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Abstract Estimates of gaseous carbon (C) fluxes in

wetlands are heavily based on temperature. However,

isolating specific effects of temperature on anaerobic C

processing from other controls (C quality and nutrients)

has proven difficult. Here, we test the hypothesis that

temperature sensitivity of soil organic matter (SOM)

decomposition is more influenced by C quality than

nutrient availability in subtropical freshwater, sawgrass

(Cladium jamaicense)-based peats. Carbon age (char-

acterized by depth: 0–10 and 10–20 cm) was used as a

surrogate of C quality while two sites were selected

with contrasting levels of nutrient (P) availability. In

anaerobic laboratory incubations temperature was

increased in 5 �C steps to assess the proportion of C

available at a given temperature (i.e. thermo-labile C)

as productions of gaseous (CO2 and CH4) and dissolved

organic C (DOC) fractions. Thermo-labile C increased

3.1–3.6 times from 15 �C to 30 �C in all soils.

Disproportionate increase in the production of gaseous

forms versus DOC as well as CH4:CO2 was observed

with warming. Observed Q10 values followed the trend

of CH4 (*14) � CO2 (*2.5)[DOC (*1.7) and

temperature sensitivity was more dependent on C

quality than nutrient availability over the entire

temperature range. Spectral analysis indicated more

bio-available DOC production at higher temperature.

Regression analysis also indicated that C quality

primarily influenced SOM decomposition at lower

temperature, while at higher temperature nutrient

limitation dominantly controlled SOM decomposition.

These findings confirm the role of C quality in

temperature sensitivity of warm peat soils, but also

indicate an increased importance of nutrient limitation

at higher temperature.
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Introduction

Wetlands are a globally important soil carbon

(C) reservoir, accounting for about one-third of the

total pool of soil C in the world (Bridgham et al. 1995;

Mitsch and Gosselink 2007). In addition to being C

sinks, wetlands are also the single largest source of

methane (CH4) (Matthews and Fung 1987; Bergam-

aschi et al. 2007; Bloom et al. 2010), but the size of

this source remains highly uncertain. Biogeochemical
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processes of anaerobic systems are known to be

susceptible to temperature fluctuations (Gorham 1991;

Melton et al. 2013), therefore, the C cycle in wetlands

is also believed to be climate sensitive and is a critical

component of the global climate system. Despite this

understanding, the interaction of temperature and

anaerobic C cycling remain poorly represented in

ecosystem and climate models (Sulman et al. 2009).

There is a growing consensus that temperature

accelerates the rates of soil organic matter (SOM)

decomposition (Kirschbaum 1995; Davidson and

Janssens, 2006; Conant et al. 2011), thus, a positive

feedback of soil ecosystem to increasing temperature

may accelerate the loss of C stocks of peats under future

climate conditions. Wetlands are vulnerable to losing

stored C to the atmosphere as carbon dioxide (CO2) and

CH4 (Yavitt et al. 2005; Mitsch et al. 2010), and

dissolved organic C (DOC) to receiving waters (Free-

man et al. 2001; Moore and Dalva 2001). Despite this

understanding, there is still high uncertainty in current

C fluxes within wetland components (Bridgham et al.

2006) and in its variation across different scales (Li

et al. 2007). In particular, there is high uncertainty in C

emissions from tropical wetlands, where spatial cover-

age fluctuates seasonally, fluxes vary significantly

across wetland types, and systems remain poorly

studied, especially related to microbial and enzymatic

processes that drive biogeochemical cycles, compared

to those of temperate counterparts (Strack 2008).

Tropical wetlands emit nearly 60% of the total CH4

from all natural wetlands combined (Megonigal et al.

2005); therefore, studies of SOM decomposition in

warmer tropical or subtropical wetlands are particu-

larly important. In warmer systems, it is generally

assumed that temperature is not a dominant influence

on anaerobic C processing. However, recent discov-

eries suggested that temperature not only affects the

total C released from subtropical peatlands, but also

the form of C released with higher CH4 production at

higher temperatures (Inglett et al. 2012).

The mechanisms underlying the temperature sen-

sitivity of SOM decomposition are still a matter of

debate. It is known that C quality is an important factor

regulating CO2 and CH4 production where CH4

production has been found to be more sensitive to

recalcitrance of C compounds than is CO2 (Bridgham

et al. 1996). Higher CH4 emission has been reported

from soils with higher labile C fraction (Yavitt and

Lang 1990; Waldrop et al. 2010), and recalcitrant C

fraction (Paré and Bedard-Haughn 2013). Inglett et al.

(2012) demonstrated that vegetation type and associ-

ated differences in SOM quality play an important role

in the temperature sensitivity of SOM decomposition

in subtropical peats, while other studies using C age

(or depth) as a surrogate for C quality (Lomander et al.

1998; Fang et al. 2005; Jinbo et al. 2006; Karhu et al.

2010) have reported that deep soils (i.e. older SOM)

were more temperature sensitive due to their relatively

high recalcitrance. Increased SOM decomposition at

higher temperatures has been reported with higher

sensitivity of labile C fraction (Liski et al. 2000; Rey

and Jarvis 2006), recalcitrant C fraction (Leifeld and

Fuhrer 2005; Hartley et al. 2008), or with no specific

soil C fraction (Giardina and Ryan 2000; Conen et al.

2006). Furthermore, Inglett et al. (2012) observed

conflicting relationships between temperature sensi-

tivity of peat soil decomposition and two measures of

C quality, namely the ligno-cellulose index (LCI) and

b (derived labile C).

Complicating the effect of C quality on temperature

sensitivity of decomposition is the effect of nutrients

on decomposition (Billings and Ballantyne 2013). It is

widely accepted that nutrient availability is one of the

dominant controls on decomposition in terrestrial

(Wardle 1998; Hobbie and Vitousek 2000; Torn et al.

