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Abstract Rivers transport and transform significant

quantities of carbon to coastal zones globally. Urban-

ization and climate change impact the transport and

transformation of carbon by altering hydrology, water

temperatures, and in-stream metabolism rates. Changes

in exports, sources, and metabolism of carbon influence

ecosystem processes, food webs, and greenhouse gases.

We characterized exports, sources, and metabolism of

carbon in four urban watersheds using a combination of

discrete stream chemistry measurements and continu-

ous water-quality sensors. Over three years, watershed

DOC exports in the Baltimore-Washington D.C.

metropolitan area ranged from 9 to 23 kg ha-1 year-1.

DIC exports ranged from 19 to 59 kg ha-1 year-1.

Daily contributions from in-stream metabolism varied

between -65 and 90 % of DIC export depending on

stream size and streamflow conditions. Negative con-

tributions from metabolism occurred on days when

streams were autotrophic. All streams were hetero-

trophic during 60 to 87 % of each year, but showed

significant peaks in autotrophy during spring and

summer. Differences in the timing and magnitude of

peaks in springtime net ecosystem productivity were

likely driven by varying light availability across

streams of different sizes and riparian shading. CO2

was consistently over-saturated with respect to the

atmosphere on all sampling dates and was

0.25–2.9 mg C L-1. Exports, sources, and metabolism

of DOC and DIC showed strong predictable patterns

across streamflow. Thus, we present a new conceptual

model for predicting carbon transport and transforma-

tion across changing streamflow and light availability

(with impacts on sources and fluxes of DOC, DIC, and

CO2). Overall, our results and conceptual model

suggest that urbanization accelerates the transition of

streams from transporters to transformers of carbon

across streamflow, with implications for timing and

magnitude of CO2 fluxes, river alkalinization, and

oxygen demand in downstream waters.
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Introduction

Carbon transported by rivers provides a major source

of energy for aquatic food webs, and is a significant
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component of the global carbon cycle (Perdue and

Ritchie 2003; Cole et al. 2007; Battin et al. 2008;

Moens et al. 2002; Middelburg and Nieuwenhuize

1998). Approximately 2.7 Pg of carbon is exported

from terrestrial to aquatic ecosystems globally. How-

ever, only 0.9 Pg of carbon reaches the ocean, while

1.2 Pg is respired as CO2, and 0.6 Pg is stored in

sediments (Regnier et al. 2013). Changes in human

activities related to agricultural liming, increased soil

erosion, chemical weathering, and urban wastewater

inputs have contributed significantly to accelerated

transport of carbon from the land to ocean (e.g., Daniel

et al. 2001; Raymond and Cole 2003; Cole et al. 2007;

Tank et al. 2010; Kaushal et al. 2013; Regnier et al.

2013). Furthermore, riparian vegetation removal and

nutrient loading from urban and agricultural land-

scapes may increase autochthonous carbon production

(Mulholland et al. 2001; Bernot et al. 2010; Griffiths

et al. 2013). Warming from climate change and urban

heat islands has the potential to increase rates of

organic carbon breakdown in rivers and estuarine

sediments (Neal et al. 1998; Daniel et al. 2001;

Raymond and Cole 2003; Barnes and Raymond 2009;

Kaushal et al. 2014a). Here, we investigate how

hydrologic variability and urbanization can alter the

sources and metabolism of carbon exported by rivers.

Over decades, carbon cycling has been studied

extensively in forested watersheds (e.g., McDowell

and Fisher 1976; Sobczak and Findlay 2002). Controls

on carbon export from forest watersheds can include

climate, topography, soil carbon content, and the

presence of wetlands (Hopkinson et al. 1998; Aitken-

head et al. 1999; Perdue and Ritchie 2003). These

studies indicate that the quantity and quality of

dissolved organic carbon (DOC) are important drivers

of the ecological function of forest streams (Vannote

et al. 1980; Hopkinson et al. 1998). Streams naturally

contain a mix of terrestrial (allochthonous) and in-

stream (autochthonous) sources of dissolved organic

matter (DOM), which contribute to watershed DOC

export as particulate organic matter is leached or

decomposed. Sources of terrestrial DOM include

leachates or decomposed soil organic matter and leaf

detritus. Autochthonous sources of DOM consist

primarily of decomposed or leached algal, bacterial,

and fungal biomass (Sinsabaugh et al. 1997; Webster

and Meyer 1997). Previous studies have shown that

hydrologic variability (e.g., Raymond and Saiers

2010) and stream metabolism (e.g., Tank et al. 2010)

alter the relative proportions of terrestrial and in-

stream-derived carbon in rural watersheds. However,

impact of urbanization on exports, sources, and

metabolism of terrestrial vs. in-stream sources of

DOM remains unclear.

Urbanization increases the quantity of both natural

(e.g., soil, leaves, algae) and anthropogenic (e.g.,

sewage, grass clippings) sources of organic matter,

which may be leached into DOM in streams and soils

(Daniel et al. 2001; Newcomer et al. 2012; Kaushal

et al. 2014a; Duan et al. 2014). Frequent flooding can

increase inputs of natural particulate organic matter

from riparian vegetation and soil erosion (Raymond

and Saiers 2010; Imberger et al. 2011; Fraley et al.

2009), which also contribute to the DOM pool

downstream through leaching and decomposition.

Nutrient loading and tree canopy removal (which

increases light availability) can stimulate autochtho-

nous productivity (Mulholland et al. 2001). This

contributes to the autochthonous DOM pool as this

biomass decomposes over daily or seasonal time-

scales. Wastewater-derived DOM and nutrient inputs

can enter streams via point sources such as wastewater

treatment plant outfalls (e.g., Daniel et al. 2001;

Barnes and Raymond 2009; Aitkenhead-Peterson

et al. 2009; Edmonds and Grimm 2011) and nonpoint

sources such as diffuse sewage pipe leakage and septic

systems (Sickman et al. 2007; Kaushal et al. 2011). In

addition, rising stream temperatures and salinization

may influence rates of DOM leaching from soils and

benthic sediments (e.g., Kaushal et al. 2005; Aitken-

head-Peterson et al. 2009; Kaushal et al. 2010, Duan

and Kaushal 2015). For instance, Duan and Kaushal

(2013) found that warming increased DOC fluxes from

streambed sediments, and previous studies have

shown that road salt additions increases DOM leach-

ing from soils through sodium dispersion and pH

suppression (Green et al. 2008, Duan and Kaushal

2013).

