pat-
terns of nutrients, including dissolved nitrogen spe-
cies, phosphate, and silicate. Additional dynamics 
are associated with both porewater inputs and bio-
logical activity. The patterns of salinity and pH in the 
southern German Bight reflect the mixing of river-
derived freshwater and the inflow of North Atlantic 
seawater (Fig.  2a, b) (Carstensen and Duarte 2019; 

Francescangeli et al. 2021; Painter et al. 2018). High 
algal biomass as reflected by Chl a (Fig.  2e) coin-
cided with higher nutrient concentrations such as 
TDN (Fig.  2h), DIP, and DSi (Supplementary Fig. 
S1) close to the coast and estuaries, thereby demon-
strating the importance of riverine input and pore-
water outwelling for coastal primary production. 
The rivers of the southern North Sea carry high N 
loads due to anthropogenic and agricultural activities 
(Brockmann et al. 2018; Howarth 1998) (see concep-
tual Fig.  11). In our sample set, areas with elevated 
DOC concentrations typically displayed higher levels 
of TDN and NO2

− as well as lowest degrees of DO 
saturation due to intensified heterotrophic respiration 
stimulated by organic matter and nutrient input (Abril 
and Frankignoulle 2001; Dai et al. 2006; Nezlin et al. 
2009).

Comparable concentrations of NO3
− and TDN 

(Supplementary Fig. S1b, Fig. 2h), identified NO3
− as 

the dominating TDN compound. Ammonium con-
centrations are generally low in the oxic North Sea 
water column since it is rapidly oxidized and quickly 
consumed by phytoplankton (Domingues et al. 2011; 
Laperriere et  al. 2019). Porewater outwelling pri-
marily provides NH4

+, which is then oxidized to 

Fluvial
Enrichment of
DBC, DOC, FDOM, TDN (NO3

-), DIP, DSi
ITerr, ISuP, aromatic and S-containing DOM
Ba, Mn, W, Gd

Tidal flats
Enrichment of
DOC, TDN, DIP
FDOM, DBC, ITerr, ISuP, 
S-containing DOM
Ba, Gd, Co

Marine 
Enrichment of 
Highly unsaturated & 
unsaturated DOM 
compounds with N 
Mo

Porewater outwelling

Surface runoff

Mixing

Mixing

Fig. 11   Conceptual representation of the enrichment of geochemical parameters in the sampling area of the German Bight
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NO2
− in the water column. Highest concentrations 

of NO2
− along the North Frisian transects and in the 

estuaries (Supplementary Fig. S1a) were thus likely 
due to outwelling of O2-depleted porewater from 
sediments (Beck and Brumsack 2012; Sanders and 
Laanbroek 2018). Porewater sources were further 
confirmed by both, tidal cycle sampling with highest 
concentrations of NO2

− during low tide when pore-
water outwelling is highest (Beck et al. 2020; Grun-
wald et al. 2010; Seidel et al. 2014) (Supplementary 
Fig. S3) and the mixing analysis with positive devia-
tions from non-conservative behavior at high salinity 
for NO2

− and DIP (Fig. 4f, g). Phosphate is released 
during reduction of sedimentary iron(hydro)oxides, 
supplementing the contribution of DIP via reminer-
alization of algal material (Beck et al. 2020).

Similarly, elevated DSi concentrations close to 
the coast originate from both riverine input (Beusen 
et  al. 2009) and the contribution by generally DSi-
rich porewaters with the latter again confirmed by 
high levels during low tide (Supplementary Fig. 
S3e) (Beck et  al. 2008a; Grunwald et  al. 2010; Sei-
del et  al. 2014; Oehler et  al. 2019). In winter with 
low phytoplankton biomass, DSi concentrations are 
around 20 to 30 µM in the water column of the tidal 
inlet of Spiekeroog Island (Otzumer Balje, Fig.  1c) 
(Beck et al. 2020), whereas we found concentrations 
even below 5  µM (Supplementary Fig. S3e). Thus, 
our sampling was conducted at the onset of the spring 
phytoplankton bloom, and negative deviations of DSi 
concentrations from conservative mixing therefore 
suggest removal by diatoms (Beck et al. 2020; Grun-
wald et al. 2010; Kowalski et al. 2012).