2005) and wetland (DeBusk and Reddy 1998, 2005;

White and Reddy 2000; Newman et al. 2001; Neff and

Hooper 2002; Penton and Newman 2007) ecosystems.

Despite this, the effect of nutrients (e.g., N or P supply)

on the temperature sensitivity of SOM decomposition

is largely unknown, and the simultaneous assessment

of temperature effects on CO2, CH4, and DOC

production rates in soils of differing C quality and

nutrient availability has not been reported yet. Uncer-

tainty in this area results from the difficulty of

distinguishing the intrinsic temperature sensitivity of

a given process from its apparent sensitivity realized

under natural conditions.

We conducted this study to assess temperature

sensitivity of organic matter decomposition in relation

to C age (a surrogate for C quality) and nutrient

loading in subtropical wetlands using sawgrass (Cla-

dium jamaicense)-based freshwater peats of the Flor-

ida Everglades. We hypothesized that C quality (as

characterized by age of SOM) would have a greater

effect on temperature sensitivity of SOM decomposi-

tion than nutrient level and that the quality of

mineralized C would change as a function of
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temperature. The specific objectives of this experi-

ment were to: (i) determine temperature sensitivity of

C mineralization pathways and the quantity of min-

eralized C (thermo-labile C) in peats of contrasting

nutrient (P)-level and C quality (surface vs. deep soil

or young vs. old SOM), (ii) compare the influence of C

quality and nutrient (P)-level on temperature sensitiv-

ity of SOM decomposition at low and high tempera-

ture ranges, and (iii) determine the changes in C

quality/availability as a function of temperature.

Materials and methods

Site description and sample collection

Soil samples were collected from two locations in

Water Conservation Area 2A (WCA-2A) in the

northern Everglades (Fig. S1). Historically this peat-

land received elevated nutrient inflows from the

Everglades Agricultural Area (EAA) to the north. A

distinct P enrichment gradient in soil was notable be-

tween the high-nutrient inflow site and the low-

nutrient interior marsh of the WCA-2A (Craft and

Richardson 1993; DeBusk et al. 2001). Having a

single vegetation type (Cladium jamaicense) helped us

to eliminate potentially confounding effects

associated with different types of peat as evidenced

by uniform isotopic signature (Inglett and Reddy

2006) and consistent C:N ratio (Table 1) as well as

similar hydrology (all Cladium ridge) among all soil

samples. Six intact soil cores (0–20 cm) were col-

lected on 13 March, 2012 from two sites along

P-gradient using PVC tubes (10 cm id). Soil cores

were sectioned in the field in 10 cm increments, with

the top section treated as surface (0–10 cm) soil while

the bottom section as subsurface (10–20 cm) soil here.

Thus, we have used C age characterized by young

(surface soil) and old (subsurface soil) SOM as a

surrogate for C quality and sites with nutrient loadings

as an indicator of contrasting nutrient levels (or

status).

Upon collection, the soil samples were transported to

the Wetland Biogeochemistry Laboratory, University

of Florida and stored at 20 �C in dark for up to 24 h

before they were prepared for analyses. Our storage

temperature was close to the in-situ soil temperature

(15–17 �C) in the field so that the temperature or length

of storage did not shift microbial structure and existing

enzymes which can result in the alteration of the

available substrate pool (Turner and Romero 2009).

Large detrital pieces and fine roots were removed from

the soil samples manually and the samples were gently

homogenized avoiding disturbance to microbial

Table 1 Biogeochemical characterization of soil organic matter (SOM) in a subtropical peat based ecosystem (n = 3, mean ± SE)

Parameters Surface soil Subsurface soil

High P site Low P site High P site Low P site

pH 7.8 (0.4)a 7.6 (0.4)a 7.7 (0.5)a 7.4 (0.3)a

Total C (g kg-1) 424 (2)ab 436 (6)a 404 (10)a 438 (5)a

Total N (g kg-1) 29 (2)a 33 (3)a 35 (5)a 41 (3)a

Total P (mg kg-1) 807 (52)a 391 (33)c 533 (46)b 254 (28)d

C:N 14.6 (0.8)a 13.4 (1.2)a 11.9 (1.5)a 10.8 (0.1)a

N:P 36.4 (2.6)a 84.6 (7.6)ab 66.4 (9.6)b 160.1 (7.8)c

LOI (%) 93.2 (1.2)a 92.2 (1.5)a 91.9 (2.2)a 95.4 (1.1)a

d13C -26.8 (0.4)a -26.8 (0.1)ab -27.78 (0.01)b -27.5 (0.05)b

Microbial biomass C (g kg-1) 9.5 (0.1)a 9.1 (0.4)ab 8.7 (0.2)ab 7.8 (0.3)b

Microbial biomass N (mg kg-1) 1183 (41)a 739 (18)c 964 (27)b 513 (38)d

Microbial biomass P (mg kg-1) 377 (8)a 168 (8)c 308 (11)b 82 (14)d

Salt-extractable C (mg kg-1) 986 (14)a 872 (55)a 708 (42)b 627 (104)b

Cold water-extractable C (mg kg-1) 420 (23)a 355 (25)ab 312 (25)bc 265 (27)c

Hot water-extractable C (mg kg-1) 3815 (377)a 2621 (316)ab 3689 (86)bc 2178 (157)c

The numbers represent averages of three samples with standard error (se) of mean in the parenthesis. Levels not connected by same

letter are significantly different (a=0.05)
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functions and alteration of their microsite distribution

(Teh and Silver 2006). Care was taken during sample

collection, storage, and processing to ensure minimum

exposure of the soil samples to oxygenated air. Field

moist (saturated) soils were used in anaerobic micro-

cosm experiments as well as for determination of soil

pH, microbial biomass carbon (MBC), nitrogen

(MBN), and phosphorus (MBP) and labile organic C

(LOC) content. Subsamples of all soils were dried at

70 �C for 72 h and ground using a mortar and pestle for

analysis of total nutrients.