Dissolved inorganic carbon (here we define

DIC = carbonate ? bicarbonate ? CO2) is the dom-

inant form of carbon exported from many rivers and

streams globally (Meybeck 2003). Annual riverine

DIC fluxes are comparable in magnitude to the

terrestrial carbon sink (Cole et al. 2007). Several

studies have shown that alkalinity of running waters,

largely controlled by bicarbonate, is currently increas-

ing in many watersheds (Raymond and Cole 2003;

Kaushal et al. 2013). Recent work suggests that long-
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term alkalinization of streams and rivers can be an

indicator of evolving water quality in cities over time

due to human activities (Kaushal et al. 2014c, 2015).

Potential drivers of river alkalinization include agri-

cultural liming, weathering of urban building materi-

als, and a time-lag response of increased weathering

due to acid rain (Raymond and Cole 2003; Kaushal

et al. 2013; Hossler and Bauer 2013). Patterns of DIC

and alkalinity in urban watersheds warrant further

study due to its potential role in buffering coastal

ocean acidification, aquatic primary production, and

global aquatic carbon budgets (Cole et al. 2007;

Kaushal et al. 2013). DIC in streams and rivers is

produced by several processes that offset terrestrial

carbon storage, including mineral weathering, terres-

trial soil and root respiration, and in-stream DOC

mineralization (e.g., Berner et al. 1983; Meybeck

1987, Hotchkiss et al. 2015). Dissolved CO2 from

terrestrial (soil and root) respiration contributes to the

in-stream DIC pool via groundwater or shallow soil

flowpaths (Jones and Mulholland 1998). Bicarbonate

is produced when carbonate rocks dissolve in the

presence of carbonic (or other) acid and when carbonic

acid interacts with silicate rocks (Berner et al. 1983;

Schnoor and Stumm 1986). The rates of various

terrestrial processes vary widely with climate, vege-

tation, and underlying geology (Meybeck 2003). In-

stream DIC (including CO2) production via ecosys-

tem respiration (ER = heterotrophic ? autotrophic

respiration) also varies widely in streams and is

largely controlled by temperature, organic carbon

loading, stream biota, and nutrients (e.g. Mulholland

et al. 2001; Bernot et al. 2010; Tank et al. 2010).

Urbanization has been suggested to increase export of

DIC from anthropogenic sources such as building

materials and wastewater treatment plant effluent

(Daniel et al. 2001; Barnes and Raymond 2009; Zeng

et al. 2010; Hossler and Bauer 2013). Urbanization

may also influence production of DIC via in-stream

ER through heat island effects and increased DOC

loading (Tank et al. 2010; Kaushal et al. 2014b). As

DIC fluxes from streams and rivers continue to change

globally, we seek to understand how urbanization

alters sources and fluxes. In the current paper, we

investigated how light availability, temperature,

streamflow conditions influence DIC sources and

export in urbanized watersheds. We also estimated

the relative contribution of stream metabolism and

terrestrial (soil/root respiration ? weathering)

processes to total DIC export from three watersheds

on daily time scales over three years.

The impacts of urbanization on export, sources, and

metabolism of carbon can evolve over time as

watershed development practices alter hydrologic

flow paths (Kaushal et al. 2014c). For example,

urbanization often dramatically increases hydrologic

response and peak streamflow conditions during

storms due to impervious surfaces, riparian develop-

ment, and subsurface drainage systems (e.g., Paul and

Meyer 2001; Walsh et al. 2005; Kaushal and Belt

2012). The net effect of all these hydrologic alterations

raises questions about the relative influence of in-

stream vs. terrestrial controls on carbon quantity and

quality. The objectives of this study were (1) to

quantify inter-annual and intra-annual fluxes of DIC

and DOC, and DOM sources from urban watersheds,

(2) identify key environmental variables influencing

carbon fluxes using a combination of in situ sensor and

discrete measurements, and (3) to propose a concep-

tual model integrating the hydrologic and biological

controls on C cycling in urban watersheds across

streamflow. An improved understanding of the pro-

cesses controlling transport, and transformation of

carbon in urban watersheds across annual streamflow

cycles is necessary to anticipate changes brought on by

climate and land cover changes.

Our overarching hypothesis was that urban streams

shift from carbon transformers to transporters as

streamflow increases, with resulting impacts on

sources and fluxes of DOC, DIC, and CO2. Based on

this hypothesis, we tested the following specific

predictions: (a) urbanized watersheds export more

DOC than minimally disturbed watersheds in similar

climatic zones, (b) gross primary productivity (GPP)

in nutrient-loaded and un-shaded streams would be

elevated, causing dissolved matter quality to resemble

recent autochthonous inputs more than terrestrial

carbon sources, and (c) in-stream respiration con-

tributes a significant portion of daily DIC fluxes

compared with terrestrial sources. Based on our

analysis, we also developed a new conceptual model

illustrating how streamflow and light availability can

influence in-stream vs. terrestrial controls on transport

and transformation of DIC, DOC, and CO2. An

improved understanding of anthropogenic impacts

on the sources, fluxes, and metabolism of carbon is

essential for management of the coastal carbon cycle,

organic nutrient cycling, contaminant transport, and
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increased river alkalinization (e.g., Raymond and Cole

2003; Stanley et al. 2012; Kaushal et al. 2013, 2014c;

Middelburg and Nieuwenhuize 1998).

Methods

We investigated the hydrologic and metabolic controls

on carbon cycling in an urban watershed over three years

using a combination of stream chemistry measurements

and continuous water quality sensor data. We used

discrete chemistry samples to characterize the sources

and export of carbon in streams.We used high-frequency

sensor data to model continuous stream ecosystem

metabolism and CO2 fluxes from streams. Unless other-

wise noted, all analyses were carried out using the

programming language, R (R Core team 2014).

Site description

TheAnacostia River is a major tributary of the Potomac

River, with a watershed draining 176 km2 of the

Piedmont and Coastal Plain geographic provinces in

southeastern Maryland, USA and the northeastern

portion of Washington D.C. (Fig. 1). Widespread

clearing of forests and draining of wetlands for

agriculture occurred between the 1700s and mid-

1800s (Washington Council of Governments 2010),

and urban land use spread quickly after the 1950s, with

a major increase during the 1970s. The current land use

distribution of the overall Anacostia watershed is: 45 %

residential, 30 % undeveloped, 16 % commercial or

institutional, 4 % agricultural, 4 % industrial, and 1 %

mining (Fig. 1) (Fry et al. 2011). Efforts to reduce

sediment and nutrient loads, biochemical oxygen

demand, fecal coliform bacteria, trash, heavy metals,

and organic contaminants are currently in progress as

part of a comprehensive restoration initiative for the

Anacostia. These efforts also contribute to progress

toward meeting total maximum daily loads (TMDLs)

for each sub-basin of the Chesapeake Bay (Maryland

Department of Environment 2015). Numerous studies

have taken place in this watershed evaluating nutrient

dynamics and geochemistry (e.g., Huanxin et al. 1997;

Langland et al. 2012; Miller et al. 2013; Connor et al.

