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Abstract Vegetation growth is often limited by the

availability of soil mineralized N (Nm), and Nm

dynamics are important to forest productivity and

succession. However, current dynamic global vegeta-

tion models (DGVMs) do not fully mechanistically

represent the linkage between plants, microbes, and

soil. Here, we sought to develop and test a DGVM

with an explicit representation of the important

physiological and ecological mechanisms relating to

Nm dynamics. We revised an existing DGVM

(FORCCHN2) to predict soil net N mineralization,

nitrification, N losses, and plant N uptake. This new

model couples soil microbial biomass and fine roots to

quantify Nm balance for forests. We applied the model

at a temperate forest in central Massachusetts,

USA (Harvard Forest). FORCCHN2 reproduced more

than half of the monthly variation (i.e. R2[ 50%) of

net Nm as ammonium (NH4
?-N), and nitrate (NO3

--

N) increment over seven years. Furthermore, the

model captured the dynamics of soil water and

respiration well (R2 = 81% and 72%, respectively).

Our results provide a mechanistic framework of Nm

dynamics by incorporating Nm production, transfor-

mations, losses, and related biomass growth processes

into a DGVM. This study suggests that DGVMs
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should consider coupling fine root growth, microbial

growth, and soil processes to represent the detailed Nm

dynamics, which could improve the understanding of

the forest N cycle in the background of environmental

changes.

Keywords Mineralized nitrogen � Nitrification �
Denitrification � FORCCHN2 model �Microbes � Fine
roots � Harvard Forest

Introduction

Mechanistic understanding of the dynamics and

interactions of the carbon (C) and nitrogen (N) cycles

in forests has become more important with increased

anthropogenic perturbations (Meyerholt et al. 2020).

Processes involved in the N-cycle, notably soil

N-mineralization and plant N-uptake, can strongly

affect C-sequestration in forest ecosystems (Niu et al.

2016). A relatively small percentage of soil total N

(primarily the soil inorganic N) is available for uptake

by the vegetation. Lack of nitrogen often limits plant

growth, and the processes involved in generating

plant-available N in the soil are thus extremely

important (Oren et al. 2001; Cleveland et al. 2013;

Menge et al. 2019). Soil nitrogen mineralization is

enmeshed, either directly or indirectly, in forest

responses to changes in environmental factors (e.g.

CO2 concentration, climate) and the soil and plant

N-cycle (Rustad et al. 2001; Wang and Houlton 2009).

Soil inorganic N mainly derives from microbial

mineralization, which involves internal ecosystem

processes and their interactions with multiple envi-

ronmental variables. Soil water content, soil temper-

ature, and substrate concentration influence the

production and losses of mineralized N (Nm) through

the metabolic activity of microorganisms and plants.

Due to variations in climate, plants, and soil conditions

that vary spatially and temporally (Bardgett et al.

2013), experimental observations have been the

principal sources used in previous studies to better

understand and evaluate the factors that influence the

soil Nm. However, current site scale measurements of

Nm remain highly variable, and scaling these mea-

surements to ecosystems and regions is difficult

(Zhang et al. 2017). Therefore, generalizing from

local field experiments to larger spatial scales or future

environmental scenarios of Nm generally relies on

simulation using ecological models. Constructing site-

scale models validated against measurements is the

logical next step in providing global estimations.

The relative incomplete formulation of previous

modeling efforts also suggests that integrating the

dynamics of plants and microbes into a process-based

model is key to predicting soil Nm at different

temporal scales. Currently, various models have been

used to simulate the dynamic of Nm, generally grouped

into the two categories of statistical and process-based

models. The relative influence of different environ-

mental factors on current N-mineralization is often

explained using applied statistical models. Stanford

et al. (1974), Dou et al. (1996), and Clivot et al. (2017)

developed statistical models based on laboratory

incubations and predicted potential nitrogen mineral-

ization at the site scale. From these studies, Chapman

et al. (2013) and Liu et al. (2017) collected multi-site

experimental datasets and developed regional models

of N-mineralization. However, static statistical mod-

els may not capture changes in forest structure or

composition when evaluating or predicting values of

N-mineralization over the longer term. As an alterna-

tive, dynamic models based on the interactions among

N-fluxes and C-fluxes in the vegetation and organic

soil components of the forest ecosystem have been

developed in recent decades. These models provide

useful estimations at different temporal and spatial

scales though they may have large divergences or

limitations (Zaehle et al. 2014). For example, Comins

and McMurtrie (1993) applied their Generic Decom-

position And Yield (G’DAY) model to simulate the N

cycle in nutrient-limited forests, although the model

does not include a description for N losses. Detailed

soil N-mineralization processes, including nitrifica-

tion, leaching, etc., also influence the accuracy of the

Nm estimations, which are needed to improve these

models. The Carnegie-Ames-Stanford (CASA) Bio-

sphere model estimates global Nm based on some

detailed constituent processes (Potter et al. 1993). The

nitrification and denitrification modules of this model

are mainly driven by theoretical values, and the model

does not incorporate soil microbial dynamics, such as

the growth and mortality of microorganisms. The

Denitrification-Decomposition (DNDC) model has

also been used to model the N cycle in forests (Li

et al. 2000; Zhang et al. 2017). However, the
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application of this model is limited as it lacks an

accurate description of plant growth.