Biogeochemical measurements

Soil pH was determined in DDI water using a 2:1

soil:water ratio after the equilibration of soil suspen-

sion at 25 �C for 1 h on a mechanical shaker. SOM

was estimated by loss on ignition (LOI) by heating the

soils at 550 �C for 5 h (Nelson and Sommers 1996).

Total C and N were determined using method 3010

(USEPA 1993) on a Carlo-Erba NA-1500 CNS

analyzer (Haak-Buchler Instruments, Saddlebrook,

NJ). Stable C isotopic ratios (d13C) were determined

using a Finnigan MAT Delta PlusXL isotopic ratio

mass spectrometer (Finnigan Corp., San Jose, CA)

(Inglett and Reddy 2006). Total P was measured by

ashing method of Andersen (1976) involving com-

bustion at 550 �C followed by hydrochloric acid

extraction of the ash and analysis of P by ascorbic acid

colorimetric method (Method 365.4, USEPA 1993).

Microbial biomass C and N (MBC and MBN) were

determined by chloroform fumigation followed by

0.5 MK2SO4 extraction. Fumigated and non-fumigated

extracts were filtered using Whatman 41 followed by

determination of total dissolved organic C and N using

a Shimadzu TOC analyzer and TKN digestion and

colorimetric analysis, respectively (Sparling et al.

1990). Microbial biomass P (MBP) was determined

by chloroform fumigation followed by 0.5 M NaHCO3

extraction, persulfate digestion, and colorimetric anal-

ysis (Brookes et al. 1982). Microbial biomass C, N, and

P was then calculated as the difference in concentration

between the fumigated and the non-fumigated control.

No extraction efficiency factor was used for MBP

while, an extraction efficiency factor of 0.37 and 0.42

was used for MBC and MBN, respectively.

Labile OC (LOC) was characterized by three differ-

ent extractionmethods, namely cold-water extractable C

(CWEC), hot-water extractable C (HWEC), and salt-

extractable (0.5 M K2SO4) C (SEC) (Fang et al. 2005;

Jinbo et al. 2006; Liu et al. 2006; Dodla et al. 2012). A

sequential extraction process was used for the determi-

nation of CWEC and HWEC (Ghani et al. 2003). The

CWEC and HWEC were determined by extraction with

DDI water using a 1:10 soil:water ratio at 20 �C for

30 min and at 80 �C for 16 h, respectively, on an end-

over-end shaker at 30 rpm followed by centrifugation

for 20 min at 3500 rpm, filtered (0.2 lm filter) and

analyzed in the same manner as for MBC. The non-

fumigated K2SO4-extract C concentrations were

reported as SEC. The CWEC fraction generally repre-

sents the hydrophilic fraction of C including carbohy-

drates, amino sugars, and low molecular weight organic

acids (Fröberg et al. 2003). Likewise, SEC fractions are

known to be positively associated with soluble carboxyl

C compounds like organic acids and negatively associ-

ated with aromatic alkyl C compounds (Dodla et al.

2012). Carbonyl C (i.e. ketonic and aldehyde com-

pounds), in addition to polysaccharides, also known to

contribute to the HWEC fraction resulting from the

ability of hot water to hydrolyze and cleave esters of

various organic materials (Siskin and Katritzky 1991;

Stange et al. 2001).

Anaerobic microcosms

Four replicates of twelve field samples were anaero-

bically incubated in 50 mL serum tubes by flooding

5 g dry weight equivalent of homogenized soils with

10 mL of N2 purged distilled de-ionized (DDI) water

(1:2 soil: water ratio). The serum tubes were sealed

with butyl rubber stoppers, crimped with aluminum

seals (Wheaton, Millville, NJ), and purged with

ultrapure N2 gas through a stopcock-septa assembly

at the top for approximately 10 min. Four soil-free

controls were included to account for background

concentrations of different C fractions, which were

negligible, compared to that produced from the soil.

The experiment was conducted by sequentially

increasing incubation temperature by 5 �C at each step

over a range of 15–30 �C to assess the proportion of C

considered available at a given temperature (i.e. thermo-

labile C). In other words, we considered 15 �C as our

control temperature and employed sequential warming

in equal intervals such that ourwarmed temperatures are

5, 10, and 15 �C higher than the control condition.

Duration of the whole experiment was around four

months. It is important to note that the length of
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incubations tended to decrease with each sequential

warming treatment (i.e. length of incubations were 42,

30, 27, and 21 days for 15, 20, 25, and 30 �C
temperatures, respectively) resulting from quicker

adjustment (i.e. equilibration) of warming response of

SOM decomposition with increasing temperature.

Production estimates of decomposition products

were determined from these serum tubes by periodic

sampling of headspace CO2 and CH4 (every third day),

and DOC (every fifth-seventh day) in the water column.

Linear rates of CO2, CH4, and DOC productions were

obtained after cessation of the lag phase (*1–2 days

for CO2, and *3–5 days for CH4) using regression

analysis applied to the linear portion of the cumulative

concentrations of CO2 and CH4 over time. Gaseous C

production rates from each temperature incubations

were calculated from 12–15 points (*82–85% of

observations at each step, 0.87 C R2 B 0.96,

p\ 0.0001), while DOC production rates were calcu-

lated from 3–4 points (*75–80% of observations at

each step, 0.82 C R2 B 0.91, p = 0.002). We assumed

all mineralized C passes through the dissolved phase,

and thus use the term total dissolved organic C (TDOC)

to represent the total OC decomposed (the sum of CO2,

CH4, and DOC) measured at any given temperature.