2014), sediment sources (Devereux et al. 2010),

suspended sediment loads (Yorke and Herb 1978;

Miller et al. 2013), bacterial abundance (Miller et al.

2013), and organic contaminants (Foster et al. 2000).

We characterized sources and exports of carbon in

four non-tidal tributaries of the Anacostia watershed in

Maryland, which comprise 98 % of river’s flow at its

convergence with the Potomac River. These tribu-

taries include Paint Branch (PBCP), Sligo Creek

(SLIGO), Northwest Branch (NWHV), and the North-

east Branch (NERP). Paint Branch is nested within the

Northeast Branch, and Sligo Creek is nested within the

Northwest Branch. Sampling sites were co-located

with continuous flow and water quality monitoring

stations maintained by the U.S. Geological Survey

(USGS). USGS maintains continuous flow data at all

four sites, and water quality sensors at three of the four

(SLIGO, PBCP, and NERP), which include dissolved

oxygen, pH, specific conductivity, turbidity, temper-

ature. Water quality sensor measurements are col-

lected at 5 or 15-min intervals, and are continuously

updated and available online (http://waterdata.usgs.

gov/nwis). Details about sensor data collection,

maintenance, and calibration are outlined in Miller

et al. (2013). A summary of watershed characteristics

is provided in Table 1.

Water chemistry measurements

We collected discrete stream chemistry samples every

2 weeks between October 2011 and October 2014.We

collected samples in acid-washed 500-mL high-den-

sity polyethylene bottles. Field samples were trans-

ported on ice to the laboratory where they were filtered

through a pre-combusted Whatman 0.7-micron glass

fiber filter. A subset of filtered water to be analyzed for

optical properties of dissolved organic matter (DOM)

was stored into a pre-combusted glass amber vial and

refrigerated until analysis within two weeks.

Analyses of DOC, DIC, and total dissolved nitrogen

(TDN) were performed on a Shimadzu Total Organic

Carbon Analyzer (TOC-272V CPH/CPN; Shimadzu,

Columbia, Maryland, USA). We ran samples for DIC

immediately after filtering following the Shimadzu IC

method. We analyzed DOC and TDN following the

Shimadzu NPOC (nonpurgeable organic carbon) and

TN methods respectively (e.g., Kaushal and Lewis

2005). We selected the NPOC rather than the alterna-

tive TC-IC method because it is not sensitive to

variations in DIC and thus less prone to significant

overestimation of DOC than TC-IC (Findlay et al.

2010).
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Dissolved inorganic carbon speciation

We used CO2SYS, a model of the inorganic carbonate

system in freshwater and marine waters (Pierrot et al.

2006), to determine the abundance of individual

dissolved inorganic carbon species (HCO3
-, CO3

2-,

CO2, OH
-, and alkalinity) using measured values of

DIC, pH, and temperature.

Estimation of dissolved carbon and nitrogen

exports

Discrete samples for DOC, DIC, and TDN concentra-

tions were collected across a broad range of stream-

flow conditions in each stream during three years.

Relationships between discrete concentration mea-

surements and continuous discharge were optimized

Fig. 1 Map of the

Anacostia watershed,

located northeast of

Washington D.C. Prominent

red colors signify medium to

high intensity urban cover,

which dominates the lower

reaches of the watershed.

Greens and yellow signify

forested and agricultural

land. Stars denote the four

U.S. Geological Survey

gages sampled. Land cover

data is from the 2006

National Land Cover

Database (Fry et al. 2011)
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using a FORTRAN-based program, LOADEST,

developed by (Runkel et al. 2004). This approach

allowed estimation of daily, monthly, and annual

watershed exports (kg ha-1 year-1) for each solute.

Characterization of dissolved organic matter

sources

We measured optical properties of stream water in

order to evaluate the contributions of terrestrial and

aquatic sources of DOM. Upon filtering, samples were

stored in pre-combusted amber vials at 4 �C for up to

two weeks prior to optical measurements. Many

naturally occurring DOM compounds will fluoresce,

or emit low-energy light following excitation by a

higher energy light source. The emission spectra

produced in response to a range of excitation wave-

lengths can be used to evaluate the relative abundance

of DOM with terrestrial origin (humic soil/plant) and

aquatic origin (periphyton/algae) (Zsolnay et al. 1999;

Ohno 2002; Huguet et al. 2009). We used a Fluo-

roMax-4 Spectrofluorometer (Horiba Jobin–Yvon,

Edison NJ, USA) to measure excitation-emission

matrices (EEMs) of each sample. We then calculated

the humification (HIX) and recent autochthonous

contribution (BIX) indices of DOM quality from the

EEM of each sample. HIX is defined as the ratio of

emission intensity of the 435–480 nm region of the

EEM to the emission intensity of the 300–345 nm

region of the EEM at the excitation wavelength of

254 nm (Zsolnay et al. 1999; Ohno 2002). BIX is

defined as the ratio of fluorescence intensity at the

emission wavelength 380 nm to the intensity emitted

at 430 nm at the excitation wavelength of 310 nm

(Huguet et al. 2009). HIX and BIX are both used to

differentiate between DOM with more humic/terres-

trial character and DOM of more autochthonous

character. HIX varies from 0 to 1, with higher values

signifying high-molecular weight DOM molecules

characteristic of humic terrestrial sources. Lower HIX

values are driven by low molecular weight DOM of

bacterial or aquatic origin (Zsolnay et al. 1999).

Conversely, BIX values (\0.7) represent terrestrial

sources, and higher BIX (0.8 to 0.1 and [0.1)

represent algal or bacterial sources (Huguet et al.

2009). HIX and BIX are calculated for each sample

EEM after correcting the EEM for (1) emissions from

a blank sample, (2) inner-filter effects from Raman

scattering, and (3) absorbance of wavelengths

200–800 nm. Analyses of fluorescence indices were

carried out using Matlab (version R 2012a).

Estimating continuous ecosystem metabolism

We estimated continuous ecosystem metabolism on a

daily time-step using a Bayesian oxygen mass-balance

model (BaMM) developed by Holtgrieve et al. (2010).

The model is based on the principle that the amount of

dissolved oxygen in a stream is a result of three main

processes: (1) GPP, (2) ER, and (3) reaeration/gas

exchange with the atmosphere (Odum 1956). Contin-

uous monitoring of dissolved oxygen over diurnal

cycles allows for estimation of daily stream metabo-

lism based on the general mass-balance model of

oxygen described by the following equation

dO2

dt
¼

k O2;sat

� �
� O2½ �

� �
� Rþ P

� �

D
ð1Þ

where O2,sat is the oxygen concentration at equilibrium

with the atmosphere (mg O2 m
-3) and O2 is the

measuredO2 concentration. R and P are respiration and

photosynthesis rates respectively (mg O2 m
-2 h-1),

k is gas transfer velocity (m h-1) and D is water depth

(m). GPP rates aremodeled based onO2 saturation data

and light availability, and ER is based on O2 under-

saturation and temperature over diurnal periods.