Tidal flats as important source of trace metals in the 
German Bight

In the German Bight, redox-sensitive trace metals, 
except for Mo, exhibited highest concentrations near 
the coast due to the input via estuaries and porewater 
outwelling.

The spatial distribution of Mo in the German Bight 
can be explained by the dilution of Mo-rich seawa-
ter with comparatively Mo-poor river water (Fig. 5f). 
Additionally, Mo concentrations are depleted in the 
coastal North Sea due to sequestration in sulfidic 
sediments and by adsorption onto organic particles 
(Beck et  al. 2008a; Cole et  al. 1993; Riedel et  al. 
2011; Smedley and Kinniburgh 2017). Substantial 

Mo-depletion in the water column, as frequently 
observed after summer algae blooms due to forma-
tion of large aggregates that become enriched in Mo 
(Dellwig et al. 2007a; Kowalski et al. 2013), can be 
excluded due to the timing of our sampling campaign 
in early spring. Thus, sequestration in sulfidic tidal 
flat sediments is the dominant process controlling Mo 
concentrations in nearshore waters during our sam-
pling campaign. This is reflected by depleted Mo con-
centrations in the water column during low tide when 
Mo-depleted porewater is discharged (Fig. 6f).

Dissolved Ba concentrations are generally higher 
in coastal waters than in the surface ocean due the 
desorption of Ba from sediments and riverine sus-
pended matter (Moore 1997; Coffey et  al. 1997; 
Moore et  al. 2011; Samanta and Dalai 2016). Fur-
thermore, it originates from tidal flat sediments in the 
Wadden Sea (Riedel et al. 2011; Seidel et al. 2014) as 
demonstrated by increased concentrations during low 
tide when porewater outwelling is highest (Fig.  6a). 
Similarly, porewater outwelling delivers Mn and Co 
to coastal waters of the North Sea (Fig. 6b, c) since 
in oxygen-depleted intertidal sediments Mn (hydr-)
oxides are reduced leading to the release of dissolved 
Mn and formerly scavenged Co, with the latter also 
being released during the degradation of Co-contain-
ing organic complexes (Sundby et al. 1986; Tribovil-
lard et al. 2006). The spatial concentration pattern of 
Co (Supplementary Fig. S5b) is further controlled by 
its low open ocean concentration and its short oce-
anic residence time due to its removal from solution 
by interaction with (estuarine) particles (Byrd et  al. 
1990; Saito et al. 2002; Saito and Moffett 2002) and 
marine phytoplankton (Saito et  al. 2002; Sunda and 
Huntsman 1995).

Highest W concentrations close to the North 
Sea coast and in the Elbe estuary (Supplementary 
Fig.  S5e) indicate anthropogenic sources (Franc-
escangeli et  al. 2021). Lower W concentrations off-
shore are due to the dilution with W-depleted sea-
water (Mohajerin et  al. 2016) and removal due to 
interactions with sinking particles and Fe/Mn (hydr-)
oxides (Kashiwabara et al. 2013). Studies conducted 
in hypoxic-euxinic basins of the Baltic Sea, Black 
Sea, and the Mississippi River delta reported strong 
W enrichments in sulfidic porewater due to the ele-
vated solubility of thiolated W (Dellwig et al. 2019; 
Mohajerin et  al. 2016) suggesting porewater out-
welling as an important source to the open water 
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column. However, the weakly pronounced tidal W 
dynamics in our study do not clearly support this 
assumption, which might be due to sulfide levels in 
the porewater that were insufficiently high allowing 
elevated thiolation and thus an increased W solubil-
ity during our sampling period (Fig. 6e). In addition, 
the strong affinity of W to Mn oxide minerals (Kashi-
wabara et al. 2017) that are present in the uppermost 
sediment layer of the tidal flats especially during win-
ter and early spring (Dellwig et al. 2007b), may also 
trap some of the porewater W tending to escape the 
from the sediments.

The densely populated Elbe estuary had the most 
pronounced Gd anomaly (Supplementary Fig. S6) 
compared to the Weser and Ems, and thus the highest 
anthropogenic impact if salinity-related variations are 
excluded (Kulaksiz and Bau 2007). Although com-
plexed Gd is mainly derived from the anthropogenic 
sources, it was suggested that Gd can also enter the 
water column in its non-complexed form via pore-
water reflux following release of scavenged Gd after 
degradation of organic complexes and/or Fe/Mn-
(hydr-)oxides (Paffrath et al. 2020) (Fig. 6d).