The amount of CO2 and CH4 in the dissolved phase was

also calculated using Henry’s law (Yaws and Yang

1992). During the experimental period, an equivalent

amount of N2 purged DDI water was replaced to

compensate for the amount of DOC samples removed

each time. We also monitored the pH of DOC on a

weekly basis, which didn’t change significantly over

the course of the experiment resulting from flushing of

the serum tubes with ultrapure N2 after each step of

temperature ramping.

CO2 and CH4 from the anaerobic microcosms were

measured on a Shimadzu 8A gas chromatograph (GC)

(Shimadzu Scientific Instruments Inc., Columbia,

MD) fitted with a thermal conductivity detector

(TCD) and a flame ionization detector (FID), respec-

tively. Calibration curves for both gases were prepared

using 1% standard gas mixtures (Scotty Specialty

Gases, Plumsteadville, PA). DOC samples were

determined in a similar manner as for HWEC/CWEC.

Temperature sensitivity

Temperature sensitivity of any biological reaction can be

estimated by determining Q10 function which is

calculated as a value or factor in which a reaction rate

is altered over a 10 �C temperature range. Q10 for C

fractions (CO2, CH4, and DOC) were calculated using

Eq. 1:

Q10 ¼ e10k ð1Þ

where k is derived from an exponential relationship

(R2 of the fit was always C0.90) between the SOM

decomposition rate (expressed as production of DOC,

CO2, and CH4) and temperature as follows:

Y ¼ b � ekt ð2Þ

where Y is the rate of production (at each temperature),

b and k are derived values and t is the temperature (�C).
The y-intercept of Eq. 2 (i.e. base respiration or b) can
provide an index of the inherent lability of the C

substrates undergoing decomposition such that a

higher b value equates to the presence of more bio-

available C substrates while a lower b value indicates

the prevalence of relatively recalcitrant C substrates

(Fierer et al. 2005). Thus, the term b served as a derived
Cquality parameter in parallel to thewater (CWECand

HWEC) and salt extracted C (SEC) fractions.

Spectral characteristics of DOC

DOC quality was determined using UV–Visible

spectroscopic measurements, i.e. spectral slope anal-

ysis (Twardowski et al. 2004) and specific UV

absorbance (SUVA254). Spectral slope ratio (SR)

was used as a proxy for the composition of DOC

including fulvic acid to humic acid ratio, molecular

weight (MW), and aromaticity (Spencer et al. 2010;

Fichot and Benner 2012). Spectral slope (S) was

calculated by fitting to an exponential function to the

absorption spectrum over 275–295 and 350–400 nm

range as follows:

a ¼ 2:303A=la ð3Þ

ak ¼ akrefe
�S k�krefð Þ ð4Þ

where A = absorbance, a = absorption coefficient

(m-1), k = wavelength (m), k ref = wavelength

(m) and l = path length (m). SR was calculated as

the ratio of 275–295 nm slope (S275–295) to

350–400 nm slope (S350–400) (Helms et al. 2008).

These ranges of spectra were chosen based on the

higher sensitivity of this region to changes in DOM
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source and processing, and occurrence of lower errors

due to higher absorption coefficients at shorter wave-

lengths (Spencer et al. 2007).

Additionally, SUVA254 was measured by following

USEPA Method 415.3 (Potter and Wimsatt 2005).

SUVA254 values (L mg C-1 m-1) were determined by

dividing the absorption coefficient at k = 254 nm by

the DOC concentration. SUVA254 is also widely used

as a proxy for DOC aromaticity (Weishaar et al. 2003).

Statistical analysis

The experiment was carried out as a split–split plot

design, with nutrient level (i.e. site) as the whole plot

factor, C age (i.e. depth) as the split plot factor, and

temperature as the split–split plot factor (SAS 9.3, SAS

Institute, Cary, NC, USA). We fitted a linear mixed

model using PROC GLIMMIX, where treatment

(nutrient level, C age, and temperature) effects were

fixed and error terms for whole plot, split plot, and

split–split plot were random. Repeated measurements

were taken on the same soil samples over four

temperature levels and the residual errors across the

temperature levels were grouped by nutrient level (or

site) with an auto-regressive (AR-1) covariance struc-

ture. Tukey’smultiple comparison procedure, aswell as

the corresponding letter grouping method, were used to

separate the treatment means. Regressions were con-

ducted using PROC PHREG procedure. All statistical

analyses were done at 5% significance level (a = 0.05).

Because temperature is a variable in the calculation

of Q10, redundancy analyses (RDA) were performed

using R, version 3.0.1 (R Development Core Team,

2013) to determine which of the explanatory variables

(nutrient level/status and C age/C quality) has more

influence on Q10 of decomposition products. In this

analysis, the projection of a point onto a line for the

response variables (Q10 of CO2, CH4, and DOC) at

right angle approximates the value of the correspond-

ing variable of the observations, while the angles

between lines of response variables and lines of

explanatory variables (from centroid positions) repre-

sent a two-dimensional approximation of correlations.

Results

The biogeochemical characteristics of the wetland

soils used in this study varied among samples

collected from different sites and depths (Table 1).

The pH of the soils was slightly alkaline ranging from

7.4 ± 0.3 in subsurface soil from low P site to

7.8 ± 0.4 in surface soil from high P site. Total C

and N, and soil organic matter (estimated by LOI)

values did not differ appreciably among the soils used

in this study. The C:N ratios and d13C values were also

not significantly different among all soil samples,

which indicated that initial SOM has the same source

(i.e. Cladium peat) while the difference in P-concen-

tration was identified from the range of N:P ratios. The

surface soil of high P site exhibited significantly

higher MBC (9.5 ± 0.1 g kg-1) compared to that in

the subsurface soil of low P site (7.8 ± 0.3 g kg-1)

while MBN and MBP were significantly different

among the four soil types (p\ 0.05).