A relatively recent dynamic global vegetation

model, FORCCHN Version 2.0 (FORCCHN2), is

based on the allocation of tree non-structural carbo-

hydrates (NSCs). This model has been applied in

modeling the growth of plant biomass, especially for

the growth of leaves and fine roots (Fang et al. 2020).

However, the original FORCCHN2 model uses static

parameters and a simple description of Nm based on

the processes of the gross N mineralization and the N

immobilization. In this study, several key plant-soil-

microbe N processes were integrated into the

FORCCHN2 model (Table S1). The new aspects of

this work were as follows: (1) predicting daily Nm

(NH4
?-N: ammonium, and NO3

--N: nitrate) dynam-

ics by mineralization, nitrification, denitrification, and

N losses (including ammonia volatilization, nitrate

leaching, and gas emissions during nitrification); (2)

modeling the nitrification and denitrification process

by predicting the dynamics of microorganisms; and

(3) connecting soil N input with litterfall and plant N

uptake with biomass of fine roots. We conducted

sensitivity analysis and tested this model against

measurements at a temperate forest, Harvard Forest.

Materials and methods

Study site

We tested the model with data from Harvard Forest,

Massachusetts, USA (42� 480 N, 72� 180 W). Harvard

Forest is predominantly a mid-successional stand of

mixed hardwoods dominated by Acer and Quercus.

Harvard Forest has a mean annual temperature of

8.7 �C, mean annual precipitation of 1300 mm, and a

soil pH of 5.2 (see Table S2 for detailed environment

information).

Measurements

The data used for model testing was downloaded from

the Harvard Forest Data Archive: HF018 (http://

harvardforest.fas.harvard.edu:8080/exist/apps/

datasets/) (Frey and Melillo 2021). Data included soil

net N mineralization, nitrification, soil respiration, and

foliar N content from 2003 to 2009. The available N

data were taken from field experiments with the data

from control plots reflecting ambient conditions. Soil

net N mineralization and nitrification were measured

for the forest floor and mineral soil using an on-site

buried bag incubation. Incubations were incubated for

5 weeks, April- November, and for 5 months through

the winter (once each month, November through

March) (Butler et al. 2012). Soil water content was

measured as the volumetric water content with 15 cm

time delay reflectometry (TDR, ECH20 probes,

Decagon Devices, Inc., Pullman, WA) probes inserted

vertically in the soil. The daily soil respiration data

was measured using four methods (soda-lime systems,

static chamber systems, dynamic chamber systems,

and automated chamber systems), which are all based

on PVC or aluminum collars inserted in the soil

(dataset: HF194) (Davidson et al. 2014). The mea-

sured soil respiration was the sum of belowground

autotrophic (roots and associated mycorrhizae) and

heterotrophic (mainly microbes, microfauna, and

mesofauna) respiration (Giasson et al. 2013).

Model initialized and driven data

We used the maximum leaf area index (LAI) from the

GLASS dataset in 2003 to initialize the vegetation data

(http://www.glass.umd.edu/Download.html). Meteo-

rological and CO2 concentration data for this site were

taken from the Harvard Forest flux tower observation

data (FLUXNET2015 dataset: https://fluxnet.fluxdata.

org/). Soil organic carbon (kg m-2), organic nitrogen

(kg m-2), soil pH, soil field capacity (mm), wilting

point (mm), bulk density (kg m-3), sand content (%),

silt content (%), and clay content (%) were all

extracted from the Harmonized World Soil Database

(https://iiasa.ac.at/web/home/research/

researchPrograms/water/HWSD.html) (Fischer et al.

2008). Due to the resolution of HWSD (1 km 9 1

km), we chosen the grid covering the Harvard Forest

as the unit area for basic soil data. These data had been

successfully used previously by the original

FORCCHNmodel to simulate the global forest carbon

cycle (Ma et al. 2017).

Model description

FORCCHN2 was initialized from the LAI or tree

inventory data at the plot scale (Fang et al. 2020). The

model was run with a daily time step andwas driven by

daily meteorological data. On each day, NSCs
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produced by photosynthesis was used as the basic

material for the life activities of individual trees

(including respiration and growth). Part of the struc-

tural carbon formed by growth entered the soil as litter

fall. Individuals of different tree species influenced

soil organic C and N dynamics through differences in

growth rates and litterfall rates as encoded in the

physiological and ecological parameters for each

species (Method S1 and Table S3). Species differences

in litter composition affected both litter decomposition

and soil turnover times, with the differing nutrient

compositions of leaves and fine roots also producing

differences in the respective lignin to N and C to N

(C:N) ratios. Litter on the ground was divided into

seven pools: above-ground metabolic, above-ground

structural, below-ground metabolic, below-ground

structural, fine woody, coarse woody, and below-

ground coarse litter. Soil organic matter (SOM) was

divided into three pools: active SOM, slow SOM, and

resistant SOM, all with different decomposition rates

(Method S1 and Table S4).

