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Abstract Higher nitrogen fluxes through estuaries

increase the risk of harmful algal blooms, may expand

eutrophication and can cause hypoxia within estuaries

and the adjacent coastal areas. However, the key

factors controlling dissolved inorganic nitrogen (DIN)

concentrations and export from hydrologically

dynamic and turbid estuarine systems are still poorly

understood. A series of cruises with high spatial

resolution under different hydrological conditions

were conducted in 2015–2016 across the Jiulong

River Estuary (JRE) continuum, including the estuar-

ine turbidity maximum (ETM). During baseflow,

ETMs were more intense during spring tides than

neap tides due to stronger net sediment resuspension.

The turbidity maxima were stronger and generally

further downstream under flood-affected conditions.

Based on the distribution of ammonium on the salinity

gradient in the low salinity region of the estuary (\ 2

PSU), we grouped all the cruises into ‘‘NH4 Addition

Pattern (AP)’’ and ‘‘NH4 Removal Pattern (RP)’’.

During baseflow, AP occurred during neap tides and

RP during spring tides. An important source of

ammonium to the water column was from resuspended

sediments and their pore waters. Based on property-

salinity plots, nitrification was likely one of the most

important transformation processes in the turbid water

column of the JRE, resulting in the net removal of

ammonium and the net addition of nitrite. It was more

intense during spring tides because there were more

suspended particles carrying nitrifying bacteria. There

was a major addition of DIN from estuarine processes

in addition to the extra nitrogen flushed from the

catchment during flood-affected flow, in particular

during the first flood of the year, compared with a

comparatively minor addition during baseflow. This

additional DIN was likely from the breakdown

products of particulate organic nitrogen accumulated
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in sediments which were then resuspended under

flood-affected conditions.

Keywords Ammonium � Estuarine turbidity
maximum � Hydrology � Jiulong River Estuary

Introduction

High nitrogen (N) exports from the watershed to the

estuary are considered as an important process caus-

ing the degradation of the estuarine and adjacent

coastal waters, including harmful algal blooms,

eutrophication and even hypoxia (Mayorga et al.

2010; Paerl 1997; Seitzinger et al. 2010; Vahtera et al.

2007;Whitehead and Crossman 2012). The magnitude

of different N species delivered to the coastal zone is

originally determined by riverine N load subsequently

modified by estuarine processes (Bianchi 2007; Erler

et al. 2014; Falco et al. 2010). Estuaries, especially the

estuarine turbidity maxima (ETMs), are regarded as

important biogeochemical reactors for major N trans-

formations (Abril et al. 2000; Garnier et al. 2010;

Herman and Heip 1999).

As one of the major dissolved inorganic nitrogen

(DIN) components in lakes, rivers, estuaries and

coastal seas, ammonium can be a major pollutant

from sewage wastewater and agricultural runoff. The

availability of ammonium in estuaries is vital to

primary production, yet too much ammonium con-

tributes to aquatic eutrophication and its subsequent

deleterious effects. Therefore, examining the biogeo-

chemical processes involving DIN especially ammo-

nium through the estuary is a key to understand the

role of the estuary as a gatekeeper modifying N

delivery to the coastal ocean.

An essential characteristic of the ETM is its

sediment (particulate matter) dynamics, involving

cycles of resuspension and settling of sediments at

different time scales of hydrological dynamics. There

are greater amount of suspended particulate materials

(SPMs) during spring tides than neap tides due to

enhanced resuspension in the stronger spring-tide

currents (Allen et al. 1980; Grabemann et al. 1997).

On an intratidal time scale, suspended particulate

matter tends to deposit during slack-water periods,

followed by the resuspension of easily erodible bed-

source sediments during the subsequent flood or ebb

periods (Grabemann et al. 1997). On a seasonal basis,

the river floods, which occur during the wet season,

induce strong sediment erosion in the catchment,

resulting in a strong net flux of the sediments

downstream and into the estuary (Park et al. 2008).

Within the estuary during storms, there is additional

sediment resuspension including sediments in the

channel and in areas of the banks that are not subject to

resuspension during the normal monthly tidal cycle of

spring and neap tides.

There are strong connections between sediment

dynamics and nutrient biogeochemical behavior in

estuaries. Large-scale and long-periods of net deposi-

tion of particulate organic matter stimulates mineral-

ization, resulting in a large stock of ammonium in the

sediments (Middelburg et al. 1996). Sediment resus-

pension then causes nutrient release from the sedi-

ments to the water column (Porter et al. 2010). In

addition, suspended particulate matter in the water

column can modify the N chemical species as a result

of the activity of bacteria attached to the particles

(Abril et al. 2000). In the case of macrotidal turbid

estuaries, heterotrophic bacterial activity is usually

more dominant than autotrophic activity like phyto-

plankton assimilation in the upper turbid reaches

because of low light availability (Fichez et al. 1992).

Nitrification, the oxidation of ammonium to nitrate,

is an important process in the water column and

sediments of many estuaries around the world (Dai

et al. 2008; Damashek et al. 2016; deWilde and de Bie

2000). The typical two-step nitrification process

involves the oxidation of ammonium by ammonium-

oxidizing archaea (AOA) or bacteria (AOB), followed

by nitrite oxidation by nitrite-oxidizing bacte-

ria (NOB). Both processes require free oxygen,

although anoxic nitrification has been found under

some unusual conditions (Bartlett et al. 2008). In the

water column of turbid macrotidal estuaries, nitrifica-

tion reaches the maximum in the ETM, likely because

nitrifying bacteria prefer to attach to particles (Abril

et al. 2000; Stehr et al. 1995). In the surface sediments

of such estuaries, nitrification is also an important

process, as it consumes ammonium from ammonifi-

cation within the sediments and provides the majority

of the available nitrate for denitrification in deeper

anoxic sediments (Tobias et al. 2003). Particulate

organic matter mineralization in the sediments is an

important process for the increase of ammonium-N

and DIN fluxes to the sea (Abril et al. 1999; Tobias
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et al. 2003), while denitrification can be a major

process to remove N from the estuarine system (Crowe

et al. 2012). Dissimilatory nitrate reduction to ammo-

nium (DNRA) and anammox can also make a

contribution to the turnover of N in estuary systems,

though they mainly occur in anaerobic sediments (An

and Gardner 2002).

As a medium-sized subtropical estuary in southeast

China, the Jiulong River Estuary (JRE) is one of the

earliest estuaries in which biogeochemical processes

were studied in China (Li et al. 1964). Studies of

nutrient dynamics in this estuary have been conducted

subsequently, but most of these surveys lack data in

the important low salinity areas (Chen et al. 1985;

Hong and Lin 1990; Zhang et al. 1999). A recent study

summarized the distribution, fluxes and decadal

changes of nutrients in the JRE (Yan et al. 2012). In

general, nutrients behave conservatively through the

high-salinity area while nutrient cycling and behavior

across the river–estuary interface (REI) is more

complicated and has been less studied.

Here we conducted a series of cruises with high

spatial resolution under different hydrological condi-

tions in the JRE through the ETM to the coastal zone in

2015–2016. The specific objectives of this study were

(1) to identify and characterize the ETM under

different hydrological conditions (spring vs. neap

tides, baseflow vs. flood-affected flow), (2) to inves-

tigate the behavior (addition and removal) of ammo-

nium and other inorganic N species and the related

biogeochemical processes in the upper JRE corre-

sponding to different hydrological regimes of neap–

spring tidal cycle, and (3) to compare how changes in

the hydrological regime (baseflow vs. flood-affected

flow) affect the export of DIN fluxes from the estuary

to the sea.