Total P (p\ 0.05, Table 1) and NaHCO3

extractable P (p\ 0.05, data not shown) were signif-

icantly higher in soils from high P sites than low P

sites. In contrast, there appeared to be a general trend

in that the LOC parameters (SEC, CWEC, and

HWEC) in the surface soil layers of these wetland

sites were significantly higher than subsurface layers

(p\ 0.05, Table 1). Interestingly, independent met-

rics of C quality parameters, i.e. measured (extraction-

based LOC) and derived (b) C quality parameters for

SOM as well as DOC quality parameters (SR and

SUVA), used in this study were found to correlate with

each other (Table S1), where SEC, HWEC, b, and
initial DOC quality parameters (measured at 15 �C)
related more closely to each other (0.86 C R2 B 0.97)

than with HWEC (0.44 C R2 B 0.54). Additionally,

significant (but negative) correlations were observed

between SR and SUVA254 (R2 = 0.73, p\ 0.0001)

values measured over the entire temperature spectra.

Analysis of variance (ANOVA) indicated that main

effects of nutrient level (or status), C age (i.e. depth),

and temperature were significant on the decomposi-

tion products (CO2, CH4, and DOC) at 5% (a = 0.05)

significance level (Table 2). However, stronger effect

of C age (p\ 0.0001) and temperature (p\ 0.0001)

were evident on gaseous and dissolved C fractions

when compared with that of nutrient level (p\ 0.05).

These findings suggested an interactive role of C age

and temperature for CO2 (p\ 0.0001), CH4

(p\ 0.0001), and DOC (p\ 0.01) production.

The release of C increased with the sequential

increase of temperature in all soils (Table S2, Fig. 1).

We used the term thermo-labile C here to quantify the
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fraction of C i.e. labile/available at a particular temper-

ature. On average, as a percentage of total soil C,

thermo-labile C increased from 0.72% to 2.57% and

0.45% to 1.39% in surface and subsurface soil,

respectively over 15–30 �C temperature range (Fig. 1a).

Likewise, thermo-labile C also increased from 0.68% to

2.26% and 0.49% to 1.70% in high P and low P soil,

respectively (Fig. 1b). As a percentage of total soil C,

production of thermo-labile Cwas significantly different

between surface and subsurface soil (p\0.05) at four

temperature levels but no difference was observed

between High P and Low P sites(Fig. 1a,b).

Methanogenesis was the most temperature sensitive

process (Q10 * 14), followed by respiration

(Q10 * 2.5), and least for DOC (Q10 * 1.7) (Table 3).

Correspondence of higher Q10 values with lower b
(derived labile parameter) confirmed that recalcitrant C

was more temperature sensitive. Most of the variation in

Q10 of decomposition products was explained by the C

age (or depth) and associated C quality, as shown on the

first RDA axis (Fig. 2); where the subsurface soil (i.e.

old SOM) had the strongest effect overall as indicated by

the small angles between lines of response variables (i.e.

Q10 of CO2, CH4, and DOC) and line of the explanatory

variable subsurface soil (if drawn from its centroid

position).

CO2–C and CH4–C increased as a percentage of

TDOC while the proportion of DOC decreased with

temperature in all soils (Fig. 3a–f). Higher tempera-

ture also affected the form of C released, favoring

methanogenesis disproportionately relative to CO2-

respiration (Fig. 4a). The differences between surface

and subsurface soil were more evident at higher

temperatures (e.g., 25 and 30 �C, p\ 0.05). In

contrast, there were no significant differences in the

proportions of C forms in TDOC between High P and

Low P soils.

Overall, surface soil from both sites exhibited

significantly higher spectral slope ratio i.e. SR

(275–295 nm slope to 350–400 nm slope) and signif-

icantly lower SUVA254 compared to that in subsurface

soil at all temperatures.While, SR showed an increasing

trend with the corresponding increase in temperature in

all soils (Fig. 4b), SUVA254 values showed a declining

trend with warming (Fig. 4c). In surface layer soils,

slope ratios increased from 0.86, 0.77 at 15 �C to 1.06,

1.45 at 30 �C in high P and low P site, respectively. In

subsurface soil layers, slope ratios increased from 0.50

and 0.46 at 15 �C to 0.68 and 0.62 at 30 �C in high P and

low P sites, respectively. On the other hand, SUVA254

decreased from3.20, 3.53 at 15 �C to 2.17, 2.42 at 30 �C
in surface soils from high P and low P site, respectively.

In subsurface soil layers, SUVA254 decreased from3.93,

Table 2 Effect of nutrient level, C age, and temperature on

CO2, CH4, and DOC production rate as determined from

microcosm experiment

Parameters CO2 CH4 DOC

Nutrient level * * *

C age *** *** ***

Temperature *** *** ***

Nutrient level*C age NS * *

Nutrient level*temperature ** NS NS

C age*temperature *** *** **

Nutrient level*C age*temperature NS NS NS

* p\ 0.05, ** p\ 0.01, *** p\ 0.0001, NS not significant
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4.26 at 15 �C to 3.01, 3.31 at 30 �C in soils from high P

and low P site, respectively.

To explore the influence of C quality and nutrient

(N and P) supply, stepwise multiple regression models

were developed (forward process) for the rates of

SOM decomposition products. At 15 �C, the impor-

tance of C quality parameters (SEC, CWEC, and

HWEC) on the production of CO2, CH4, and DOCwas

evident. While, regression results at 30 �C consis-

tently identified nutrients (i.e. C:P, NaHCO3

extractable P, and K2SO4 extractable N) as dominant

variables explaining SOM mineralization rates

(Table 4). Multiple regression results for 20 �C were

similar to the 15 �C models while those for 25 �C had

similar response to that of the 30 �C models (data not

shown).