Combined analysis deciphers tidal flats as important 
DOM sources in the German Bight

Rivers generally contribute large proportions of 
(chromophoric) DOM to the southern North Sea 
(Lübben et  al. 2009; Painter et  al. 2018) leading to 
higher DOC concentrations and terrestrial, humic-
like FDOM values in the estuaries (Fig. 2f). Humic-
like FDOM in backbarrier tidal flats can be attributed 
to degraded terrestrial material such as peat in the 
sediment (Seidel et al. 2014). Additionally, porewater 
outwelling, as demonstrated in the tidal cycle sam-
pling (Supplementary Fig. S2a, c), and freshwater 
discharge from small fluvial watercourses draining 
the hinterland transport terrestrial DOM to the coastal 
North Sea (Lübben et  al. 2009; Seidel et  al. 2015a; 
Waska et al. 2019).

We observed only small negative deviations of 
DOC concentrations and humic-like FDOM values 
from conservative mixing (Fig.  4a, b) suggesting 
minor removal of terrestrial DOM through bio-deg-
radation, flocculation, and photo-bleaching in the off-
shore areas (Medeiros et  al. 2015b; Osterholz et  al. 
2016; Stubbins et  al. 2010). In general, terrestrial 
DOM is characterized by high aromaticity (AImod) 

and low H/C values (Abdulla et  al. 2013; Osterholz 
et al. 2016; Seidel et al. 2015b; Sleighter and Hatcher 
2008). In our study, the Ems estuary exhibited the 
highest abundances of aromatic DOM, aromaticity 
(AImod), and DBC concentrations compared to the riv-
ers Weser and Elbe (compare cluster River 1 to River 
2, Fig.  8, and Fig.  9). This indicated a greater rela-
tive contribution of (highly) aromatic DOM from the 
Ems River to the coastal North Sea compared to the 
other two rivers. This can be attributed to extensive 
peat bogs in its watershed (Houben et  al. 2021) and 
the high turbidity of the Ems River, which protects 
terrestrial aromatic DOM from photo-degradation in 
the water column. Overall, the German Bight region 
had spatially evenly distributed AImod values, indicat-
ing the export of relatively stable riverine DOM to 
the open North Sea. The distribution pattern of ITerr 
values (from FT-ICR-MS), an indicator for terrestrial 
DOM, supported this observation (Supplementary 
Fig. S7e).

The relationship of H/C values and abundance 
of unsaturated aliphatic compounds containing N 
with the Offshore cluster on the one hand and Wad-
den Sea stations on the other hand (Fig. 9) indicated 
a shift from terrestrial to more marine (algal) DOM, 
which has higher H/C levels and contains more N 
compared to terrestrial DOM (Medeiros et al. 2015b; 
Sleighter and Hatcher 2008). Furthermore, the O/C 
and IDEG values, indicators of degraded DOM (Flerus 
et  al. 2012), were inversely related to the Wadden 
Sea cluster, suggesting that the DOM contributed 
via outwelling of anoxic porewater from the inter-
tidal flats contains less oxygenated and potentially 
less degraded marine DOM compared to the coastal 
North Sea (Transition stations, Fig.  9). The lack of 
oxygen in sediments probably inhibits heterotrophic 
degradation of DOM (Burdige et al. 2016) explaining 
the accumulation of less oxygenated, and recalcitrant 
DOM (including DOS and DBC) in anoxic intertidal 
flats.

Highest concentrations of DBC were found in the 
estuaries, especially the Ems (Fig.  3a), identifying 
rivers as the main pathway for DBC transport from 
land to sea (Jaffé et  al. 2013). The nearshore North 
Frisian area also exhibited high DBC concentrations, 
likely associated with the Elbe River plume that is 
transported northward by the clockwise circulation in 
the southern North Sea (Fig. 3a). However, the tidal 
cycles revealed that DBC concentrations were highest 
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at low tide (Supplementary Fig. S4a), suggesting tidal 
flats as an additional source (Seidel et al. 2014). On 
the other hand, in the high salinity range, no positive 
deviations from conservative mixing of DBC concen-
trations were observed, implying a balance between 
the removal of riverine DBC and the input of porewa-
ter-derived DBC (Fig. 4d). Since DBC is resistant to 
biological degradation, its concentrations at offshore 
stations with increased light penetration were likely 
reduced through photo-degradation (Stubbins et  al. 
2012), and dilution with low DBC-seawater. The 
B6CA/B5CA values, which decreased from coastal 
regions and estuaries towards offshore, suggested a 
change in DBC condensation (Fig. 3b). This decrease 
is probably due to preferential photodegradation of 
the more condensed and photosensitive B6CA, result-
ing in less aromatic DBC (Stubbins et al. 2012).