Materials and methods

Study area

The Jiulong River is a subtropical river in southeast

China, with an agriculture-dominated drainage area of

14,740 km2 and a multi-year average rainfall of

1400–1800 mm. Two major tributaries (the North

River and theWest River) discharge an average annual

total of 1.47 9 1010 m3 year-1 freshwater (two-thirds

from the North River and one-third from the West

River) into the JRE (Chen et al. 2018). The confluence

of these two main tributaries (site A3) is described

here as the river outlet (Fig. 1). A small river (the

South River) converges into the middle part of the

estuary. The JRE is a macrotidal estuary with an open

Fig. 1 Map of the Jiulong River Estuary (JRE) showing

sampling sites and the tide gauge in the upper estuary marked

by a triangle at Shima (SM). The different shades of blue show

the average depth of water bodies. The darker blue indicates

deeper water. (Color figure online)

123

Biogeochemistry (2019) 142:443–466 445



water area of about 100 km2 and a depth of 3–16 m.

River water flows into the Xiamen Baymainly through

the south channel of the estuary (Guo et al. 2005). The

average tidal range is 3.9 m, while the maximum tidal

range is 6.4 m (Jiang and Wai 2005). Water temper-

ature ranges from 13 to 32 �C (Yang and Hu 1996).

The average flushing time of the JRE is about

2–3 days during baseflow (Cao et al. 2005). Along

the river bank in the middle estuary, there are small-

scale areas of mangroves which are dominated by

Kandelia obovate (Chen et al. 2016).

Sampling and laboratory analysis

A total of ten cruises in the JRE were conducted from

May 2015 to December 2016. As the JRE was

vertically well mixed most of the time because of

the relatively shallow depth and large tidal amplitude,

we mainly collected surface waters from a series of

stations (A3–KM2). A limited number of bottom

water samples (A5–A8) were collected in the upper

estuary to check the mixing (Fig. 1). In addition, to

acquire a high-resolution observation at the river-

estuary interface (REI), a number of additional surface

water samples were collected between the main

selected stations to add higher resolution within the

salinity range of 0–5 PSU. A series of water quality

parameters (salinity, DO, pH, temperature) were

measured by a portable water quality 161 Meter

(WTWMulti 3430, Germany) on deck (Table 1). CTD

casts were performed at fixed stations on 6th May

2015 (close to a neap tide) and 25th November 2015

(close to a spring tide) to examine the stratification of

the estuary. The calibration of the WTW and CTD

sensors were made before cruises, with pH buffers and

calibration standards. All water samples were filtered

through GF/F (0.7 lm) Whatman glass microfibre

filters on the ship. All the filtered water samples and

particulate samples were stored in a cool container on

the ship before delivery to the laboratory at Xiamen

University.

All water samples were stored at 4 �C before

analysis of dissolved nutrients and were determined

within less than 48 h. Filters were frozen at - 20 �C
before analysis of SPM. All SPM weights were

determined as the differences between the unfiltered

and filtered GF/F membranes after oven-drying

(105 �C) to constant weights. Filtered water was

analyzed by a SEAL AutoAnalyzer 3 for concentra-

tions of nitrate-N (NO3-N), nitrite-N (NO2-N) and

ammonium-N (NH4-N). The instrument detection

limit was 0.1 lmol L-1 for NO3-N, 0.04 lmol L-1

Table 1 Surface water environmental parameters in each cruise

Groups Cruise dates DO (mg L-1) Temperature (�C) pH

S B 5 20\ S B 35 S B 5 20\S B 35 S B 5 20\S B 35

NH4-N addition pattern 2015/5/6 3.55 ± 0.35 7.51 ± 0.65 24.8 ± 0.2 22.9 ± 0.3 7.25 ± 0.21 8.02 ± 0.11

2015/7/14 4.32 ± 0.33 5.87 ± 0.32 29.7 ± 0.1 27.8 ± 0.4 7.32 ± 0.04 8.12 ± 0.04

2016/5/14 6.12 ± 0.35 6.93 ± 0.33 25.3 ± 0.8 24.4 ± 0.7 6.94 ± 0.17 8.00 ± 0.06

2016/12/23 7.13 ± 0.37 9.10 ± 0.13 19.5 ± 0.4 18.1 ± 0.2 6.89 ± 0.23 8.02 ± 0.05

Subtotal 5.28 ± 1.64 7.41 ± 1.26 24.4 ± 4.3 23.7 ± 4.1 7.10 ± 0.22 8.06 ± 0.05

NH4-N removal pattern 2015/4/19 2.93 ± 0.17 8.34 ± 1.02 23.4 ± 0.1 21.1 ± 0.7 7.37 ± 0.09 8.00 ± 0.13

2015/10/17 6.28 ± 0.37 6.93 ± 0.60 24.7 ± 0.3 25.0 ± 0.2 7.28 ± 0.16 8.17 ± 0.07

2015/11/25 4.51 ± 1.32 7.72 ± 0.50 24.2 ± 0.6 23.3 ± 0.9 7.00 ± 0.08 7.94 ± 0.17

2016/7/7 5.53 ± 0.43 6.95 ± 0.26 29.6 ± 0.3 29.5 ± 0.3 7.08 ± 0.09 7.98 ± 0.13

2016/7/25 3.81 ± 0.08 5.15 ± 0.27 31.5 ± 0.2 30.3 ± 0.4 7.19 ± 0.02 8.06 ± 0.12

2016/9/24 6.67 ± 0.94 6.98 ± 0.10 28.6 ± 0.1 27.3 ± 0.2 7.19 ± 0.26 7.87 ± 0.05

Subtotal 4.95 ± 1.58 7.01 ± 1.07 27.0 ± 3.3 26.1 ± 3.6 7.18 ± 0.14 8.00 ± 0.10

Data indicate as mean ± standard error. There are no significant differences between the groups of NH4 Addition Pattern and NH4

Removal Pattern in each parameter in a same salinity group (p[ 0.05). NH4-N Addition Pattern indicates that an ammonium

addition pattern was observed in the upper estuary. NH4-N Removal Pattern indicates that an ammonium removal was observed in the

upper estuary

S salinity (PSU)
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for NO2-N, and 0.5 lmol L-1 for NH4-N. DIN was

summed from NO3-N, NO2-N, and NH4-N. The

precision of each nutrient form was estimated by

repeated determinations of 10% of the samples and the

relative error was 3–5%. For the quality control in the

laboratory, a standard reference material provided by

China State EPA was used to check the instrument

performance, which was within- 1 to? 4% from the

standard concentration.