Discussion

Many wetland studies have evaluated the effect of

temperature (Gorham 1991; Moore 2001; Mitsch et al.

2013; Melton et al. 2013), C quality (Moore and

Knowles 1990; Bridgham and Richardson 1992;

Karhu et al. 2010; Inglett et al. 2012), and nutrients

(Davis 1991; Craft and Richardson 1993; DeBusk and

Reddy 2003) on SOM decomposition. In contrast,

relatively few studies have evaluated the interactive

effect of C quality and temperature (Hartley and

Ineson 2008; Inglett et al. 2012), and to our knowl-

edge, no studies have compared the relative interac-

tion of temperature with C quality and nutrient

availability on all decomposition products (i.e. CO2,

CH4, and DOC) in wetlands. In this study, we used

peat soils from a single vegetation type (Cladium

jamaicense) to allow better separation of the effects of

C quality (characterized by C age), nutrient availabil-

ity, temperature, and their interactions on anaerobic C

processing (Bridgham et al. 1996).

As observed in other studies, we consistently found

that temperature and C quality (i.e. C age) were the

dominant factors controlling decomposition rate,

while the effect of nutrient (P) level was always

secondary to C quality, as evidenced by the ANOVA

model (Table 2). The importance of C quality was also

reflected in the strong association of C age (or soil

depth) with Q10 of decomposition products (Fig. 2), as

well as the differences between surface (i.e. young

SOM) and deep (i.e. old SOM) soils in the propor-

tional production of CO2–C (Fig. 3a), CH4–C

(Fig. 3c), and DOC (Fig. 3e) (as % of TDOC) which

was particularly evident at higher temperature.

Our observation of the high temperature depen-

dence of production of the various C forms i.e. CO2,

CH4, and DOC is another commonly reported finding

Table 3 Temperature sensitivity (Q10) and b value of different C fractions (n = 3, mean ± SE)

Surface soil Subsurface soil

C fractions High P site Low P site High P site Low P site

Q10 b Q10 b Q10 b Q10 b

CO2 2.3 (0.4) 20.1 (1.7) 2.3 (0.2) 16.7 (1.4) 2.4 (0.3) 10.8 (1.3) 3.1 (0.4) 2.6 (0.2)

CH4 13 (1.7) 0.010 (0.002) 13.2 (1.8) 0.003 (0.0005) 14.9 (2.1) 0.007 (0.0004) 14.9 (1.7) 0.007 (0.0003)

DOC 1.6 (0.1) 40.8 (3.4) 1.7 (0.3) 32.5 (3.1) 1.8 (0.2) 25.1 (1.9) 1.9 (0.3) 12.6 (1.1)

TDOC 1.6 (0.1) 41.2 (3.7) 1.7 (0.3) 33.1 (3.3) 1.8 (0.3) 25.6 (2.2) 1.8 (0.3) 13.0 (1.6)

TDOC represents total dissolved organic C (i.e. sum of CO2, CH4, and DOC production)

Fig. 2 Biplot of redundancy analysis (RDA) for Q10 of

decomposition products with nutrient level and C age. Triangles

and circles represent the centroid positions of the nutrient level

factor and C age factor, respectively
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(Inglett et al. 2012; Taggart et al. 2012). Overall,

production of thermo-labile C increased at higher

temperature, where on average TDOC increased

approximately 3 fold in all soils from 15 to 30 �C
(Fig. 1). Similar amount of increase in the C pool sizes

with warming have been reported previously by others

(Macdonald et al. 1995; Zogg et al. 1997). Of the

forms of these released C, the relative trend in

temperature sensitivity (Q10) followed the trend of

CH4 � CO2[DOC (Table 3), which is also similar

with that reported by others (Tsutsuki and Ponnam-

peruma 1987; Updegraff et al. 1995; Neff and Hooper

2002).

Patterns of C forms demonstrate more gaseous C

production at higher temperature. For instance,

production rates of gaseous C relative to DOC, i.e.

(CO2–C ? CH4–C):DOC ratios increased 1.8–2.3

times in all soils from 15 to 30 �C. Furthermore, the

decreased proportion of CO2–C:CH4–C ratio implied

increased C channeling through the methanogenic

pathway at higher temperatures (Fig. 4a). Our mea-

sured Q10 of CO2 production is in agreement with

Waddington et al. (2001), however, our measured Q10

of CH4 production observed in this study was com-

paratively higher than that reported by Van Hulzen

et al. (1999) and Inglett et al. (2012) (Q10 * 2–4), but

comparable to Gujer and Zehnder (1983), Tsutsuki

and Ponnamperuma (1987), Schütz et al. (1990),

and Megonigal and Schlesinger (2002)

(Q10 * 7–16). Higher Q10 of CH4 as compared to
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CO2 in our system is not a function of electron

acceptor competition of being reduced with warming

as suggested by Segers (1998). Rather it is more likely

the result of a cascading temperature effect on C flow

where either fermenters are stimulated (Bridgham

et al. 1995), or there is a simultaneous stimulation of

fermenters and methanogens at higher temperature

(Larionova et al. 2007).

Like some other studies, we also observed that old

SOM (i.e. deep soil), here used as a surrogate of

recalcitrant C, was more sensitive to elevated temper-

ature (Table 3). It is generally believed that higher

temperature allows more decomposition of refractory

C through stimulation of enzyme reactions (Sins-

abaugh and Linkins 1993; Bosatta and Ågren 1999;

Fierer et al. 2005; Wagai et al. 2013; Liang et al.

2015). Additionally, inherent decomposability (b
values) were strongly negatively correlated with Q10

of CO2 (P\ 0.01), CH4 (P =\0.01), and DOC

(P\ 0.05), respectively (data not shown). Therefore,

the warming-induced increase of C availability

allowed greater flow through the methanogenic com-

munity, which was observed to be more pronounced

with increasing organic matter recalcitrance.