Table 1 Study sites including U.S. Geological Survey gage number, watershed name with 4-letter abbreviation below, watershed

area, and percentage of each land use based on NLCD 2006 data (Fry et al. 2011)

USGS station ID Station name Watershed area (km2) Urban Agriculture Forest Wetland

01649190 Paint Branch (PBCP) 21.1 57 7.1 33 2.1

01649500 Northeast Branch (NERP) 117.2 63 5.6 26 4.8

01651000 Northwest Branch (NWHV) 79.5 66 7.6 24 1.5

01650800 Sligo Creek (SLIGO) 10.3 88 0 12 0.29

Watershed area and gage information can be found at http://waterdata.usgs.gov/nwis
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Model input data included continuous measure-

ments of dissolved oxygen, temperature, and dis-

charge made available by USGS at the SLIGO, PBCP,

and NERP gaging stations. Model time steps varied

from 5 to 15-min increments across sites. Photosyn-

thetically active radiation (PAR) data was measured at

the nearby USDA Beltsville Agricultural Research

Center (USDA Agricultural Research Service 2014).

Daily rates of GPP, ER, and net ecosystem production

(NEP = GPP-ER) were converted to g C m-2day-1

using respiration quotient of 1. Several studies have

made this assumption in order to infer connections

between carbon and oxygen cycling in stream

metabolism studies (Jones and Mulholland 1998; Hall

and Tank 2003; Demars et al. 2011).

Gaseous and dissolved inorganic carbon fluxes

Multiple processes at both the stream channel and

watershed-scale contribute to the total DIC flux, which

we estimated at daily and annual time steps (described

above). In-channel processes include GPP, ER, and

exchange of CO2 between the water surface and

atmosphere. DIC from dissolution of carbonate min-

erals (e.g. calcite, aragonite) as well as soil and root

respiration in upland soils are delivered to the stream

via soil and groundwater flowpaths. We describe a

simplified mass-balance model of inorganic carbon

fluxes from watersheds as follows:

WS� NEP � A ¼ CO2F � Aþ DICF ð2Þ

where WS is the total flux of watershed sources (soil

respiration ? weathering) into the stream (grams/

day), NEP is GPP-ER (g C m-2 day-1). A is stream

surface area (m2) above each stream gage. CO2F is the

flux of CO2 from stream to atmosphere (g C m-2

day-1). DICF is the daily DIC flux (g C day-1)

modeled using LOADEST. We estimated NEP, CO2F,

and DICF using measured data, and determinedWS by

difference. We estimated A based on flow lines using

the EPA WATERS dataset (EPA WATERS 2015),

and measured mean wetted width from Google Earth

imagery (Google Earth, 2015).We calculated the daily

net consumption (or production) of DIC by NEP (g C

stream-1 day-1) by assuming that NEP rate was

spatially consistent within the stream channel

upstream of each gage. Positive daily NEP signified

net DIC production and negative NEP (or net

respiration) signified net DIC production over a

diurnal cycle. CO2F (g C m-2 day-1) was calculated

using Eq. 3

CO2F ¼ KCO2
CO2w � CO2eq

� �
ð3Þ

where CO2w is the CO2 concentration in the water

column (CO2 g C m-3) and CO2eq is the CO2

concentration in water if it were in equilibrium with

the atmosphere. We estimated daily mean CO2w

concentration by running the LOADEST model sep-

arately with mean daily DIC concentration estimates.

Then, we used the CO2SYS model to estimate mean

daily CO2w with modeled DIC and measured daily

temperature, depth and pH from each gaging station

(Pierrot et al. 2006). We determined mean daily CO2eq

using equations in Weiss (1974) assuming barometric

pressure of 1 atm and atmospheric mixing ratio of

350 ppm CO2. KCO2 is the gas exchange velocity, with

units of m day-1 for CO2 at ambient stream temper-

ature. We estimated daily average gas exchange of

oxygen at 20C (K20) using the BaMM model (Holt-

grieve et al. 2010). We corrected daily oxygen K20

values for differences in solubility between CO2 and

O2 using the ratio of their Schmidt numbers (Wan-

ninkhof 1992),

KCO2
¼ KO2

ScCO2
=ScO2

ð Þn ð4Þ

where ScCO2 and ScO2 are Schmidt numbers for CO2

and O2 respectively. The exponent, n is set to -2/3

because this value corresponds to smooth (rather than -

1/2 for choppy) water surfaces (Wanninkhof 1992).

We converted K20 to KT based on relationships

described in Elmore and West (1961).

KT ¼ K20 � 1:0241ð ÞT�1 ð5Þ

Our estimates of CO2 flux is likely conservative

because CO2 is based on DIC measured during

daytime hours and do not account for diurnal lows in

GPP. An unknown portion of CO2 from nighttime

respiration may be lost to the atmosphere and thus

unaccounted for with this analysis. In this case, we

would also under estimate the contribution of DIC

from watershed sources in the mass balance model

(Eq. 2). Another assumption we made was that CO2

concentrations and flux rates estimated at each gage

were representative of the total stream surface

upstream of that point. We also acknowledge that a
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small amount of CO2 may have been lost prior to DIC

analysis during filtration.

Results

Streamflow variability

Study sites varied in mean annual discharge. Mean

annual discharge across the three study years was

lowest at SLIGO, with a range of 0.19–0.22 m3 s-1

during the study period, followed by PBCP

(0.31–0.38 m3 s-1), then NWHV (1.22–1.57 m3 s-1),

and NERP (2.00–2.76 m3 s-1). Baseflow varied signi-

ficantly among seasons (p\0.05), with the annual

minimum occurring in early fall and maximum occur-

ring during late winter/early spring, due to seasonal

fluctuations in the water table with evapotranspiration

(Fig. 2).

Annual exports of carbon and nitrogen

Carbon export varied widely across sites and years. The

range of DIC export for all four sites and three years

was 22–84 kg C ha-1 year-1, and the range of DOC

exports was 8–40 kg C ha-1 year-1 (Table 2). TDN

export was less variable, with a range of 2.8–9.0 kg N

ha-1 year-1. TDN export was also less responsive to

changes in runoff (Fig. 3a) compared to DIC and DOC.