In order to examine the potential ammonium

oxidation rates and nitrite oxidation rates in the upper

and lower estuary, surface water samples at station A8

and JY3 were collected during the cruise on 23rd De-

cember 2016 and incubated using an inhibitor tech-

nique applicable to coastal marine environments

(Bianchi et al. 1997; Dai et al. 2008). 5 L water

samples were homogenized in a pre-cleaned and water

sample rinsed container, and then 250 mL water

samples were measured into three sets of 300 mL

brown glass bottles (duplicate in each set). In one set

of the bottles, allylthiourea (ATU, final concentration

at 100 mg L-1) was added to inhibit the oxidation of

ammonium to nitrite; while in another set NaClO3

(final concentration at 10 mg L-1) was added to

inhibit the oxidation of nitrite to nitrate; a third set

was run with no addition of an inhibitor to act as a

control. All the bottles were loosely capped and

incubated on a shaker in the lab at a constant

temperature, to avoid settling of particles and defi-

ciency of oxygen. Less than 10 mL of sub-samples

were taken at the time 0 h, 24 h, 48 h, 72 h. Sub-

samples were then filtered by 0.45 lm CA membrane

and stored at 4 �C before the measurement of NO3-N,

NO2-N, and NH4-N. The decrease of NO2-N concen-

tration over incubation time in the set with ATU

inhibitor was used to estimate the potential nitrite

oxidation rates and the increase of NO2-N in the set

with NaClO3 was used to estimate the potential

ammonium oxidation rates.

Auxiliary data collection and data analysis

Daily rainfall records for seven weather stations in the

catchment were obtained from Weather China (http://

www.weather.com.cn/). Hourly river discharge was

obtained from hydrological stations (PN in the North

River and ZD in the West River). The river discharge

recorded at hydrological stations (PN and ZD) was

extrapolated to the river mouth using the ratios of the

drainage area between them. Data of tidal height

monitored at Shima (SM, in the upper JRE; Fig. 1)

were available from National Marine Data and Infor-

mation Service (http://www.coi.gov.cn/).

To quantify the amount of nutrients reaching the

coastal zone, the nutrient fluxes across the REI and

estuary–coast interface (ECI) were calculated. The

REI flux (t day-1) was calculated by multiplying the

concentration of the most downstream freshwater site

(salinity\ 0.1 PSU) and the river water flow

(m3 day-1) on the sampling day. The ECI flux

(t day-1) represents the nutrient export from the lower

estuary to coastal water at the interface with salin-

ity = 30 PSU and was calculated using the procedure

developed by Officer (1979). A best regression line fit

was made to the observed concentration and salinity

values in the high salinity region in the lower reaches

of the estuary (typically conservative mixing). This

regression line was then extrapolated back to salin-

ity = 0 PSU to get a calculated concentration value,

C�
0 : ECI fluxes were then obtained by multiplying the

total river water flow (m3 day-1) on the sampling day

and C�
0 : The observed concentration of nutrients from

the most downriver freshwater sample was defined as

C0. The changes of N fluxes between REI and ECI

were used to quantify the amount of addition or

removal of each DIN species. To acquire more

quantitative analysis, we also calculated the N devi-

ations (denoted as N offset) from the conservative

lines for the low salinity points. Positive N offset

indicates N addition in the low salinity area and

negative N offset indicates N removal.

Nutrient biogeochemical behaviour across the

river–estuary–coast continuum was explored by plot-

ting concentration against salinity. To better identify

the factors controlling the ammonium behaviours, we

divided the cruises into two groups–the NH4 Addition

Pattern (AP) and NH4 Removal Pattern (RP) accord-

ing to the characteristics of ammonium-N-Salinity

diagrams in the low salinity region.

In this study, we defined the ‘baseflow’ hydrolog-

ical condition as the period when the river discharge

was less than 1.2 times of the previous baseflow,

which was estimated using an automatic segmentation

procedure (BFI {F}: Smoothed Minima method)

(Nathan and McMahon 1990). By contrast, the period

when the discharge was more than 1.2 times of the

previous flow was defined as flood-affected
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conditions, according to the definition used in our

previous research in the JRE system (Chen et al. 2018;

Gao et al. 2018).

Results

Meteorological and hydrological conditions

in 2015–2016

The total rainfall in 2015 was 1754 mm, of which 82%

occurred in the wet season from April to October

(Fig. 2a). This is a typical distribution of precipitation

in the area which is affected by the Asian monsoon

system and by occasional typhoons from May to

November (Ren et al. 2001). The total rainfall in 2016

was 2314 mm, considerably higher than that in 2015,

as a series of rainfall events occurred in the period

from early January 2016 until late November 2016

(Fig. 2a). Those 2 years, particularly the year of 2016,

were among the wetter years with relatively abundant

rains, compared to the multi-year average rainfall of

1400–1800 mm.

River discharges were low (73 m3 s-1 to

297 m3 s-1) from January to April in 2015 and then

started to rise in late April (Fig. 2a). The cruise in May

2015 was carried out during the rising limb of the

hydrography of the first flood event of the year, which

was regarded as under the flood-affected condition

(Fig. 2a). River discharges ranged from 84 m3 s-1

(April 2015) to 697 m3 s-1 (May 2015). All the

cruises except May 2015 were carried out under

baseflow conditions. In general, 2016 was relatively

wetter with a water yield (discharge/drainage area) of

1.5 m year-1 than the year of 2015 with

0.82 m year-1 water yield. These water yields
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Fig. 2 a Daily river

discharge and precipitation

in the Jiulong River

watershed in 2015–2016 and

b Daily tidal range recorded

at Shima (SM) in the upper

Jiulong River Estuary in

2015–2016. Red circles

show the sampling date of

cruises in which an

ammonium addition pattern

was observed in the upper

estuary and blue circles

show sampling when an

ammonium removal pattern

was observed. (Color

figure online)
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corresponded to 47% of the rainfall in 2015 and 65%

in 2016.

Daily tidal ranges (the vertical difference between

the high tide and the succeeding low tide) in the JRE in

2015–2016 are shown in Fig. 2b. Annual tidal range at

the Shima tidal gauge (SM, in the upper JRE) was

290 cm in 2015 and 289 cm in 2016, respectively.

Tidal ranges in cruises with the NH4 AP were 241 cm

on average with a standard error (SE) of 19 cm, which

was significantly lower than the mean (± SE) value of

316 (± 24) cm in the NH4 RP (p\ 0.01).

Water environmental parameters

Average DO concentration, temperature and pH in the

surface water of the low and high salinity ranges are

listed in Table 1. The lowest DO concentration was

about 2.5 mg L-1, which was higher than the accepted

upper limit for hypoxia (DO\ 2 mg L-1). DO in the

high salinity area was about 2 mg L-1 higher than that

in the low salinity area on average. Water temperature

in the group of NH4 AP ranged from 17.9 to 30.0 �C
(24 �C on average), with the lowest value on 23rd

December 2016 and the highest value on 14th July

2015, while the temperature ranged from 20.1 to

31.7 �C (26 �C in average) in the group of NH4 RP.

There were no significant differences in water tem-

perature between the two groups (p[ 0.05).

The vertical salinity and temperature profile along

the JRE is shown in Fig. 3. The JRE can be classified

as a partially stratified estuary, as there was some

stratification during neap tides, particularly in the

middle and lower part of the estuary. During the cruise

on 6th May 2015 (close to a neap tide), the top-to-

bottom salinity stratification of the JRE was less than

0.5 PSU in the upper estuary (\ 6 km) and less than 3

PSU in the lower estuary (\ 13 km), while it could

exceed 5 PSU in the middle (6–13 km) and in the

lower part of the estuary (20–30 km). There was less

than 2 PSU of top-to-bottom stratification through the

whole estuary during the cruise on 25th November

2015 (close to a spring tide). The vertical temperature

stratification was less than 1 �C during both cruises.