Many biogeochemical reactions accelerate as tem-

perature increases (Kadlec and Reddy 2001) and a

number of mechanisms have been proposed to explain

apparent increases in C availability with warming.

Elevated temperature can stimulate C-decomposition

via amplifying cellulose and chitin-degradation (Nie

et al. 2013), chemical changes in conformation or C

compound solubility (Davidson and Janssens 2006), or

shifts in microbial community composition (Waldrop

and Firestone 2004; Andrews et al. 2000). Also,

isoenzymes of different temperature optima are main-

tained by both individual microorganisms (Hochachka

and Somero 2002) and communities (Grzymski et al.

2008), and warming may increase production of

enzymes with greater conformational stability and

function (reviewed by Conant et al. 2011; Wallenstein

et al. 2011).

In addition to biochemical processes, apparent

temperature sensitivity of a reaction is also dependent

on biophysical factors. For example, higher temper-

ature can enhance dissolution and diffusion of C

substrates to enzyme’s active sites, thus increasing

substrate availability to soil microbes (Xu and Saiers

2010; Davidson et al. 2012). Higher temperature could

also favor desorption of SOM–humate complexes

(Ten Hulscher and Cornelissen 1996; Davidson and

Janssens 2006), which could accelerate SOM decom-

position by reducing physical protection (Conant et al.

2011; Schmidt et al. 2011). Elevated temperatures

may also lead to an increased solubilization of

substrates like waxes and lipids from the membranes

of the dead microorganisms (Davidson and Janssens

2006). For example, Dodla et al. (2012) andWang and

Wang (2007) demonstrated a primary effect of

increased temperature on direct solubilization of C

in terms of HWEC and CWEC. In our study, HWEC

was 7–12 times greater than CWEC and there was

a relatively weak correlation of HWEC with other
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LOC fractions (SEC and CWEC) that mostly represent

carboxyl-C containing compounds like polysaccha-

rides (Table S2), suggesting that elevated temperature

may also have increased C solubilization either by

hydrolyzing ester linkages (Siskin and Katritzky 1991;

Stange et al. 2001) or by desorption of occluded C

compounds (Ghani et al. 2003; von Lüzow et al. 2007)

in these soils.

As a result of both biogeochemical and biophysical

mechanisms, total C mineralized increases as well as

the residual DOC pool (Table S1) with warming.

However, at higher temperature, proportionally more

DOC pool was made available for gaseous C produc-

tion, suggesting much of this dissolved pool made

available (i.e. of better quality) for microbial utiliza-

tion at higher temperature. In support of this, we

observed increases in slope ratio (SR) of DOC from

19–47% over the range of 15–30 �C, however, the
increase was 19–26% for most of the soil, with an

exceptionally higher increase for the low P surface soil

at 30 �C (Fig. 4b). Additionally, we observed

decreases in SUVA254 from 22–32% over the range

of 15–30 �C (Fig. 4c). Bianchi et al. (2013) observed

strong positive correlations of SUVA254with dissolved

lignin and humification index in a riverine study.

Additionally, Osburn and Stedmon (2011) further

indicated that absorption coefficients measured at

300 nm strongly predicted dissolved lignin concentra-

tions in a marine ecosystem. These observations

suggests warming induced increases in SR and

decreases in SUVA254 in our study may represent

either degradation of complex phenolic compounds

(Zhao 2012) or release of other water soluble, extra-

cellular substances excreted bymicroorganisms result-

ing from cell death and lysis (i.e. freshly produced or

less condensed aromatics of microbial origin) in DOC

pool (Birdwell and Engel 2010; Tfaily et al. 2015).

Our observation of increased C bioavailability as a

function of temperature is in contrast to many studies

in terrestrial systems, where depletion of labile C

substrates was identified as the key driver for reduced

soil respiration in short-term laboratory incubation

studies (Fang et al. 2005; Hartley et al. 2008; Tucker

et al. 2013). Within this context, findings of some

theoretical models (Kirschbaum, 2004; Eliasson et al.,

2005; Knorr et al., 2005) also suggested that rates of

microbial respiration will acclimate on a longer time

scale resulting from a change in the composition of the

remaining SOM pool after the C pools with shorter

turnover times are preferentially lost. In our study, as

C availability increased (both quantity and apparent

quality) under warming, it is likely that C limitation of

respiration was less at higher temperatures. Thus,

nutrient availability could limit decomposition at

higher temperature due to the stoichiometric control

of microbial nutrient demand (Allison and Vitousek

2005; Geisseler and Horwath 2009; Sinsabaugh et al.

2009; Hernández and Hobbie 2010; Billings and

Table 4 Model parameters for stepwise multiple regression analysis of log transformed rates of CO2, CH4, and DOC production

Carbon fraction Lower temperature incubation at 15 �C Higher temperature incubation at 30 �C

Model R2 Variables included Estimate SE Model R2 Variables included Estimate SE

CO2 0.95 CWEC 14.02 5.13 0.92 C:P -66.49 9.13

SEC 18.38 3.71 NaHCO3 Ex. P 23.02 5.13

HWEC 9.36 2.28 K2SO4 Ex. N 1.18 0.06

C:P -1.32 1.88 HWEC 0.02 0.004

NaHCO3Ex. P 0.04 0.02 SEC 0.28 0.08

CH4 0.98 CWEC 10.32 1.51 0.91 NaHCO3 Ex. P 10.1 1.2

SEC 8.02 2.06 C:P -43.91 2.56

NaHCO3 Ex. P 0.001 0.00 K2SO4 Ex. N 1.6 0.1

K2SO4 Ex. N 0.002 0.00 SEC 0.01 0.00

C:P -0.13 0.05 HWEC 0.03 0.01

DOC 0.96 CWEC 13.42 3.18 0.92 C:P -98.65 16.05

SEC 22.16 2.72 K2SO4 Ex. N 10.6 1.9

Units for extractale C (CWEC, SEC, HWEC), N (K2SO4 Ex. N), and P (NaHCO3Ex. P) were expressed as mg kg-1. Note that C:P

ratio is an unitless quantity here
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Ballantyne 2013). In support of this, stepwise multiple

regressions demonstrated that at lower temperatures

(15 and 20 �C), SOM decomposition was better

predicted by C quality, while at higher temperatures

(25 and 30 �C), decomposition became more influ-

enced by nutrient parameters (Table 4).