PBCP had the lowest annual exports of: DIC

(22–37 kg C ha-1 year-1), DOC (8–16 kg C ha-1

year-1), and TDN (3–6 kg N ha-1 year-1). SLIGO

had the highest annual DIC export in all years

(50–84 kg C ha-1 year-1). DOC exports were variable

across years for all sites. SLIGO had the highest DOC

export in two out of three years. Concentrations of DOC

and DIC were significantly correlated with mean daily

discharge at three out of four sites (p val-

ues = 2 9 10-7 to 1 9 10-3, r2 = 0.11–0.38). DOC
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for Sligo Creek, Northeast
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Both streamflow and GPP

show seasonal variability

with leaf-out processes.

Seasonal variations in GPP

are driven by light

availability during leaf-out

and seasonal changes in

discharge are driven by

evapotranspiration

following leaf-out
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showed a positive log-linear relationship with dis-

charge, whereas DIC showed a log-linear negative

relationship at three of the four sites (Fig. 3b).

Carbonate system

Thirty estimates of DIC speciation between carbonate,

bicarbonate, and CO2 were made at three sites (SLIGO,

PBCP, and NERP) between 2012 and 2014. These

estimates were calculated from DIC, pH, and tempera-

turemeasurements.MeanDIC concentrations at SLIGO,

PBCP, and NERP were 16.8, 8.1, and 10.7 mg C L-1

respectively, and CO2 concentrations were 0.97, 0.84,

and 1.02 mg C L-1 (pCO2: 2201, 1537, and

2003 latm). The majority of DIC was present as

bicarbonate (HCO3
-), in which the average (and total

range) was 89 % (60–94 %), 94 % (88–97 %), and 90

(81–97 %) of total DIC at NERP, SLIGO, and PBCP,

respectively. CO3
2- was less than 1 % of DIC on all

sampling occasions. CO2 contributed the remaining DIC

(varying from 0.1 and 40 % of DIC across sites and

sampling dates), with an average of 5, 10, and 11 % at

SLIGO, NERP, and PBCP, respectively.

CO2 concentration was negatively correlated with

TDN at SLIGO and positively correlated with DOC

and SLIGO and NERP. CO2 concentration was also

positively correlated with temperature at SLIGO

(p\ 0.01, r2 = 0.30). GPP and NEP were both

negatively correlated with CO2 concentration at

SLIGO (p\ 0.01, r2 = 0.58 and 0.61), but not at the

other two sites (PBCP, NERP). CO2 concentration was

not correlated with discharge at any site.

Spatial and temporal variability in dissolved

organic carbon sources

The index of recent autochthonous inputs (BIX) was

negatively correlated with discharge at all sites (p

values = 1.2 9 10-6 to 2.0 9 10-3, r2 = 0.14–0.43),

which suggests a shift from aquatic to terrestrial organic

matter with increasing streamflow (Fig. 3b). The humi-

fication index (HIX) and SUVA254 were not correlated

with discharge at any site, however. BIX was also

significantly different among sites, with the highest

values at SLIGO and lowest median value at PBCP.

Higher values of BIX ([1) are expected to be indicative

of aquatic production, and low values (0.6–0.7) are

expected to be indicative of terrestrial organic matter

sources (Huguet et al. 2009). BIX values in this study

mainly fell within the terrestrial range, with a minimum

value of 0.52 and a maximum of 0.85 (Fig. 3b).

Continuous stream ecosystem metabolism

Daily metabolism rates were estimated for 466 days at

SLIGO (between March, 2013 and October, 2014),

785 days at PBCP (between October, 2011 and Octo-

ber, 2014), and 953 days at NERP (between October,

2011 andOctober, 2014).Mean dailyGPP estimates for

the entire period at SLIGO, PBCP, and NERP were

0.49, 0.38, and 0.66 g C m-2 day-1, respectively.

Mean daily ER (negative sign convention) estimates

were -0.76 (SLIGO), -0.73 (PBCP), and

-0.88 g C m-2 day-1 (NERP). NEP was \0 for

75 % of measured days at SLIGO, 84 % of measured

days at PBCP, and 71 % of measured days at NERP.

Peaks in GPP were evident at all sites, resulting in

periods of autotrophy (NEP[ 0) during the spring and

early summer (Fig. 2). Seasonal variability in GPP was

primarily influenced by day length and light availability

(Fig. 4). GPP was related to streamflow in a parabolic

fashion, with the highest GPP rates corresponding with

medium discharge conditions at each site (Fig. 5).

There were short-term declines in GPP following

storms including Hurricane Sandy, a major hydrologic

event during the study period (Fig. 6); but day length

and riparian shading availability appeared to be more

important over longer seasonal and annual time scales

(Fig. 4). The duration of springtime peaks in GPP were

Table 2 Annual area-normalized export (kg ha-1 year-1) of

dissolved inorganic carbon (DIC), dissolved organic carbon

(DOC), and total dissolved nitrogen (TDN) by water year for

four stream sites in the Anacostia watershed

Site Water year DIC DOC TDN

PBCP 2011–2012 22.5 8.4 3.3

2012–2013 23.2 12.3 2.9

2013–2014 37.7 17.0 6.0

SLIGO 2011–2012 50.1 17.3 3.9

2012–2013 57.4 24.1 4.2

2013–2014 83.6 40.1 9.0

NWHV 2011–2012 28.5 13.8 3.1

2012–2013 43.3 23.2 3.8

2013–2014 64.3 38.8 6.6

NERP 2011–2012 25.3 19.4 2.8

2012–2013 30.9 21.7 2.8

2013–2014 48.2 38.9 5.8
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greatest in the stream with a large, open channel

(NERP) and lower in the two more narrow streams,

which had greater riparian vegetation cover (SLIGO

and PBCP) (Fig. 3). ER was primarily influenced by

seasonal variations in temperature and GPP (Fig. 7).

Daily GPP rates were positively correlated with

TDN at two of the three sites (PBCP and SLIGO:

p\ 0.001, r2 = 0.37, n = 21; and p\ 0.001,

r2 = 0.76, n = 9 respectively). ER was also positively

correlated with TDN at SLIGO (p\ 0.001, r2 = 0.47,

n = 9). DIC and DOC did not show significant

relationships with GPP or ER for sampling dates with

coinciding chemistry measurements and ecosystem

metabolism (n = 19).
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Gaseous and dissolved inorganic carbon fluxes

Using a simplified mass balance model of the stream/

watershed DIC budget, we separated DIC inputs to the

water column into two categories: ‘net stream respi-

ration’ and ‘watershed sources’ (Eq. 2). In this model,

we defined ‘net stream respiration’ as ER-GPP, or

-NEP. Net stream respiration accounted for less than

0 % of DIC inputs on days when NEP was positive,

and thus watershed inputs account for more than

100 % of total export (downstream DIC ? CO2

emissions). The percent contribution of total DIC

inputs from net stream respiration varied from -65 to

90 % across streams and dates, and the percent

contribution from watershed inputs also varied widely

(10 to 165 %). The mean percentage of inputs from net

stream respiration across PBCP, SLIGO, and NERP

were 13.4, 13.2, and 3.4 % respectively. Percent

inputs by net stream respiration had a significant

negative, log-linear relationship with streamflow at

both PBCP and SLIGO (r2 = 0.22, 0.23; p values

\0.01) (Fig. 8). No such relationship existed at

NERP, and NEP was generally positive during low-

flow conditions at this site.