Inorganic N dynamics The soil mineralized N pool

(NPmin) included two sections: the NH4
?-N pool

(Ammonium: Amm) and the NO3
--N pool (Nitrate:

Nit) (Fig. 1). The main control process of NPmin was

defined by the following functions:

dNPmin

dt
¼ dAmm

dt
þ dNit

dt
ð1Þ

Mineralization, immobilization, volatilization, nitrifi-

cation, denitrification, tree uptake, and leaching were

assumed to determine the mineralized N pool (NPmin)

(Niu et al. 2016), with nitrate derived from soil

available ammonium through nitrification (nitri). The

soil ammonium and nitrate pool were calculated by:

dAmm

dt
¼ Ngross tð Þ � Immamm tð Þ � volðtÞ � nitriðtÞ

� uptakeAmmðtÞ
ð2Þ

dNit

dt
¼ nitri tð Þ � gasnitriðtÞ � denitðtÞ � leachingðtÞ

� uptakeNitðtÞ
ð3Þ

where Ngross is the soil gross N mineralization rate;

Immamm is the immobilized N, which represents

transitions from mineralized ammonium to the active

SOM pool; vol is the flux of ammonia volatilization;

uptake is the plants N uptake; gasnitri is the gas

emissions during the nitrification process; denit is the

amount of denitrification, and leaching is the amount

of N leaching. The soil net mineralization rate is equal

to the gross Nmineralization rate minus mineralized N

loss rate (i.e. immobilization, volatilization, and

leaching).

Gross N mineralization and N immobilization We

assumed that N mineralization was in the form of

ammonium and that mineralized N processes only

occurred in the active SOM pool (Kirschbaum and

Paul, 2002). We followed Kirschbaum and Paul

(2002) to model the soil gross N mineralization rate

and immobilization rate:

NgrossðtÞ ¼ MinammðtÞ ð4Þ

MinammðtÞ ¼
dPa;n

dt
� dPa;c

dt
� 1

RCN
; if

dPa;n

dt
[

dPa;c

dt

� 1

RCN

ð5Þ

ImmammðtÞ ¼
dPa;c

dt
� 1

RCN
� dPa;n

dt
; if

dPa;n

dt
� dPa;c

dt

� 1

RCN

ð6Þ

where Minamm is the amount mineralized ammonium

rate; Pa,n and Pa,c is the amounts of C and N in the

active SOM pool (i.e. calculated by Method S1); RCN

is the critical C:N ratio of the active SOM pool for N

mineralization. RCN is determined by the initial soil

organic carbon (CSOM,0) and nitrogen (NSOM,0) content

in the soil active pool (Ma et al. 2017):

RCN ¼ CSOM;0

NSOM;0
� 2:0 ð7Þ
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Ammonium volatilization Previous studies have

shown that ammonium storage is decreased when the

soil pH value (pH) becomes large. Here, we used the

soil pH to determine the ammonium volatilization (Lin

et al. 2000):

volðtÞ ¼ a � bpH�10 � AmmðtÞ ð8Þ

where a and b are the parameters of soil pH function.

Ammonium nitrification Nitrification is the key

process in the N cycle whereby ammonium is

converted into nitrate by nitrobacteria (van Kessel

et al. 2015). Nitrification always progresses with

emissions of gases (gasnitri) such as nitric oxide. Zhang

et al. (2017) used the Monod kinetics and soil pH to

model the nitrification. We assumed that soil water

content and soil temperature also influence N nitrifi-

cation (nitri) because these environmental factors can

affect the activity of nitrifiers (Lin et al. 2000; Yang

et al. 2017). We modified the equation as:

nitriðtÞ ¼ Bnitri tð Þ � f nitriðSWÞ � f nitriðTÞ

� nmax � AmmðtÞ
6:18þ AmmðtÞ � pH ð9Þ

nmax ¼ COEnr �minð4 � 108 � CN�6:3; 96:28Þ ð10Þ

fnitri SWð Þ ¼ anitri þ bnitri � ð1:0 � wfpsÞ if wfps � 0:05
0:0 if wfps\ 0:05

�

ð11Þ

CO2

NH4
+ NO3

-

NOX and N2

Soil respira on
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Leaching

Denitrifica on

Uptake
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organic N 
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Leaves CO2
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Fig. 1 Schematic representation of the dynamics of soil

mineralized nitrogen. The black lines represent biomass fluxes,

the red lines represent carbon fluxes, and the blue lines represent

inorganic nitrogen fluxes, and the dotted lines represent

influence. NSC pool Non-Structural Carbohydrates pool
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f nitri Tð Þ ¼ ð60:0� T

25:78
Þ
3:503

� e
3:503�ðT�34:22Þ

25:78 ð12Þ

gasnitriðtÞ ¼ kgas�f nitriðSWÞ � f nitriðTÞ � nitriðtÞ ð13Þ

where nitri is the loss of ammonium to nitrification;

Bnitri is the biomass of nitrifiers (kg m-2); nmax is the

maximum nitrification rate (day-1); COEnr is the

nitrification coefficient; CN is the soil C:N; wfps is the

fraction of soil pore space filled with water; anitri and

bnitri are the parameters for water influence; T is the

soil temperature; and kgas is the parameter for gas

emissions during nitrification.