The largest vertical water density difference

([ 5 kg m3) occurred in the lower part of the estuary

during the neap tide examples (Fig. 3e). DO at the

bottom was 0.48–1.19 mg L-1 lower than that at the

surface in the low salinity area (\ 2 PSU), but it was

higher than the surface layer ([ 7 PSU at A8 on 23rd

December 2016) where there was a large vertical

salinity gradient and the water density difference was

5.82 kg m3 (Table 2).

Variations of suspended particulate materials

There were significantly higher SPM during spring

tides in the group of NH4 RP (104 ± 78 mg L-1 as

mean ± SE) than during neap tides in the group of

NH4 AP (54 ± 29 mg L-1) (p\ 0.01) (Fig. 4). Max-

imum SPM ranged from 62 to 97 mg L-1 in the AP

group during baseflow, while it varied from 142 to

363 mg L-1 in RP group during baseflow. Maximum

SPM was 104 mg L-1 in the flood-affected cruise in

May 2015 (Fig. 4). In most cruises, maximum SPM

was observed at the salinity around 0.3–1.2 PSU in

both groups, except the cruise on 19th April 2015 and

7th July 2016, when it was observed at 16.5 PSU and

8.9 PSU, respectively (Fig. 5a, b).

The relationship between nitrogen concentrations

and salinity

Inorganic nitrogen concentrations of the surface and

bottom water samples against salinity during two

cruises (during a neap tide and a spring tide) are shown

in Fig. 5. Data points of bottom water still followed

the pattern formed by surface water samples, even

during the cruise close to a neap tide when there was

some salinity stratification (salinity differences of 1–7

PSU) in the middle part of the estuary. Therefore, data

of surface and bottom water were combined in the

following results interpretation.

During most cruises, the data were positioned

above or below the conservative mixing line, indicat-

ing the addition or removal of DIN within the estuary

(Fig. 6). During baseflow conditions in cruises with

the NH4 AP, NH4-N gradually increased within the

salinity range of 0–2 PSU and then decreased linearly

against salinity in all cruises (Fig. 6c). Taking the

addition in December 2016 for an example, NH4-N

reached 85.8 lmol L-1 at the salinity of 1.6 PSU,

while there was only 72.0 lmol L-1 at salinity = 0

PSU. During baseflow in NH4 RP, NH4-N decreased in

the salinity range of 0–2 PSU, followed by linearly

decreasing with increasing salinity (Fig. 6d). In

November 2015, NH4-N dropped from 58.9 to

46.3 lmol L-1 at a rate of 8.4 lmol L-1 per salinity

unit in the salinity range of 0.4–1.9 PSU, and then
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decreased linearly by 0.8 lmol L-1 per salinity unit.

In the flood-affected cruise in May 2015, NH4-N

increased from 129.1 lmol L-1 at salinity = 0 PSU to

a maximum of 150.4 lmol L-1 at the salinity of 0.9

PSU (Fig. 6c).

The NO2-N behavior exhibited similar trends in

every cruise (Fig. 6e, f). Peak NO2-N concentrations

were always observed downstream of the ETM at

around the salinity of 3–5 PSU. NO2-N increments (in

the salinity of 0–5 PSU) in May 2016 and December

2016 were less than 2.8 lmol L-1 during baseflow in

the AP, while the highest increment was 20 lmol L-1

in October 2015 during baseflow in the RP.

NO3-N almost followed the conservative mixing

line (a linear line starts from the zero salinity point and

ends at the highest salinity point) in most cruises,

except a small change at around the salinity of 2–7

PSU in May 2016 and a small increase at the

salinity\ 2 PSU in December 2016 (Fig. 6g, h).

Ammonium oxidation rates and nitrite oxidation

rates from incubation experiments

As shown in Table 3, nitrification rates (ammonium

oxidation and nitrite oxidation) in the lower salinity

area were about 13 times that in the high salinity area.

At the salinity of 2.1 PSU, ammonium oxidation rate

was 8.78 lmol N L-1 day-1, around 10 times faster

than that of 0.82 lmol N L-1 day-1 of nitrite oxida-

tion rate.
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Fig. 3 Vertical salinity, temperature and water density (Sigma-

T) profile along the Jiulong River–Estuary–Bay during the

cruises on 6thMay 2015 close to a neap tide (in NH4-N Addition

Pattern group) and 25th November 2015 close to a spring tide (in

NH4-N Removal Pattern group). Data were not available for the

bay on 6th May 2015. NH4-N Addition Pattern indicates that an

ammonium addition pattern was observed in the upper estuary.

NH4-N Removal Pattern indicates that ammonium removal was

observed in the upper estuary
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Table 2 Environmental parameters of surface and bottom

water during the cruises on 6th May 2015 and 23rd December

2016 (close to neap tides in NH4 Addition Pattern group), and

on 25th November 2015 and 7th July 2016 (close to spring

tides in NH4 Removal Pattern group)

Cruise dates Sample

stations

Water

layers

Salinity

(PSU)

Temperature

(�C)
Density

(kg m3)

Sigma-T

(kg m3)

DO

(mg L-1)

2015/5/6 (Neap tide) A5 Surface 0.6 24.5 997.7 - 2.3 3.24

Bottom 1.0 24.4 998.0 - 2.0 N/A

A6 Surface 1.8 24.4 998.5 - 1.5 3.96

Bottom 7.0 23.9 1002.6 2.6 N/A

A7 Surface 7.0 24.0 1002.6 2.6 3.15

Bottom 9.5 23.9 1004.5 4.5 N/A

A8 Surface 14.0 23.7 1007.9 7.9 4.49

Bottom 15.9 23.6 1009.4 9.4 N/A

JY0 Surface 23.5 23.2 1015.2 15.2 7.01

Bottom 29.8 22.6 1020.1 20.1 N/A

2016/12/23 (Neap tide) A5 Surface 0.0 18.8 998.4 - 1.6 7.96

Bottom 0.0 18.8 998.4 - 1.6 7.48

A6 Surface 0.0 19.4 998.3 - 1.7 7.18

Bottom 0.0 19.3 998.3 - 1.7 7.37

A7 Surface 0.3 19.7 998.5 - 1.5 6.69

Bottom 2.6 19.0 1000.4 0.4 N/A

A8 Surface 2.1 20.2 999.8 - 0.2 6.68

Bottom 9.5 19.2 1005.6 5.6 7.21

JY3 Surface 24.2 18.1 1017.0 17.0 9.17

Bottom 24.9 17.9 1017.6 17.6 9.19

2015/11/25 (Spring tide) A3 Surface 0.4 24.6 997.5 - 2.6 2.73

Bottom 0.4 24.6 997.5 - 2.6 N/A

A4 Surface 1.2 23 998.5 - 1.6 6.43

Bottom 1.2 24.5 998.1 - 1.9 5.24

A5 Surface 4.1 24.2 1000.3 0.3 3.36

Bottom 4.7 24.7 1000.7 0.7 N/A

A7 Surface 16.3 24.3 1009.5 9.5 6.37

Bottom 19.5 24.9 1011.7 11.7 7.50

JY3 Surface 28.8 22.3 1019.4 19.4 8.34

Bottom 28.7 22.4 1019.3 19.3 8.24

2016/7/7 (Spring tide) A6 Surface 0.4 29.6 996.1 - 3.9 5.74

Bottom 0.4 29.7 996.0 - 4.0 5.39

A7 Surface 3.3 29.8 998.2 - 1.8 5.15

Bottom 3.2 30.0 998.0 - 2.0 4.98

A8 Surface 8.9 29.9 1002.3 2.3 6.68

Bottom 9.0 29.7 1002.4 2.4 7.21

NH4-N Addition Pattern indicates that an ammonium addition pattern was observed in the upper estuary. NH4-N Removal Pattern

indicates that an ammonium removal was observed in the upper estuary

N/A not available
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Inorganic nitrogen exports through the Jiulong