We also estimated the percent of inorganic C

outputs from gaseous (CO2) and fluvial (DIC) fluxes

from the stream network. Daily fluxes were dominated

by fluvial DIC export which contributed between 93

and 102 % of total export on all dates. Fluvial export

exceeding 100 % signifies dates when NEP[ 0. The

range of areal CO2 fluxes was -2.67 to 25 g C m-2

day-1 across sites and dates, where negative values

signifies uptake of CO2 by the water column. These

fluxes comprised the remainder of total inorganic

carbon output (-2 to 7 %) from the stream network.

Discussion

Urban streams as transporters vs. transformers

of carbon across streamflow

The role of urban streams as biologically active

ecosystems vs. passive hydrologic transporters of

carbon and nutrients is an active source of investiga-

tion (Kaushal and Belt 2012). Urban streams have

historically been characterized hydrologically by their

flashy and frequent ‘transporting’ flow events (e.g.

Leopold 1968; Paul and Meyer 2001). However, a

growing body of work has shown that urban streams

are also dynamic biological systems which transform

watershed carbon and nutrient inputs (Newcomer et al.

2012, Duan et al. 2014; Kaushal et al. 2014b).

Globally, river and stream ecosystems act as both
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transporters of terrestrial organic matter to coastal

areas (Middelburg and Nieuwenhuize 1998), and

bioreactors that transform organic matter into CO2

along their hydrologic flowpaths (del Giorgio and Pace

2008). As population growth continues, the extent to

which urban aquatic ecosystems transform terrestrial

organic matter inputs has direct implications for global

and regional carbon budgets (Cole et al. 2007;

Aufdenkampe et al. 2011), as well as water quality

and ecosystem processes (Stanley et al. 2012; New-

comer et al. 2012).

Streamflow variability was the primary driver of

carbon transport from urban watersheds in this study.

Light availability also influenced the timing of peaks in

net ecosystem production (NEP) and net stream respi-

ration (-NEP). Based on our empirical results, we

developed a new streamflow-based conceptual. This

conceptual model demonstrates the ways in which

organic and inorganic carbon exports, sources, and

metabolism can vary with streamflow across an urban

watershed (Fig. 9). The model illustrates how the

concentration of DOC increased and DIC decreased
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with increasing streamflow. The conceptual model

demonstrates how dominant sources of DIC and DOC

transition from in-stream to terrestrial sources at mod-

erate to high flow conditions. Additionally, we showhow

GPP varies with season and streamflow as periods of

high GPP (corresponding with positive NEP) occur

during low to moderate streamflow conditions. GPP and

ER were both at their lowest during high streamflow in

all streams. In smaller streams with riparian canopies,

GPP was also low during summer baseflow. Low

streamflow conditions are driven in part by seasonal

evapotranspiration by riparian trees and thus correspond

with shading and reduced in-stream GPP (Fig. 9).

Urban streams as transporters: terrestrial inorganic

carbon contributions

DIC was the dominant form of carbon exported in this

study, which originated primarily from watershed

sources (terrestrial weathering ? soil respiration).

Urbanization has been shown to influence terrestrial

DIC loading to streams from both natural and

anthropogenic sources (Barnes and Raymond 2009;

Lu et al. 2014). Natural sources include dissolved CO2

from soil respiration and products of chemical weath-

ering. Novel anthropogenic sources may include

building materials and wastewater. In our study, the

range in mean DIC concentrations (8, 10,

16 mg C L-2) from streams draining predominantly

silicate-based lithology (quartz-feldspar schist) of the

Atlantic Piedmont is high compared to pristine

streams draining non-carbonate lithology (Dicken

et al. 2005; Meybeck 2003). Small portions of the

Northeast Branch of the Anacostia watershed drain the

Atlantic Coastal Plain, which may constitute addi-

tional DIC sources from carbonate deposits to down-

stream portions at the Northeast Branch site.

Urbanization may also play a role in elevating DIC

sources from the landscape through human-acceler-

ated weathering of building materials and nonpoint

sewage sources (Kaushal et al. 2013, 2014c). Several

studies using carbon isotope tracers have shown

correlations between urban land cover and DIC from

bedrock (Zeng et al. 2010; Connor et al. 2014; Barnes
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and Raymond 2009; Lu et al. 2014; Hossler and Bauer

2013), which suggest that urbanization may mobilize

of older, previously stable carbon reservoirs. For

instance, Lu et al. (2014) found that DIC in urban

headwater streams of Virginia originated primarily

from older bedrock weathering, compared to DIC in

Fig. 9 Streamflow-based conceptual model of processes that

mediate carbon transport and transformation in urban streams.

Streamflow is on the x-axis, and the y-axis is shared between the

top: DOC (left) and DIC (right) concentrations, and bottom:

Stream metabolism (GPP and ER). As streamflow increases,

[DOC] increases and [DIC] decreases. In-stream metabolism

dominates DIC sources at baseflow, and may contribute

significantly to DOC as well, as seen during peaks in GPP.

The proportion of each (DOC and DIC) contributed from

terrestrial sources (vs. in-stream) increases with streamflow.

Peaks in GPP are more pronounced and occur during a wider

range of flow conditions in larger non-shaded rivers. GPP in

smaller streams peaks during seasonal periods of intermediate

baseflow in early spring. We hypothesize that this is the case

because leaf-out corresponds to riparian shading and baseflow

drawdown. Carbon export processes measured in this study

include dissolved and gaseous fluxes. Gaseous CO2 export from

the stream network (not pictured) was very low compared with

fluvial DIC (mean = 0.33 %, SD = 0.28 %) with the majority

of inorganic carbon export (including CO2) leaving the

watershed in dissolved form
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forested watersheds (which represented more recent

primary production). Numerous studies have also

shown that wastewater treatment plants contribute to

watershed DIC fluxes (e.g. Hossler and Bauer 2013).

Our study and others show that DIC can be elevated in

urban streams without WWTPs as well, however.

Additionally, previous work has shown long-term

increasing alkalinity trends in the Anacostia watershed

and other nearby urban watersheds, where there are

minimal natural carbonate sources suggesting the

importance of anthropogenic DIC sources (Kaushal

et al. 2013; Prasad et al. 2013).