Nitrate denitrification We assumed that this process

depends on the biomass of denitrifiers (Bdenit), soil pH,

and soil temperature as:

denitðtÞ ¼ 24:0 � kdenit � BdenitðtÞ � f denitðpHÞ � f denitðTÞ

� ðRnitðtÞ
EFnit

þMnit � NitðtÞ
NtotalðtÞ

Þ

ð14Þ

f denit pHð Þ ¼ 1:0� 1:0

1:0þ e
pH�4:25

0:5

ð15Þ

f denit Tð Þ ¼ Q10;denit

T�Topt;denit
10 ð16Þ

where kdenit is the coefficient of nitrate consumption;

Rnit is the relative growth rate of denitrifiers (h
-1) (see

Eq. 27); EFnit is the efficiency parameter for nitrate

denitrifiers; Mnit is the maintenance coefficient of

nitrate (h-1); Ntotal is the total N of all the oxynitride

(kg m-2); Topt,denit is the optimum temperature of

denitrification; Q10,nitri is the temperature sensitivity

of denitrification.

Nitrate LeachingWe assumed that nitrogen leaching

only happens in the nitrate pool. Leaching of soil

nitrate (leaching) was calculated as the product of

water content (WS) (Lin et al. 2000):

leaching tð Þ ¼ al �
Nit tð Þ
bl � WS tð Þ

WF

ð17Þ

where al and bl are the parameters; WF is the field

capacity.

Tree nitrogen uptake We used the approach known

as the Michaelis–Menten function to represent miner-

alized nitrogen competition between trees and other

inorganic nitrogen consumers (Ghimire et al. 2016).

Tree uptake was determined by tree fine root biomass

(Cfineroot):

uptakeðtÞ ¼ Nmax � CfinerootðtÞ

� NPminðtÞ
kmin þ NPminðtÞ

�f upðSWÞ � f upðTÞ

ð18Þ

f up SWð Þ ¼ aup �
WSðtÞ
WF

� �3:0

þ bup ð19Þ

f up Tð Þ ¼ Q10;up

T�Topt;up
10 ð20Þ

where Nmax is the maximum nitrogen uptake per root

biomass at 25 �C; kmin is the concentration of available
nitrogen at which nitrogen uptake proceeds at one-half

of its maximum rate; aup and bup are the parameters of

water influence;Q10,up is the temperature sensitivity of

uptake; T is the soil temperature; Topt,nitri is the

optimum temperature of uptake.

Nitrifiers and denitrifiers The net incremental

biomass of nitrifiers is determined by the growth and

mortality rates and the biomass of nitrifiers. Both rates

are modified by soil dissolved organic carbon (DOC)

and water content. DOC is the main substrate for

microbial growth and water availability inhibits the

activity of microbial enzymes. DOC is calculated by

the FORCCHN2 model (Eqn S26). The net increment

of nitrifiers biomass (NB,nitri) is determined by growth

(Gnitri) and mortality (Dnitri) rates (Li et al. 2000;

Zhang et al. 2017):

GnitriðtÞ ¼ Gmax � ð
DOCðtÞ

1:0þ DOCðtÞ þ
f nitriðSWÞ

1:0þ f nitriðSWÞÞ

ð21Þ
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Dnitri tð Þ ¼ Dmax �
Bnitri tð Þ

5:0þ DOC tð Þð Þ � 1:0þ f nitri SWð Þð Þ
ð22Þ

NB;nitri tð Þ ¼ BnitriðtÞ�f nitriðSWÞ � f nitriðTÞ � ðGnitriðtÞ
� DnitriðtÞÞ

ð23Þ

where Gmax andDmaxmaximum growth and death rate

of nitrifiers, respectively.

The net increment of denitrifiers biomass (NB,denit)

is determined by growth (Gdenit) and mortality (Ddenit)

rates. The growth rate of denitrifiers (Gdenit) is related

to soil temperature and pH:

GdenitðtÞ ¼ RnitðtÞ � f denitðTÞ � f denitðpHÞ ð24Þ

DnitriðtÞ ¼ BdenitðtÞ �MC � YC ð25Þ

NB;denit tð Þ ¼ BdenitðtÞ � ðGdenitðtÞ � DnitriðtÞÞ ð26Þ

whereMC is the maintenance coefficient on carbon; YC
is the maximum growth rate of denitrifiers on soluble

carbon.

We used the Michaelis–Menten equation of two

substrates to model the relative growth rate of

denitrifiers (Rnit):

RnitðtÞ ¼ MUnit �
DOCðtÞ

DOCðtÞ þ aDOC
� nitðtÞ
nitðtÞ þ anit

ð27Þ

where MUnit is the maximum growth rate of denitri-

fiers; aDOC and anit are the half-saturation of DOC and

nitrate, respectively.