River Estuary

The linear regression equations and R2 in high salinity

area obtained from the procedure developed by Officer

(1979) are listed in Table 4. Here we defined DC0 as

the difference between the calculated river (salin-

ity = 0 PSU) concentration (C�
0) and the observed

concentration (C0) at the location in the river closest to

JRE. DC0 of NH4-N was positive (0.3–7.0 lmol L-1),

indicating higher calculated NH4-N (C�
0) than the

observed NH4-N (C0), in the group of NH4 AP under

baseflow conditions. The largest DC0 of NH4-N

(71.5 lmol L-1) was found during the flood-affected

cruise in May 2015. DC0 of NH4-N was negative

(- 3.0 to - 20.6 lmol L-1), showing lower calcu-

lated NH4-NC�
0 than observed NH4-N (C0), in the NH4

RP group. For NO3-N, DC0 was from - 4.1 to

19.2 lmol L-1 in the AP and from - 14.9 to

7.4 lmol L-1 in the RP. During baseflow, DC0 of

NO2-N was 4.0–14.4 lmol L-1 in the AP, while there

was a larger increase of DC0 (16.5–25.8 lmol L-1) in

the RP. DC0 of NO2-N was 25.8 lmol L-1 during the

flood-affected cruise in May 2015. In general, DC0 of

NH4-N and NO2-N showed significant differences

between the AP and RP under baseflow conditions

(p = 0.017 for NH4-N and p = 0.011 for NO2-N),

while there was no significant difference in DC0 of

NO3-N (p = 0.120) (Table 4).

To quantify the addition and removal of different

formsofDIN,wecalculated the changes in the inorganic

N fluxes through the REI compared with the fluxes out

of the estuary determined at the ECI (Table 5), denoted

as flux addition in the unit of t day-1 and % of REI

fluxes. In many cases, there was a net addition of

inorganic N species within the estuary. In the group of

AP, there was a small addition of ammonium-N

(0.2–3.2 t day-1 and 0.8–9.8%), a small addition of

nitrite-N (1.8–5.6 t day-1 and 45.0–72.6%) and vari-

able fluxes of nitrate-N (- 3.4 to 8.6 t day-1 and

- 2.5% to 10.0%), while there was a large removal of

ammonium-N (1.9–9.4 t day-1 and 15.3–57.7%), large

addition of nitrite-N (9.2–19.0 t day-1 and

142.6–376.3%) and variable nitrate-N (- 5.8 to

3.2 t day-1 and - 9.7% to 3.6%) in the RP group

(Table 5). The NO2-N fluxes addition (t day-1) were

even higher than the reduced NH4-N fluxes in the RP

group. Moreover, the average NO2-N fluxes addition
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Fig. 4 Spatial variations of

salinity and suspended

particulate matter (SPM)

along the Jiulong River–

Estuary–Bay gradient in

2015 (circles) and 2016

(triangles). NH4-N Addition

Pattern indicates that an

ammonium addition pattern

was observed in the upper

estuary. NH4-N Removal

Pattern indicates that an

ammonium removal was

observed in the upper

estuary. The river outlet is

defined as the confluence

(site A3) of the North River

and West River (each point

refers to a corresponding site

presented in Fig. 1)
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percentage in the RP group was 250.5%, 4.3 times of

that in theAPgroup (57.1%) (Table 5). As for the flood-

affected cruise in May 2015, NH4-N fluxes at the REI

was as high as 86.8 t day-1 and then increased to

134.8 t day-1 at the ECI (Table 5). Meanwhile, DIN

fluxes increased by 69.3 t day-1, of which 69.3% was

contributed by ammonium-N and 30.7% by

nitrate ? nitrite (Table 6).

Discussion

Variations of SPM and sediment processes in ETM

under different hydrological conditions

According to the definition of ‘‘baseflow’’ and ‘‘flood-

affected’’ hydrological conditions in ‘‘Auxiliary data

collection and data analysis’’ section, most of the

cruises in this study were carried out during baseflow

conditions (Fig. 2a). The only exception was in May

2015, which occurred during the first flood in 2015

(Fig. 2a). Here we combine and compare the results

during baseflow (NH4 AP vs. NH4 RP) and then

compare these baseflow conditions, with May 2015

and previous studies describing storm effects through

the same estuarine system (JRE) by Chen et al. (2018).

It was found that there was an ETM at all times.

Most ETMs during baseflow conditions were located

adjacent to the first increase in salinity often around

10 km downstream of the river outlet (Fig. 4), though

the exact position depends on the state of the tide as

well as the river flow. The magnitude of the ETM, as

defined by the maximum SPM, was significantly

greater in RP which were found during or close to
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Neap tide (2016/12/23) Spring tide (2015/11/25)Fig. 5 Dissolved inorganic

nitrogen concentrations of

surface and bottom water

versus salinity in the Jiulong

River Estuary on 23rd

December 2016 close to a

neap tide (in NH4-N

Addition Pattern group) and

25th November 2015 close

to a spring tide (in NH4-N

Removal Pattern group).

The dashed line is the

conservative mixing line

between the end-members.

NH4-N Addition Pattern

indicates that an ammonium

addition pattern was

observed in the upper

estuary. NH4-N Removal

Pattern indicates that an

ammonium removal was

observed in the upper

estuary. We did not collect

bottom samples for nitrogen

concentrations during the

cruise on 6th May 2015 in

Fig. 3, so we chose the

cruise on 23rd December

2016 to represent the state of

a neap tide
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spring tides (ranging 142–363 mg L-1,

257 ± 91 mg L-1 as mean ± SE) under baseflow

conditions, compared to that in AP which were found

during or close to neap tides (ranging 62–97 mg L-1,

82 ± 21 mg L-1 as mean ± SE) (p\ 0.01) as shown

in Fig. 4. This is consistent with previous studies in

macrotidal estuaries, which showed that neap–spring

tidal cycles are an important control on

µ
µ

µ

µ
µ

µ

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 6 Suspended particulate matter (SPM) and dissolved

inorganic nitrogen concentrations versus salinity in the Jiulong

River Estuary in 2015 (circles) and 2016 (triangles). The dashed

line is the conservative mixing line between the end-members.

The cruises on 23rd December 2016 and 25th November 2015

were chosen as examples for mixing behaviors
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sedimentological processes (Allen et al. 1980). The

ETM, during baseflow conditions, is caused by a

saline underflow resuspending fine-grained sediments

during the flood tide which is then deposited further

downstream during the ebb tide (Schubel 1971).