Dissolved Ba, Co, Gd, Mn, and W concentrations 
were associated with the River 1 cluster (Weser and 
Elbe Estuaries, Fig.  10), with particularly high Gd 
concentrations in the Elbe estuary (Supplementary 
Fig. S5d). Although Gd was intended as a tracer for 
anthropogenic riverine input, the release of previ-
ously scavenged Gd from tidal flats should be con-
sidered as well. Nonetheless, tidal cycles and positive 
deviations from conservative mixing of dissolved Gd, 
but also Ba, Co, and W, were in line with the relative 
enrichment of DOS at salinity > 25 indicating tidal 
flats as important sources.

Higher SPE-DOS concentrations in the estuaries 
confirmed rivers as the main sources for the southern 
North Sea. The Ems estuary exhibited highest SPE-
DOS concentrations, likely due to its hyper-turbid 
state with limited photo-degradation and resuspen-
sion of sulfidic estuarine sediments (Winterwerp 
et al. 2017). Although bacterial sulfate reduction and 
thus sulfide production might be hampered in rivers 
due to lower sulfate concentrations compared to sea-
water (Ehlert von Ahn et  al. 2023), additional input 
of SPE-DOS occurs from agricultural and urban 
sources (Osterholz et  al. 2016; Wagner et  al. 2015), 
and potentially from sulfidic peats observed in the 
Ems River watershed (Houben et al. 2021). Further-
more, the close relationship between the ITerr and 
ISuP indexes (Fig.  9), which represent terrestrial and 
sulfidic porewater DOM, respectively, indicated that 
porewater DOM in sulfidic estuarine sediments shares 
similar molecular properties with sulfidic intertidal 
sediments. Likewise, correlations of SPE-DOS and 

dissolved Mn concentrations (Figs.  8, 10) suggested 
similar sources, i.e., estuaries and porewater, respec-
tively. Concentrations of SPE-DOS mixed mostly 
conservatively in the German Bight (Fig.  4c), but 
microbial (Ksionzek et  al. 2016; Longnecker et  al. 
2020) and photo-degradation (Gomez-Saez et  al. 
2017) are potential sinks further offshore.

The elevated SPE-DOS concentrations along the 
North Frisian coast compared to the offshore stations 
(Supplementary Fig. S1e), were possibly derived 
from the Elbe River plume that moves along the 
eastern North Sea coast (Callies et  al. 2017). How-
ever, high S/C values of SPE-DOM near the North 
Frisian coast (S/C ~ 1, Supplementary Fig. S1f) sug-
gested additional sulfur-enriched DOM input from 
nearby intertidal flats. This assumption is supported 
by higher concentrations of SPE-DOS and S-contain-
ing DOM molecular formulae during low tide (Sup-
plementary Fig. S3c, Fig. S9h). Similar to the North 
Frisian coast, our tidal sampling station at the East 
Frisian coast also receives diluted (Ems) river water 
due to clockwise circulation in the North Sea (Rehder 
et  al. 1998). However, conservative mixing analysis 
revealed sulfur-enriched DOM from sulfidic inter-
tidal flats as additional source apart from riverine and 
estuarine DOM. This was underlined by higher ele-
mental sulfur-to-carbon ratios in DOM and increased 
sulfur content of molecular formulae at salinity > 25 
(Fig.  7c, 7d). The enrichment of sulfur-containing 
DOM therefore highlights the influence of tidal flats 
on the DOM composition in the German Bight.