Model initialization and coupling

The FORCCHN2 model used the maximum LAI of

the first year and the forest types to initialize the

vegetation information, which included tree size and

biomass (see Method S2). The forest type of Harvard

Forest was the deciduous broadleaf forest and the

maximum LAI of this forest was 5.7 m2 m-2. The

FORCCHN2 assumed that fine root growth was

related to leaf growth (Method S1) and that the growth

processes of other organs were as described by Fang

et al. (2020). For soil initialized conditions, the initial

value of the mineralized N pool was assumed to be

0.3% of the soil organic N pool (Table S2). The initial

value of the active C pool was assumed to be 0.065%

of the soil organic C pool (Pa,c0). The initial value of

the active N pool (Pa,n0) was assumed as Pa,c0 divided

by the RC,N. We allocated the organic C and N into 11

pools by using the initialized allocation parameters

(Table S5). After setting these initial soil parameters,

we conducted a spin-up run (* 100 years) using

multiyear mean climate data from 2003 to 2009. The

resulting allocation ratios of the 11 pools were

considered as the new allocation parameters for our

simulations. We coupled the tree and soil dynamics

through litter and fine root-related processes through

Eq. 18 (Fig. 1). All variables and parameters are

summarized in Tables 1 and 2.

Before validation, we obtained model parameters

from the literature and conducted a sensitivity analysis

to test the parameters of Table 2. Here, we used the

sensitivity index to quantify parameter sensitivity in

this study. This sensitivity index (SI) is expressed as

the ratio of predicted soil net mineralization (g

m-2 day-1) by the original parameter and the relative

change parameter (Lenhart et al. 2002):

SI ¼ 1

n

Xn

j¼1

ðy2j � y1jÞ=y0j
2 � Dx=x0

� �
ð28Þ

where n is the number of total days during 2003–2009;

j is the jth day; y0j is the predicted soil net mineral-

ization at the jth day; x0 is the value of the original

parameter;4x is 20% of x0; y2j is the predicted soil net

mineralization when the parameter equal to x0 plus4x

at the jth day; y1j is the predicted soil net mineraliza-

tion when the parameter equal to x0minus4x at the jth

day. Note that the larger absolute value of SI implies a

higher parameter sensitivity, and Lenhart et al. (2002)

ranked the sensitivity into four classes based on SI: (1)

0 B|SI|\ 0.05, this means small to negligible sensi-

tivity; (2) 0.05 B|SI|\ 0.2, this means medium sensi-

tivity; (3) 0.2 B|SI|\ 1, this means high sensitivity;

(4) |SI|C 1, this means very high sensitivity.

We used correlation coefficient (r), model effi-

ciency (E), root mean square error (RMSE), and mean

absolute error (MAE) to evaluate predictions against

measurements (Method S3).
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Results

Sensitivity analysis

Overall, the sensitivity index of each parameter varied

within a range from -0.6 to 0.6 (Fig. 2). Some

parameters showed a large effect on the predicted

results of net mineralization (i.e. kmin, Q10,denit, Nmax,

Q10,up and aup, |SI|[ 0.2), while some parameters

showed an inconsequential effect on the predicted

results of net mineralization as the sensitivity index

was small (e.g. a, bnitri, kgas, and EFnit, |SI|\ 0.05).

Based on the equations in this model, we found that the

parameters with high sensitivity were critical compo-

nents of the N uptake and denitrification. Indicating

that all parameters exhibited a sensitivity index of less

than 0.6 and could not be better constrained using the

datasets in this study. Therefore, we set the model

parameters to their original constant values in this

study (Table 2).

Soil respiration

Soil autotrophic and heterotrophic respiration repre-

sented the dynamics of soil organic carbon, which was

affected by soil organic nitrogen storage changes

(Fig. 1). The model performed well in simulating the

intra-annual variability of daily soil respiration for

Harvard Forest (Fig. 3 and Table 3, r = 0.9, E = 0.76).

Soil respiration was unsurprisingly the lowest during

winter and the highest during the warmest days.

However, model predictions generally underestimated

the value of soil respiration in non-growing seasons

(RMSE = 1.16 g C m-2 day-1, MAE = 0.85 g C

m-2 day-1).

Table 1 Model variables

and their definitions
Variable Meaning (units)

NPmin Mineralized nitrogen pool (kg m-2)

Amm Soil ammonium content (kg m-2)

Nit Soil nitrate content (kg m-2)

Ngross Soil gross N mineralization rate (kg m-2 day-1)

RCN the critical C: N ratio of active SOM pool

vol Ammonium volatilization (kg m-2 day-1)

nitri Soil nitrification (kg m-2 day-1)

CN Soil C: N ratio

denit Nitrate denitrification (kg m-2 day-1)

leaching Soil nitrogen leaching (kg m-2 day-1)

gasnitri Gas emissions during nitrification process (kg m-2 day-1)

uptake Vegetation uptake (kg m-2 day-1)

Pa,c Active SOM carbon pool (kg m-2)

Pa,n Active SOM nitrogen pool (kg m-2)

Bnitri Biomass of nitrifiers (kg m-2)

Bdenit Biomass of denitrifiers (kg m-2)

Cfineroot Biomass of fine roots (kg m-2)

Gnitri Growth rate of nitrifiers (day-1)

Dnitri Death rate of nitrifiers (day-1)

NB,nitri Net increment of nitrifiers biomass (kg m-2 day-1)

Gdenit Growth rate of denitrifiers (h-1)

Ddenit Death rate of denitrifiers (h-1)

NB,denit Net increment of denitrifiers biomass (kg m-2 h-1)

Rnit Relative growth rate of denitrifiers (h-1)

T Soil temperature (�C)
WS Soil water content (cm)
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Soil water and microbes dynamics

In spring and winter, the lower evapotranspiration

maintained higher soil water content than in summer.