Larger amounts of fine sediments are resuspended

and net eroded over a larger area during spring tides,

while the opposite occurs during neap tides, where

suspended particles tend to be net deposited and then

preserved both in the channel and on the banks,

although some sediment is eroded, resuspended and

deposited during every tidal cycle (Manning and Bass

2006). By contrast, the maximum SPM of ETM was

generally higher (223 ± 195 mg L-1 as mean ± SE)

under flood-affected conditions and was directly

proportional to the flood peak discharge, with values

as high as 477 mg L-1 during an extreme storm in

July 2013 (Chen et al. 2018) (Fig. 7a). This was a

similar pattern to the ETM in the upper Chesapeake

Bay during high flow conditions, where there was a

higher sediment load after a large flood event in late

January (Sanford et al. 2001). In addition, the location

of the ETMs during floods was different from that

during baseflow conditions. The locations of the

maximum SPM of ETM during storm floods was

generally further downstream (Fig. 7b), depending on

the magnitude of the peak river discharge (SPMmax-

= 6.63 * Dischargepeak ? 398.5, R2 = 0.9626,

p\ 0.05). This flood-enhanced ETM is formed from

a combination of the fine-grained sediments brought

downstream during the storm flow in the river and its

catchment and the sediments resuspended in the upper

estuary which was filled with fresh water at that time

(Chen et al. 2018). A key difference is that the

resuspended sediments during storms, especially the

first storm of the year, involves sediments which has

been deposited in the estuary for several months and

had accumulated the biogeochemical products of the

microbial breakdown of organic matter including

ammonium in its pore waters and surface sediments.

This is particularly intense in a location like the JRE

where the water temperature ranges from 18 to 31 �C
which is optimal for intensive microbial activities.

Variations of ammonium and other inorganic

nitrogen species behavior during different tidal

and river flow conditions

Two different states (NH4 AP and NH4 RP) of the JRE

system were recognized regarding ammonium behav-

ior at low salinities. For the cruises under baseflow

conditions, the periods when net ammonium was

added to the water column at low salinity (\ 2 PSU)

was found during or close to neap tides, while the

samplings when net ammonium was removed at low

salinity (\ 2 PSU) was observed during or close to

spring tides (Figs. 2b, 6). The average tidal range

(± SE) in the AP group (close to neap tides) was 241

(± 19) cm, significantly lower than the value of 316

(± 24) cm in the RP group (close to spring tides)

(p = 0.001). Less SPM due to weaker sediment

resuspension was found within the first 5–15 km from

the river outlet during neap tides compared with the

more intense ETM during spring tides which also

occurred over a longer reach of the estuary (5–25 km)

(Fig. 4). Furthermore, there was a smaller addition of

ammonium-N (0.2–3.2 t day-1 and 0.8–9.8%) as well

as a small addition of nitrite-N (1.8–5.6 t day-1 and

45.0–72.6%) and variable changes in nitrate

(- 3.4 t day-1 to 8.6 t day-1 and - 2.5% to 10.0%)

in the AP group (Table 5). By contrast, there was a

large removal of ammonium-N (1.9–9.4 t day-1 and

15.3–57.7%), a larger addition of nitrite-N

(9.2–19.0 t day-1 and 142.6–376.3%) and a small

removal of nitrate (- 5.8 t day-1 to 3.2 t day-1 and

- 9.7% to 3.6%) during periods of RP (Table 5).

Ammonium removal and nitrite addition can be

connected through a microbially mediated process,

nitrification. Nitrite is the product of ammonium

oxidation which requires the presence of dissolved

oxygen. The vertical structure of salinity and temper-

ature during two cruises showed that the JRE was not

Table 3 Potential ammonium oxidation rates and nitrite oxidation rates during the cruise on 23rd December 2016

Sample stations Salinity (PSU) Ammonium oxidation

rate (lmol N L-1 day-1)

Nitrite oxidation rate

(lmol N L-1 day-1)

A8 (low salinity) 2.1 8.78 0.82

JY3 (high salinity) 24.2 0.68 0.04
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strongly stratified during spring tides (top-to-bottom

salinity stratification\ 0.5 PSU) because of its shal-

low depth and fast water current, while it showed

minor stratification during neap tides particularly in

the middle and lower part of the estuary (maximum

top-to-bottom salinity stratification[ 5 PSU)

(Fig. 3). These data shows that the JRE was somewhat

stratified similar to the spring–neap cycle of stratifi-

cation that was found in the York River where it met

the Chesapeake Bay, with regularly 3–7 PSU of top-

to-bottom stratification around neap tide and less than

1–2 PSU vertical stratification around spring tide in

the middle and lower parts of the estuary (Friedrichs

2009; Haas 1977). The salinity stratification can

exceed 16 PSU in a typical stratified estuary like the

Hudson Estuary (Nepf and Geyer 1996). DO at the

bottom was found to be somewhat lower

(0.48–1.19 mg L-1) than that at the surface in the

low salinity area (\ 2 PSU) (Table 2). By contrast,

further down the estuary there was higher DO in the

bottom water in locations where relatively large

vertical salinity difference was found. It is suggested

that this was caused by the higher proportion of the

sea-end water carrying higher DO (Tables 1, 2).

Despite the vertical differences of DO in the estuary,

DO concentrations in the water column in the JRE

were always above the hypoxia threshold. With

abundant ammonium and sufficient oxygen, the water

column of the JRE is an ideal place for nitrification.

Nitrification rate was high (8.78 lmol N L-1 day-1

of ammonium oxidation rate and 0.82 lmol N L-1 -

day-1 of nitrite oxidation rate) in the brackish water of

the JRE during the winter cruise in December 2016

(Table 3), which could be even higher in summer as

seasonal variations of nitrification rates have been

found in the upstream portion of the Pearl River

Estuary (Dai et al. 2008). Moreover, two-step nitrifi-

cation has shown that ammonium oxidation rates were

about 10–20 times faster than nitrite oxidation rates

(Table 3). This implies that while ammonium is

removed from the water column, nitrite will accumu-

late through nitrification since it has not yet oxidized

to nitrate. This was observed as the peak of nitrite was

further downstream than the first reduction of ammo-

nium during both periods of AP and RP (Fig. 6).

Nitrite can also be an intermediate of denitrifica-

tion, the contribution of which mainly depends on the

oxygen status of the water column. Denitrification

mainly occurs in the anaerobic sediments resulting in a

rapid turnover of nitrate and nitrite (Dong et al. 2002).

Typically nitrite is undetectable or only composes a

small proportion of DIN in sediment pore waters

(Conley et al. 1997). As for the denitrification in the

water column, it is usually found in an ETM with fluid

mud, in which the SPM concentration exceeds

100 g L-1 and the water becomes anoxic (Abril

et al. 2000). The SPM in the water column of the

JRE was mostly less than 1 g L-1 (Figs. 4, 7) (Guo

and Jiang 2010). Moreover, no anoxic zone was found

in the water column of the JRE although anoxic

microniches were possible. If denitrification was a

major process in the JRE, it would be expected to have

a clear net loss of nitrate flux through the estuary

(Table 5). This was not typically observed. Wu et al.

(2013) observed an excess dissolved N2 (an end

product of denitrification and anammox) in the JRE.