Urban streams as transporters: terrestrial organic

carbon contributions

Streamflow has a major influence on DOC concentra-

tions and sources in both forested and urban water-

sheds (McDowell and Likens 1988; Yeakley and Hook

2005; Raymond and Saiers 2010; Stanley et al. 2012;

Kaushal et al. 2014a). Forested streams often have

positive concentration vs. discharge (C: Q) relation-

ships as saturated soil and leaf leachates are delivered

to the stream during precipitation events (Inamdar

et al. 2013). We found positive C: Q relationships at

our study streams as well as a decreased signal for

‘recent autochthonous inputs index’ (BIX) within

increased flow. These patterns together suggest that

terrestrial sources of DOC become more important

with increasing streamflow, whereas in-stream

organic matter may be more important at low stream-

flow. Impervious surfaces and storm drains may have

an important role in delivery of terrestrial organic

matter to urban streams. Yeakley and Hook (2005)

found significantly higher DOC concentration in

stormflow (median 3.5 mg C L-1) vs. baseflow (me-

dian 2.0 mg C L-1) in an urban stream in Portland,

OR and estimated that 26 to 30 % of DOC during

came from storm drains. Additionally, Hope et al.

(2004) found significant DOC loading from paved

surfaces in Arizona, following long periods of accu-

mulation between rainfall events. In temperate water-

sheds, storm drains and gutters may be significant

sources of organic matter (Kaushal and Belt 2012).

Hobbie et al. (2013) found that this ‘gutter subsidy’ of

leaf detritus contributes significantly to stormwater N

and P loads in St. Paul, Minnesota. Our results show

evidence to support a similar mechanism in the

Anacostia River, warranting further study on the role

of storm drains as flowpaths impacting terrestrial

carbon export from urban watersheds.

The processes that increase vs. decrease DOC

fluxes from wastewater, soil, and vegetation manage-

ment vary across cities. Fluxes and sources also vary

spatially within watersheds along the continuum of

light availability between headwaters and large open

channels (Vannote et al. 1980; Kaushal et al. 2014b),

and over time with changing streamflow conditions

(Daniel et al. 2001; Duan et al. 2014). Currently, few

studies have estimated DOC exports over annual

timescales in urban watersheds. DOC exports in our

study varied from 8.4 to 40.1 kg C ha-1 year-1,

which is within the typical range estimated in

temperate forests (i.e., 5–57 kg C ha year-1) (e.g.,

McDowell and Likens 1988; Fahey et al. 2005;

Raymond and Saiers 2010 (and citations within);

Hossler and Bauer 2013). Conversely, Sickman et al.

(2007) found significant increases in TOC (DOC ?

POC) export (10–121 kg C ha-1 year-1) with urban-

ization in the Sacramento River watershed. Their

study attributed 60 % of urban C export to WWTP

effluents, which were absent from our study sites.

Sickman et al. (2007) also attributed the remaining

40 % of urban C sources to leaching of older soils in

urban areas. Similarly, Aitkenhead-Peterson et al.

(2009) reported exceptionally high mean annual DOC

concentrations (20 to 52 mg C L-1) in urban streams

with and without WWTP effluent in Texas, and

attributed elevated DOC to soil leachates from

irrigated turf grass. These studies suggest that urban

soils contribute significantly to urban DOC loads,

regardless of wastewater inputs. Compared with other

urban watersheds, the relatively low annual DOC

concentrations and exports that we report may be

partially explained by the lack of WWTP outfalls.

Stream metabolism: shifts in urban streams

from transporters to transformers

The relative contribution of in-stream vs. terrestrial or

anthropogenic sources to organic carbon fluxes is

highly variable across watersheds of differing biomes

and urban land cover (Hopkinson et al. 1998; Tank

et al. 2010). In temperate forested streams, terrestrial

sources often dominate DOM export (Fisher and

Likens 1973), while in-stream processes have been
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shown to dominate DOM export in arid (Jones 1997)

and grassland streams (Young and Huryn 1996). In the

present study, indices of in-stream organic matter

(BIX) decreased with streamflow, which suggests that

terrestrial sources became more dominant more as

streamflow increased. Our metabolism measurements

show peaks of autotrophy during periods of seasonal

light availability, suggesting that in-stream organic

matter sources may be significant during low to

moderate flow conditions. Nutrient enrichment and

vegetation removal influence autotrophic productivity

in urban streams (Taylor et al. 2004; Catford et al.

2007), and leached or decomposing algae may

contribute to increased overall lability of the DOM

pool. Duan et al. (2014) found this to be the case, as

leached bacterial and algal-based carbon dominated

the DOM pool of channelized urban streams in Texas.

Even at high streamflow, Duan et al. (2014) found that

channelized streams had reduced terrestrial organic

matter loads due to the combination of increased

autotrophic productivity and reduced hydrologic con-

nectivity with floodplain soils and vegetation. New-

comer et al. (2012) also found significant differences

in diatom biomarkers and C: N ratios of DOMbetween

nutrient-enriched urban streams and a forested refer-

ence in Baltimore, Maryland. Similarly, Kaushal et al.

(2014b) also found that export of protein-like DOM

was correlated with increasing GPP. Empirical data

from the present study and others suggest that in-

stream productivity can contribute significantly to

DOM export annually in urban streams with elevated

nutrients and light availability.

One way to evaluate shifting contributions from in-

stream vs. terrestrial organic matter sources is to

compare DOC export to NEP. This comparison does

not take into account time lags between primary

production and biomass turnover, leaching, or biomass

export in particulate form over annual timescales.

However, it allows us to compare the magnitude of

these two watershed carbon fluxes on a daily basis.

Stream metabolism is defined as the capture of energy

as GPP and release of heat by ER, which is commonly

measured in units of dissolved oxygen production

(GPP) and consumption (ER) in the water column

(Odum 1956). Stream metabolism can also be evalu-

ated in units of carbon uptake and production by

assuming a constant ratio of O2 consumption to CO2

production during photosynthesis and aerobic respi-

ration. By assuming that this ratio (respiratory

quotient, RQ) was 1, we compared the magnitude

net CO2 uptake from daily stream metabolism with

DOC export across a range of streamflow conditions.

Berggren et al. (2012) tested the RQ assumption by

measuring side-by-side CO2 and O2 production and

consumption in 52 lakes and showed that RQ varies

from 0.5 to 2 on average (depending largely on the

most abundant carbon substrate being mineralized).

Here, we proceed with our RQ = 1 assumption with

the caveat that this value is likely to vary in space and

time. Additional assumptions used to scale NEP to the

watershed-scale for comparison with DOC export are

outlined in the ‘Gaseous and Dissolved Fluxes’ subset

of the methods section. NEP rates in our streams varied

from -4.4 to 1.0 g C m2 day-1, within the high and

low end ofmetabolism rates reported in the literature by

single-day (Acuña et al. 2004; Bernot et al. 2010) and

continuousmethods (Izagirre et al. 2008; Beaulieu et al.