We used the water sub-module of FORCCHN2 to

predict the dynamics of water content in the soil

(Fig. 4a) and assumed that soil water content inhibited

the activity of microbes (Eq. 21). The model was able

to reproduce the dynamics of soil water content

(r = 0.85, E = 0.70). Water dynamics also influenced

the activity of nitrifiers. For example, the nitrifiers

showed a negative growth rate between days 210–270

due to the lowest water content (Fig. 4b). The activity

of denitrifiers was assumed to be highly influenced by

temperature (Fig. 4c): denitrifiers decreased in winter

and early spring, and then grew rapidly in the

transition time between spring and summer.

Soil inorganic N dynamics

To directly compare predictions with measurements

(limited to the available data), the daily predictions of

mineralized N data were accumulated to monthly

values. All of the simulated and measured results (i.e.

net soil N mineralization rate, net soil ammonium

increment rate, and net soil nitrification rate) from

Harvard Forest were qualitatively similar in their

patterns of monthly fluctuations (Fig. 5a, b, c and

Table 3, r[ 0.7). Most minimum and maximum

measured values were seen in January and July,

respectively. The predictions had less inter-annual

variability than the Harvard Forest measurements.

For the net soil N mineralization rate, simulated

results were quite similar to the Harvard forest

experimental results though there were marked dif-

ferences in 2006 and 2007 (Fig. 5a, r = 0.84,

Table 2 Model parameters Parameter Value Unit Use References

a 5.80 day-1 Eq. 8 Lin et al. (2000)

b 10.00 – Eq. 8 Lin et al. (2000)

COEnr 0.03 day-1 Eq. 13 Estimated

anitri 0.80 – Eq. 10 Zhang et al. (2017)

bnitri 0.21 – Eq. 10 Zhang et al. (2017)

kgas 6.00 9 10–4 – Eq. 10 Lin et al. (2000)

kdenit 1.00 – Eq. 14 Zhang et al. (2017)

EFnit 0.50 – Eq. 17 Zhang et al. (2017)

Mnit 0.09 – Eq. 17 Zhang et al. (2017)

Q10,denit 2.00 – Eq. 15 Zhang et al. (2017)

Topt,denit 22.50 �C Eq. 16 Zhang et al. (2017)

al 4.50 9 10–3 – Eq. 17 Lin et al. (2000)

bl 0.96 – Eq. 17 Lin et al. (2000)

Nmax 2.33 9 10–3 g N g C day-1 Eq. 18 Ghimire et al. (2016)

kmin 1.00 9 10–3 kg N m-2 Eq. 18 Ghimire et al. (2016)

aup 0.90 – Eq. 19 Lin et al. (2000)

bup 0.10 – Eq. 19 Lin et al. (2000)

Q10,up 1.50 – Eq. 20 Thomas et al. (2013)

Topt,up 25.00 �C Eq. 20 Thomas et al. (2013)

Gmax 0.10 day-1 Eq. 21 Zhang et al. (2017)

Dmax 0.06 day-1 Eq. 22 Zhang et al. (2017)

MC 7.60 9 10–3 kg N kg C-1 h-1 Eq. 25 Li et al. (2000)

YC 0.50 kg C kg C-1 Eq. 25 Li et al. (2000)

MUnit 0.67 h-1 Eq. 27 Zhang et al. (2017)

aDOC 1.70 9 10–2 kg C m-2 Eq. 27 Zhang et al. (2017)

anit 8.30 9 10–2 kg N m-2 Eq. 27 Zhang et al. (2017)
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E = 0.55). The model overestimated the net soil N

mineralization rate in 2006 and 2007, whereas it was

underestimated slightly in the summer of other years

(RMSE = 2.35 g N m-2 day-1,

MAE = 1.61 g N m-2 day-1). For the net soil ammo-

nium increment rate, patterns were similar to the net

soil N mineralization rate because the soil ammonium

was mainly based upon N mineralization (Fig. 5b,

r = 0.82, E = 0.52). The model also overestimated

soil ammonium increment rate in 2006 and 2007

(RMSE = 2.23 g N m-2 day-1, MAE = 1.51 g N

m-2 day-1). The model overestimated the net soil

nitrification rate in most years (Fig. 5c,

RMSE = 0.24 g N m-2 day-1,

MAE = 0.18 g N m-2 day-1). These results showed

the poorest simulated performance (r = 0.76,

E = 0.18). In 2004, the model overestimated the value

of the net soil nitrification rate.