Moore et  al. (2011) estimated that up to 
70 × 104  mol DOC is exported from the backbarrier 
area of Spiekeroog (ca. 73 km2) during each tidal 
cycle to the North Sea by porewater outwelling. This 
corresponds to approximately 2.6 × 104 mol DOS per 
tidal cycle, assuming a content of 3.7% DOS in the 
porewater (Pohlabeln et  al. 2017). Thus, the back 
barrier area of Spiekeroog Island could potentially 
release around 0.6  mol DOS s−1. Considering the 
measured DOS concentrations in the Elbe, Weser, 
and Ems estuaries (2, 2.5, and 3.3 µM DOS, respec-
tively, Supplementary Table  S3) and average river 
discharge values (Elbe 860, Weser 323, and Ems 80 
m3 s−1) (Lübben et al. 2009; Schmidt et al. 2011), the 
estimated DOS exports are approximately 1.7  mol 
DOS s−1 (Elbe), 0.8  mol DOS s−1 (Weser), and 
0.3  mol DOS s−1 (Ems). These estimates are rough 
and neither consider spatial and seasonal variations in 
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DOS concentrations nor highly resolved data from the 
rivers and the Wadden Sea area. However, they sug-
gest that DOS export from the backbarrier tidal flats 
of Spiekeroog alone is comparable to DOS discharge 
from the Ems River. Extrapolating the estimates to 
the entire Wadden Sea intertidal flat area (exclud-
ing estuaries), which spans approximately 1688 km2 
(Grunwald et  al. 2010), even yields an export of 
about 13.7  mol DOS s−1, exceeding the estimated 
DOS export from the three largest rivers combined 
(2.8  mol DOS s−1). Although further measurements 
are certainly needed to validate these estimates, they 
indicate that intertidal flats are a significant source of 
DOS to the North Sea.

Conclusions

Our study identified sources and sinks contributing 
to the distribution of DOM, trace metals, and nutri-
ents in the German Bight. The DOM composition in 
the German Bight was influenced by a combination 
of riverine inputs, marine (autochthonous) sources, 
and porewater outwelling. Molecular-level changes 
were related to a shift from riverine aromatic, ter-
restrial signatures nearshore to more aliphatic, nitro-
gen-containing marine DOM offshore. Porewater 
outwelling from intertidal flats was identified as an 
additional source for DOS, most trace metals, and 
nutrients (DIP, DSi). Negative deviations of DSi from 
conservative mixing suggested removal by diatoms at 
the onset of the spring phytoplankton bloom. Trace 
metals, especially Gd, Ba, Co, and W, showed posi-
tive deviations from conservative mixing and highest 
concentrations at low tide during tidal cycle sampling 
demonstrating that porewater outwelling from tidal 
flats is an additional important source besides rivers.

Aromatic DOM and DBC mainly originated from 
riverine sources, with porewater outwelling as addi-
tional DBC source to the water column. However, 
we found no indications of DBC enrichments in the 
southern North Sea. This suggests a balance between 
removal of riverine DBC, for example by photo-deg-
radation and flocculation, and replenishment by pore-
water-derived DBC. Input of sulfur-enriched DOM 
was related to rivers. However, in line with the non-
conservative mixing of trace metals, elevated sulfur-
to-carbon ratios in the intertidal Wadden Sea area, 
along with elevated SPE-DOS concentrations during 

low tide in our tidal cycle sampling, revealed porewa-
ter outwelling from tidal flats as an important source. 
These findings demonstrate that tidal flats are impor-
tant sources for potentially recalcitrant DOS.

Via the application of DOM molecular indexes 
as tracers for terrestrial and porewater-derived DOM 
(ITerr, ISuP), we showed that estuaries and inter-
tidal flats are major sources of DOM to the German 
Bight and that this DOM is probably recalcitrant on 
the time scales of nearshore mixing. Our study con-
firms that intertidal flats have an important effect on 
elemental budgets in the German Bight and they may 
be similarly important in other coastal ecosystems. 
The application of molecular DOM proxies (e.g., ITerr, 
ISuP), in combination with trace metal data, provides 
a powerful approach to differentiate the relative con-
tributions of different DOM sources in highly com-
plex coastal ecosystems. Future analytical approaches 
should include studying the variability of riverine and 
porewater endmembers, as well as better resolved 
estuarine transects, ideally in combination with 
chromophoric DOM measurements, which can be 
routinely achieved with optical sensors of ferry boxes 
and at time series stations.
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