We speculate that coupled nitrification–denitrification

may occur under some circumstances close to the

sediment–water interface. The variable nitrate-N flux

(- 5.8 t day-1 to 8.6 t day-1; Table 5) requires fur-

ther investigation, as it suggests some as a yet

undefined balance between sediment denitrification

(and other processes causing the removal of nitrate)

and nitrification.

It is potentially possible that ammonium assimila-

tion by phytoplankton might contribute to the removal

of ammonium in the JRE, especially during spring and

summer when one would normally expect higher

primary production (York et al. 2007). No measure-

ments of in situ primary productivity were made

during this study. However, the light limitation caused

by high turbidity in the upper estuary typically limits

the growth of phytoplankton and the assimilation rates

of ammonium as shown in other research (Irigoien and

Castel 1997; Middelburg and Nieuwenhuize 2000),

implying assimilation is unlikely to be a major

contributor to ammonium removal in the upper estuary

with ETM.

Variations of the concentration of SPM in the water

column impacted on the ammonium removal pro-

cesses. In the NH4 RP group with higher average SPM

in the ETM, there was greater ammonium-N removal

and stronger nitrite addition compared with NH4 AP

group (Fig. 6; Tables 4, 5). The NO2-N flux addition

(%) was positively correlated with the maximum SPM

(R2= 0.88, p\ 0.01) (Fig. 8a). Furthermore, the NO2-

N offset was also positively correlated with SPM

(Fig. 8c). This implies that stronger removal processes
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(mostly nitrification) occurred with higher SPM.

Particles and microbes can be connected in two ways.

Microbes, such as nitrifiers can be introduced from the

surface sediment during the resuspension. AOA and

AOB are abundant in the uppermost aerobic layer of

the sediments, which results in active nitrification in

the sediments (Beman and Francis 2006; Luo et al.

2014). In addition, the nitrification rate was positively

correlated with the diversity and abundance of nitri-

fiers at the water–sediment interface (Luo et al. 2014).

At the same time, higher SPM can provide more

available particulate surfaces for microbes such as

nitrifying bacteria or archaea to attach to and multiply

in the water column. It has been shown that near

bottom waters or fluid muds with higher SPM have

higher attached ammonium oxidizing bacterial cells

than the surface water (Abril et al. 2000; Stehr et al.

1995).

Ammonium can also be removed by adsorption

onto particles. Increasing SPM could raise the capacity

for ammonium adsorbed onto particles (Hou et al.

2003; Shen et al. 1997). It was shown that the SPM

increased by 2.3–9.9 times (Fig. 4) in the RP group,

implying ammonium adsorption onto particles could

be important. However, since the resuspended sedi-

ment particles generally come from sediments

attached with high concentrations of ammonium, it

is more likely that ammonium was supplied to the

water column by desorption from the particles partic-

ularly during the mixing of fresh and saline water

(Rysgaard et al. 1999). These findings suggest that

nitrification was the major process transforming

inorganic N species in the JRE during baseflow

regimes and that a large fraction of such nitrification

occurred at the ETM. More detailed research on the

contribution of ammonium from the sediments and the

process of nitrification in the ETM of the JRE are

needed in the future.

Ammonification is an important process adding

ammonium in the estuary systems and is very active in

sediments with abundant organic matter like a salt

marsh or bed sediments (Li et al. 2015; Sumi and

Koike 1990). Abundant ammonium can be regener-

ated from ammonification of organic matter in the

upper 10–20 cm of the sediment column (Callender

and Hammond 1982; Fisher et al. 1982). In addition,

DNRA could also make a small contribution to the

accumulation of ammonium in anaerobic sediments

(An and Gardner 2002; Gardner et al. 2006). High

ammonium concentrations in pore water were

observed in the upper JRE, ranging from

118–4520 lmol L-1 during a summer cruise to

38–1220 lmol L-1 during a winter cruise in 2014,

which indicated ammonium was the dominant inor-

ganic nitrogen species (Hong et al. 2017). Release of

ammonium from sediments has been examined by lab

sediment core incubations in lakes, reservoirs and

estuaries (Morin and Morse 1999; Porter et al. 2010;

Reddy et al. 1996), which support the addition of

ammonium in the lower salinity area after the increase

of SPM (Fig. 6), caused by sediment resuspension and

desorption. Ammonium-rich pore water in the sedi-

ments is likely to be a major source for DIN addition

into the estuarine water column. The amount of

ammonium released will be a function of the ammo-

nium built up by ammonification and the amount of

sediments resuspended.

It is possible by making some simple assumptions

to estimate the magnitude of net ammonium supplied

to the estuarine water column. 15.3–57.7% of the

ammonium-N supplied at the REI was removed in the

RP group under baseflow, while there was a small

addition (0.8–9.8%) of ammonium added in the

Table 6 Flux addition of different inorganic nitrogen species and its contributions to the DIN flux addition under flood-affected

conditions. Data in May 2014 and July 2014 were from Chen et al. (2018)

Cruise dates Flux addition (t day-1) Contribution to the DIN flux addition (%)

NO2-N ? NO3-N NH4-N DIN NO2-N ? NO3-N NH4-N

2015/5/6 21.3 48.0 69.3 30.7 69.3

2014/5/24 148.1 25.5 173.6 85.3 14.7

2014/7/26 2.8 13.3 16.1 17.3 82.7

Flux addition (t day-1) = ECI flux - REI flux

REI river–estuary interface, ECI estuary–coast interface
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estuary in the AP group (Table 5). The largest net

change was nitrite in which there was a 142.6–376.3%

increase within the estuary in the RP group under

baseflow, and a smaller but still not inconsiderable

increase of 45.0–72.6% in the AP group (Table 5). If

we assume that all the NO2-N addition was converted

from ammonium by nitrification and neglect the minor

amount of nitrite oxidation, then, the sum of NO2-N

flux addition and NH4-N flux addition provides an

estimate of the total NH4-N fluxes (denoted as

calculated NH4-N flux addition) into the water column

from all addition processes within the estuary. The

calculated NH4-N flux addition (t day-1) ranged from

5.0 to 5.7 t day-1 in the AP group and 1.2–9.6 t day-1

in the RP group. The percentage of calculated NH4-N

added flux after the ETM to NH4-N flux at the REI was

in proportion to the maximum SPM in the ETM

(Fig. 8b). The NH4-N offset in the AP group was also

positively correlated with SPM (Fig. 8d). Moreover,

we compared the calculated added NH4-N flux in areal

rates (based on the open water area of the JRE) and the

estimated NH4-N flux rates from sediments in the

literature. The added NH4-N flux in areal rates ranged

from 261 to 683 mmol m-2 day-1 under baseflow in

the present study, which is within the range of

1.7–870 mmol m-2 day-1 of NH4-N benthic fluxes

in the JRE (Hong et al. 2017). It is likely that this

addition was mostly from the sediment pore waters

and sediment desorption when resuspended into the

water column.

Comparison of the DIN export fluxes

under baseflow and flood-affected conditions

In this study we have found that although there are

differences in the flux addition of N species between

NH4 AP and NH4 RP states (Tables 4, 5), the DIN flux

addition out of the estuary into the coastal zone was

comparatively small (from - 4.6 to 13.6 t day-1 and

- 5.9 to 11.1% under baseflow conditions), which

contrasts with the added fluxes during floods or

storms, occurring regularly in this region during the

summer wet season, when the fluxes of DIN into the

estuary through the REI were 16.1–173.6 t day-1

(Fig. 9). This was consistent with some other

researches. For example, DIN fluxes were increased

by 7.2–21.5% under the influence of two typhoon

events in the upper Minjiang Estuary and increased by

53.0% under a severe tropical storm in the Yangtze

Estuary, compared to that of pre-typhoon (Wang et al.