For the dynamics of daily mineralized N, there was

insufficient available data to robustly test the model.

Here, we calculated all the details of daily mineralized

N’s dynamics including inorganic N production (i.e.

soil net N mineralization) (Fig. 6a), total N losses

(Fig. 6b) (i.e. equal to the sum of N losses of

ammonium and nitrate), N uptake (Fig. 6a), and soil

inorganic N pool (Fig. 6c). All of the results changed

with the microbes and the concentration of the

substrates. The soil inorganic N pool had regular

seasonal variations during a given year: in the spring,

soil inorganic N pool changed around the initial value

due to the low gross N mineralization rate and low tree

N uptake. In the summer, the soil inorganic N pool

increased because the gross N mineralization rate was

more than N uptake and N losses. Then, soil inorganic

N pools decreased slowly in the autumn and winter.

The results showed that the N mineralization rate and

tree N uptake had increased at the end of the year

because the model assumed a part of litter fell onto the

soil in the fall (i.e. controlled by phenology). The

predicted results supported the hypothesis that N

losses were consistent with the corresponding sub-

strate concentrations and environment factors, such as

leaching of nitrate with changes of soil water content

calculated by Eq. 17 and volatilization with ammo-

nium dynamics calculated by Eq. 8. Note that the total

N losses consumed a small part of produced inorganic

N (Fig. 6a:Grossmineralization and Total losses) in

accordance with observations from this site. Site

observations indicated no significant leaching or

gaseous losses of N (Butler et al. 2012). For tree N

uptake, the results showed a strong seasonal pattern

(Fig. 6a: Tree uptake): in early spring, trees only

needed a small amount of inorganic nitrogen because

of slow fine root growth. The peak N uptake occurred

in summer because of the creation of a large biomass

of fine roots. In the FORCCHN2, the fine root was

assumed to begin growing at the time when the

environmental conditions reached the requirement of

leaf phenology (Fig. S1).

Fig. 2 Sensitivity analysis of the model parameters

123

30 Biogeochemistry (2022) 158:21–37



Discussion

FORCCHN2 was able to reproduce the temporal

changes in soil respiration and N mineralization rates

at Harvard Forest. Although there was not enough

measured data to run a strong test of the daily

dynamics of every detailed process, the model yielded

plausible results for each sub-process.

Soil respiration includes underground autotrophic

and soil heterotrophic respiration, which is correlated

with biotic and abiotic factors such as temperature and

soil water content. Coupled with the predictions of

litterfall and root biomass, this model was able to

simulate daily soil respiration at this site. However,

there were some major discrepancies between

predictions and observations in the non-growing

season, likely resulting from three factors; first, our

predictions assumed that surface soil has little litter

input in the non-growing season because the decidu-

ous trees are leafless (Butler et al. 2012). Second, the

temperature in the non-growing season is low and far

below the assumed optimum temperature of plant root

and microbial respiration. For the optimum tempera-

ture, we used the globalized parameters instead of

localized parameters because few localized optimum

temperature data were available for this site (Giasson

et al. 2013). Third, the heterotrophic respiration in the

non-growing season may dependent upon DOC avail-

ability or concentration (Bowering et al. 2020), but our

model has not established a direct relationship

Fig. 3 Daily soil respiration

predicted by field

observations (blue) and

predicted by FORCCHN

(red) at Harvard Forest

during 2003. Soil respiration

includes belowground

autotrophic respiration and

soil

heterotrophic respiration

Table 3 Comparison of measured and predicted results

Statistical value

r E RMSE MAE Predicted value range

Net soil N

mineralization

0.84 0.55 2.35 (kg N ha-1 month-1) 1.61 (kg N ha-1 month-1) 0.13–12.09 (kg N ha-1 month-1)

Net soil ammonium

increment

0.82 0.52 2.23 (kg N ha-1 month-1) 1.51 (kg N ha-1 month-1) 0.11–10.97 (kg N ha-1 month-1)

Net soil nitrification 0.76 0.18 0.24 (kg N ha-1 month-1) 0.18 (kg N ha-1 month-1) 0.02–1.12 (kg N ha-1 month-1)

Soil respiration 0.90 0.76 1.16 (g C m-2 day-1) 0.85 (g C m-2 day-1) 0.87–10.49 (g C m-2 day-1)

Soil water content 0.85 0.70 – – –

N nitrogen, E model efficiency, RMSE root mean square error, MAE mean absolute error
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between the respiration and DOC. Thus, model

accuracy could likely be improved with accurate

localized temperature parameters, DOC relationship,

and litterfall information.

Comparing the process responses of this model

against the field experimental measured data provided

essential information on model validity. Our predic-

tions of N mineralization showed a strong seasonality,

which conforms to the observed variations. Fluctua-

tions can be largely attributed to the seasonal variation

of temperature and soil water content that not only

affects soil microorganism activities but also the

amount of litterfall (Sierra 1997; Pendall et al. 2008).

Similar fluctuations also occurred in the simulated

results of net ammonium and nitrate increment,

because the simulated N-mineralization produces

ammonium some of which is converted to nitrate

(Zhu et al. 2013).