The positive coefficients of NaHCO3 extractable P

and the large negative coefficients of C:P in models for

the high temperature range were indicative of a

potentially P-limited decomposition process, an obser-

vation which is not surprising, given the high degree of

P-limitation in the Everglades (Craft and Richardson

1993; DeBusk et al. 2001). With regards to anaerobic

methanogenic C cycling, studies have also reported

that P availability directly limited fermentation and

CH4 production in low P Everglades soils (reviewed

by Medvedeff et al. 2014). Secondary to P, N was also

identified in the high-temperature multiple regression

models. Although little studied, N has also received

support as a limiting nutrient in the Everglades, either

in activities of enzymes (Penton and Newman 2007),

N2 fixation (Inglett et al. 2004, Liao and Inglett 2014),

or in peat dynamics (Inglett et al. 2011; Wozniak et al.

2012) across the Everglades landscape. The temper-

ature-driven decoupling of the C-limited and nutrient-

limited decomposition in our peat-based system is

qualitatively similar to the observation in an anoxic

marine system. Weston and Joye (2005) also reported

a sudden change in the microbial C processing above

20 �C resulting from a variable temperature response

of anaerobic microbial metabolisms in the marine

sediment.

We acknowledge that our study used only a relative

measure of temperature sensitivity (Q10), and although

Q10 is a widely used parameter, it could be biased if

used over a larger temperature range as the measure-

ment is itself temperature dependent (Lloyd and

Taylor 1994; Hamdi et al. 2013). Additionally, we

did not include the indirect effect of temperature

mediated by the temperature-induced increase in

diffusion of soluble substrates and C allocation to

aboveground and belowground plant tissues which can

alter substrate concentrations at enzyme’s active site

and thus confound the temperature effect on the

apparent response of the soil microbial process

(Davidson et al. 2006). While these extrinsic temper-

ature effects are extremely important on an ecosystem

scale response, it is beyond the scope of this paper, and

our results highlight the interacting effect of

temperature with C age and nutrient status when

evaluating the intrinsic sensitivity of SOM decompo-

sition in warmer wetlands.

Studies evaluating the sensitivity of SOM decom-

position with sequential methods generally increase

temperature over a very short duration, varying from

few hours (Fang et al. 2005; Liu et al. 2006; Yuste

et al. 2007) to few days (Koch et al. 2007).While these

studies quantify the instantaneous effect of tempera-

ture on rates of C loss, longer term laboratory

(Bradford et al. 2010; Tucker et al. 2013) and field

(Oechel et al. 2000; Luo et al. 2001; Melillo et al.

2002) warming studies often report an attenuation of

the immediate warming response with time resulting

from either labile C limitation (Hartley et al. 2008),

microbial physiological acclimation (Allison et al.

2010), or both (Bradford et al. 2008). To that end, our

experiment accounted for not only the instantaneous

warming response but also the gaseous C production

rate after acclimation. Undoubtedly, an alteration of

the initial microbial community structure may have

contribute to the observed long-term warming

response in our study (also see Bradford et al. 2010),

but this longer incubation may be justified by the fact

that, ultimately, it is the total amount of SOC loss (not

the immediate response) that matters for assessing

climate change feedbacks.

Conclusions

Our findings add to a growing body of evidence that

the effect of temperature on SOM decomposition is

highly interactive with C quality and, as in this study,

nutrients. Overall, greater influence of C quality than

nutrient availability on temperature sensitivity of

dissolved and gaseous C (CO2, CH4) production

evokes the need to better account for temperature

effects on microbial physiological parameters (e.g. C

use efficiency) in response to C and nutrients in

anaerobic system models. Likewise differential C

versus nutrient limitation on SOM decomposition with

temperature suggests our observation of nutrient

limited decomposition at higher temperatures more

broadly applies to tropical ecosystems, given the fact

that warmer systems already tend toward a more

nutrient (especially P) limited condition than arc-

tic/boreal systems (Fisher et al. 2012; Sistla and

Schimel 2012). This indicates that anthropogenic
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loading of nutrients would further stimulate C losses

from tropical and subtropical wetlands in the future

warmer world.

Our observation of increasing C quality at higher

temperature ranges disagrees with studies in terrestrial

systems where short-term attenuation of respiration

results from labile C-limited conditions. Rather, in

anaerobic wetland soils transient responses (acclima-

tion) of anaerobic C processing may be more associ-

ated with adaptation of microbial and enzymatic

processes due to microbial nutrient limitation. Based

on the results of our multiple regression models, we

have identified a need for incorporation of microbial

nutrient demand and enzymes to existing physiology-

based, C-only models (Allison et al. 2010; German

et al. 2012; Sihi et al. 2016). Integration of these

microbial parameters in next-generation climate mod-

els has been suggested (Schimel 2001; Allison and

Martiny 2008; Todd-Brown et al. 2012; Cotrufo et al.

2013; Wieder et al. 2013), and if accomplished,

climate-C feedback would be better predicted. There-

fore, we believe our findings would be useful, in

conjunction with other modeling approaches, for

improved understanding of global (terrestrial and

wetland) C stocks.
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