2016a, b). The increased flux of N species into the

estuary was due to the mobilization of both natural and

particularly anthropogenic N species in the river

catchment, mainly derived from fertilizer, manure

and sewage (Yu et al. 2015). Previous work has shown

that during storms, high levels of anthropogenic

mainly agricultural DIN was flushed into the rivers

from the land surface and upper layers of the soil

(Chen and Hong 2011). However, it was also found

that there was a major increase in the DIN flux addition

within the estuary especially for the first flood of the

year e.g. May 2014 (173.6 t day-1) and May 2015

(69.3 t day-1) (Table 6). The flux addition of DIN

from the storm of July 2014 was lower (16.1 t day-1)

because it was a relatively small storm and it was not
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Fig. 7 The relationship between the maximum suspended
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the first storm of the year (Chen et al. 2018). This

means that there was a major source of DIN within the

estuary itself that was mobilized during storms,

particularly during the first major flood of the year,

compared with the small net export during baseflow

(Table 5; Fig. 9). The extra nutrients exported during

floods cannot be from riverine DIN temporarily stored

in the estuary by adsorption or other such processes

during baseflow and released during storms. It must

come from a different source.

The most likely source of the additional DIN flux

between the REI and the ECI is the breakdown of

particulate organic nitrogen (PON). This PON is likely

to have accumulated in the sediments in those areas of

the upper estuary, where sediments were not resus-

pended during normal tidal flows. Floods with larger

river discharge usually cause a deeper and larger scale

scour of estuarine bed sediments from the main

channel and sediments from the banks during major

storms including the flushing out of adjacent salt

marsh deposits (Wengrove et al. 2015). There were

13.3–25.5 t day-1 of NH4-N added fluxes into the

estuary during two storms in the JRE in 2014

(Table 6), much higher than the 0.2–3.2 t day-1

(0.8–9.8%) of NH4-N added fluxes under baseflow

conditions (Table 5). This sediment accumulates N

species in the pore waters both as ammonium

produced by microbial decay and as nitrate produced

by in situ nitrification (Fisher et al. 1982). During

major storms, especially the first storm of the year, this

DIN was flushed out into the overlying water and

exported as ‘new’ DIN downstream. However, the

observed increase of DIN fluxes during storm flows

was not shared equally between N species (Table 6).

Major increases were found in ammonium

(48.0 t day-1) and a small increase in nitrate ? nitrite

(21.3 t day-1) in May 2015, while for the major storm

on May 2014, the major increase in N exported was
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Fig. 8 a The relationship between NO2-N flux addition ((ECI

flux - REI flux) 9 100)/REI flux) and the maximum sus-

pended particulate matter (SPM) under baseflow conditions.

REI represents the river–estuary interface, ECI represents the

estuary–coast interface. b The relationship between calculated

NH4-N flux addition and the maximum SPM under baseflow

conditions. The calculated NH4-N flux addition = (NH4-

N ? NO2-N added flux) 9 100/REI NH4-N flux. This

calculation assumes that all the NO2-N addition after the

estuarine turbidity maximum was contributed by nitrification.

REI represents the river–estuary interface. c The relationship

between NO2-N offset and SPM. d The relationship between

NH4-N offset and SPM in NH4-N Addition Pattern group (AP).

NH4-N Addition Pattern indicates that an ammonium addition

pattern was observed in the upper estuary
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mostly as nitrate ? nitrite (148.1 t day-1) with

25.5 t day-1 of ammonium-N. Further work is

required on a series of storms to determine the balance

of processes involved in this short-term flushing out of

N species from the estuary.

Overall, under flood-affected conditions, the estu-

ary is a source of ‘new’ DIN which is exported to the

coastal areas. This DIN is bioavailable for uptake by

phytoplankton within the lower reaches of the estuary

and bay. It has been shown that there is an increase

phytoplankton about 2 weeks after major storms in the

JRE, as soon as the light-suppressing particulate

matter has dropped out of the water column (Chen

et al. 2018).

We summarized our major findings in the concep-

tual model in Fig. 10. The neap–spring tidal cycle of

the estuary resulted in changes in the pattern of non-

conservative behaviour of ammonium and other

inorganic N species along the estuary under baseflow

conditions. There was net ammonium addition during

neap tides and net removal during spring tides. This

control was related principally to the magnitude of the

sediments resuspended into the water column. There

were larger N fluxes during flood-affected conditions,

which were caused by a combination of the larger N

runoff from the watershed and addition processes

within the estuary caused by resuspension of sedi-

ments which had been brought down and deposited

during previous relatively low flow conditions. The

resuspended sediments were particularly rich in

organic N breakdown products. This resulted in a

considerable increase in the net nutrient supply

through the river–estuary system and was potentially

likely to stimulate the coastal productivity. Under-

standing more details on how bioavailable inorganic N

species are transported and transformed in hydrolog-

ical dynamic estuaries is an important issue for

eutrophication controls in the estuary and the adjacent

coastal zone in the future.

Conclusions

ETM in the JRE varied with the hydrological dynam-

ics of the estuary. During baseflow, there were more

intense ETMs during spring tides than neap tides,

since the spring tides tend to cause stronger net

sediment resuspension than the neap tides. Under

flood-affected conditions, a different ETM was pre-

sent. It has a higher maximum SPM involving

sediments brought down by the river augmented by

additional sediments resuspended in the upper estuary.

Storm flow, especially the first storm of the year,

resulted in the resuspension of sediment, which had

been deposited during baseflow conditions over sev-

eral months before the floods in the estuary.

Nitrification is likely one of the most important

transformation processes in the water column of the
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turbid part of the JRE, causing much of the removal of

ammonium and the addition of nitrite. It is more

intense during spring tides because of higher amounts

of SPM carrying nitrifying bacteria, although higher

amounts of ammonium are resuspended into the oxic

water column within the ETM, compared to the

situation during neap tides under baseflow conditions.

An important source of ammonium to the water

column is from resuspended sediments and their pore

waters. In general, neap tide tends to exhibit NH4-N

AP while spring tide tends to show NH4-N removal

pattern.

Compared with baseflow conditions, there is more

additional DIN exported from the estuary to the

coastal areas under flood-affected conditions, in

particular during the first flood of the year. This pulse

of bioavailable DIN after major floods increases the

risk for excess phytoplankton growth in the coastal

water areas.

As shown in the conceptual model in Fig. 10, the

neap–spring tidal cycle of the estuary resulted in

systematic changes in the pattern of the non-conser-

vative behaviours of ammonium and other inorganic

nitrogen along the estuary under baseflow conditions,

by controlling the magnitude of the sediments. During

flood-affected conditions, there were larger N fluxes,

which were induced by the larger N runoff from the

watershed and stronger addition processes within the

estuary from resuspended. This increased nutrient

supply from the river catchment and from processes in

the estuary are likely to stimulate additional coastal

productivity.
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