Other discrepancies between simulated results and

measurements could be partially explained by the

uncertainties inherent in soil measurements (Jastrow

et al. 2005). For example, soil respiration in winter

was hard to measure because of the non-turbulent

transport of CO2 (Giasson et al. 2013). The lack of

detailed in situ soil information may also be a source

of error in modeled C and N dynamics. The initialized

soil parameters for this work were obtained from large

spatial scale datasets (1 km 9 1 km in this study), but

(a)

(b)

(c)

Fig. 4 a Predicted and

measured dynamics of soil

volumetric water content in

2003, b predicted dynamics

of nitrifiers and c denitrifiers
in 2003. VWC volumetric

water content. Shaded area

in (a) represents observed
standard error
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the soil environmental variables can vary widely over

short distances (Lucas-Borja et al. 2012). Potential

errors could also have arisen from our use of the LAI

data, and not the actual tree inventory data (i.e. the LAI

data could not provide accurate information of

biomass and species). Prior studies have indicated

that different tree species could directly influence the

N-mineralization rate (Van Der Krift and Berendse

2001), but the experiments available for model testing

did not detail the actual vegetation information in this

site. Further, we only considered some bacteria instead

of all microorganisms that involved soil C and N. For

(a)

(b)

(c)

Fig. 5 Measured and

predicted monthly dynamics

of soil mineralized N per

hectare (not including tree

uptake) at Harvard Forest

from 2003 to 2009. a net soil
N mineralization rate, b net

soil ammonium increment

rate, c net soil nitrification
rate. Error bars represent

observed standard error. N:
nitrogen
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example, we modeled the plant N uptake from the fine

roots and did not express the competition from other N

consumers explicitly. We need to further explore the

mechanisms from other microorganisms in our future

work.

In addition, the parameters and processes in the

model did not completely explain the actual vegetation

and soil conditions, for example the litterfall rate may

have been slightly overestimated and thus increased

the amount of simulated net mineralized N.We did not

(e)

Fig. 6 a Daily dynamics of

gross N mineralization, N

losses and tree N uptake at

Harvard Forest during 2003,

b N losses; further

subdivided into, c the nitrate
losses; and d the ammonium

losses, e the daily dynamics

of soil inorganic N pool with

the black line indicating the

initial value. Negative

values indicate soil N losses
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consider external N inputs in the model because some

recent studies have suggested that the role of external

N inputs on forest N-mineralization remains uncertain

(Rodriguez et al. 2014). However, the experimental

processes in situ have natural external N inputs

(including the N deposition, biological N fixation,

etc.) and many studies indicate that these N inputs

have a strong influence on soil N-mineralization (Nave

et al. 2009; Prescott 2010). Furthermore, the net

N-mineralization rate in 2005 has three obvious peak

values (Harvard forest), which may arise from the

pretreatment of a new soil warming and nitrogen

addition experiment initiated in 2005 (Record et al.

2010). At this time, this model does not incorporate

such case-specific exogenous interventions. This

could be added as a case study in future but our intent

here is to use a global parameterization and test its

generality.

The results showed a better performance for net

N-mineralization and net ammonium increment and

relatively poorer performance for the net nitrate

increment. First, although the parameters of nitrifica-

tion and denitrification have achieved the desired

results, these parameters may also generate potential

uncertainties, such as the COEnr and kdenit. However,

these parameters are difficult to measure directly and

have not been well studied (Zhang et al. 2017). Using

observations to constrain and calibrate the nitrification

and denitrification parameters is effective, and more

observed sites are needed to calibrate these more

difficult parameters. Second, we predicted nitrification

and denitrification based on the dynamics of microbes.

Soil substrate concentration, temperature, and mois-

ture are the main drivers for soil bacteria activities and

soil microbial biomass including growth and mortal-

ity. Among these factors, water availability inhibits

the nitrifiers by reducing intracellular water potential

and restraining the enzymatic activity (Stark and

Firestone 1995; Zhang et al. 2017). The seasonal

variation in soil temperature is a major factor in

affecting the activities of denitrifiers through inhibit-

ing the activity of enzymes. However, the ability of

this model to explain these factors is limited. For

example, soil water freezes in winter and early spring

killing soil microbes and reducing plant uptake, which

can cause an overestimation or underestimation of

nitrification and denitrification (Gao et al. 2018). Thus,

further research is needed to better constrain the

potential impact of such events on nitrate dynamics.

In summary, we predicted the dynamics of mineral

N by coupling the carbon dynamics and the detailed N

cycle process es within an updated model. This model

was able to generate day-to-day inorganic N produc-

tion from N-mineralization, N losses for leaching and

gaseous emissions, and plant N uptake. We view this

model development as a new step toward a more

mechanistic treatment of terrestrial N cycling based on

the dynamics of plant biomass, soil substrate, and

microbes. This model would help us to better under-

stand and predict ecosystem N cycling in forest soils.

However, further improvements in the prediction of

mineralized N include: using more model validation

sites to further verify the general applicability of the

model, exploring the nitrification process more clearly

in future experiments, and increasing the scope of N

inputs considered by the model.
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