2013). Out of 1557 daily NEP measurements across

three streams, NEP was positive on 22 % of days and

greater than daily DOC flux on 13 % of days when

NEP was positive. On average, daily NEP was lower

than DOC by a factor of 0.66 with a minimum of 14.7

times lower and 3.3 times higher than DOC. Despite

potentially significant time lags between autotrophic

productivity and leaching/DOC production, this com-

parison shows that productivity is near equal to DOC

flux on a substantial portion of the year. Of the days

when NEP[ 0, NEP is only greater than DOC during

low tomoderate streamflow conditions. Given the inter-

annual importance of autotrophy in these urban

streams, there was considerable potential for stream

ecosystems to function as transformers of carbon.

Urban streams as transformers: gross primary

production across streamflow

Continuous sensor measurements allowed us to

investigate environmental controls on stream metabo-

lism across a variety of timescales and environmental

conditions. These include storm events, seasonal light

and temperature regimes, and varying carbon and

nutrient loads. We found short-term decreases in GPP

following major storms, similar to previous studies

(Uehlinger 2006; Roberts and Mulholland 2007;

Beaulieu et al. 2013). Storm events caused GPP to

decrease by approximately half, with a two-to three-

week recovery period (Fig. 6). These effects are seen

in both urban/suburban settings (Beaulieu et al. 2013)
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and non-urban streams (Acuña et al. 2004; Uehlinger

2006; Roberts and Mulholland 2007). Because urban

areas tend to have greater flood frequency and

intensity, it is possible that high streamflow events

have a substantial effect on in-stream productivity

(Beaulieu et al. 2013). One leading hypothesis

explaining temporary decreases in GPP following

storms is the scouring of in-stream benthic periphyton

communities.

While storms influence GPP over shorter (weekly)

timescales, other factors such as light availability

appear to play a larger role across seasons. Light

availability varied with stream size and adjacent

vegetation, and these changes influenced the timing

and magnitude of seasonal peaks in GPP and NEP.

Across three streams of differing widths and shading

in the Anacostia watershed, we found similar daily

rates of GPP during the peak season. However, there

were notable differences in the timing and duration of

seasonal peaks in GPP between the two smaller,

shaded streams (PBCP, SLIGO) and the larger non-

shaded NERP. These variations contributed to overall

differences in annual NEP for each stream (Fig. 4).

While the importance of light availability for GPP is

well established, the influence of riparian vegetation,

stream size, and shading on annual GPP and NEP

varies widely across stream reaches, watersheds, and

biomes (Mulholland et al. 2001; Bernot et al. 2010).

Our results highlight implications for the importance

of spatial heterogeneity in riparian cover and stream

order for influencing annual GPP rates, as well as

potential management implications for reducing sum-

mer algal blooms by increased riparian shading.

Along with light availability, nutrients can also be a

limiting factor for in-stream productivity in streams

(e.g., Mulholland et al. 2001; Bernot et al. 2010). We

found significant (p\ 0.001) correlations between

TDN concentrations and GPP at two sites (SLIGO,

PBCP). These relationships suggest that nitrogen is

limiting, compared to phosphate, which showed no

relationship with GPP (data not shown). However,

these relationships are based only on a small subset (9

and 21) of days when metabolism and bi-weekly

chemistry data coincide. More work is required to

experimentally evaluate potential N limitation in these

streams. Several studies have shown that coupling

between nutrient (N and P) cycles and metabolism is

highly variable. For instance, linkages between nutri-

ent availability and GPP have been reported where

large gradients in these variables exist as a result of:

(1) large regional comparisons (Mulholland et al.

2001; Bernot et al. 2010), (2) sharp contrasts in land

cover in small watersheds (Kaushal et al. 2014b), or

(3) over very long (15-year) records of pollution

reduction (Uehlinger 2006). Alternatively, several

studies of nutrient uptake and ecosystem metabolism

have shown tight coupling between these processes

both in pristine (Hall and Tank 2003; Roberts and

Mulholland 2007; Heffernan and Cohen 2010; Cohen

et al. 2013) and nutrient enriched streams (Pennino

et al. 2014; Beaulieu et al. 2014). This suggests that

stream ecosystem metabolism influences nutrient

fluxes to some degree as well, particularly in urban

streams with increased light availability and elevated

GPP (Kaushal et al. 2014b).

Urban streams as transformers: ecosystem

respiration across streamflow

Stream metabolism in urbanized rivers can contribute

significantly to increased DIC production and export

(Martinelli et al. 1999; Daniel et al. 2001; Barnes and

Raymond 2009; Andrade et al. 2011). Few studies

have simultaneously evaluated variations in terrestrial

and in-stream sources of DIC across variable stream-

flow conditions. However, the longstanding assump-

tion that terrestrial sources dominate DIC export

merits testing in urban areas. A recent study by

Hotchkiss et al. (2015) estimated that 28 % of CO2

emissions from running waters in the U.S. are

produced by stream metabolism, with the remainder

from terrestrial or abiotic in-stream processes. In the

present study, we found that on average, terrestrial

sources of DIC (including CO2) were greater than in-

stream sources. Our results show that daily net

respiration across three streams only contributed

between 3.4 and 13 % of total daily DIC inputs on

average. Variability around these mean values was

great, however, and DIC inputs from stream metabo-

lism were often nearly 50 % and approached 100 %

during low and moderate streamflow (Fig. 8). Along

with streamflow, variation in DIC production from

net-respiration is also driven by temperature and

organic matter substrate.

Although, we found significant relationships

between ER and temperature, there was no relation-

ship with DOC. This does not necessarily preclude a

causal relationship between respiration and organic
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carbon, given that the bulk of stream respiration may

take place in benthic sediments with particulate

organic carbon rather in the water column. Addition-

ally, growing evidence from previous studies suggests

that lability of organic matter may be a stronger driver

of metabolic rates and pathways than bulk DOC

loading (Ballester et al. 1999; Martinelli et al. 1999).

For instance, Newcomer et al. (2012) found that labile

algae and grass leachates had a stronger effect on

denitrification than leaf leachates in urban streams of

Baltimore, Maryland. Similarly, Kaushal et al.

(2014b) reported correlations between lability of

organic matter and ecosystem respiration in similar

sites. Additionally, Ballester et al. (1999) found that

sewage inputs shifted riverine conditions from aerobic

to anaerobic in a Brazilian river. Labile organic carbon

sources can include decomposing microbial or phyto-

plankton biomass, urban wastewater inputs, or photo-

oxidation of complex organic matter (Moran and Zepp

1997 Jarvie et al. 1997, Martinelli et al. 1999; Zhang

et al. 2009). These studies provide evidence that a

small rapidly cycling fraction of the overall DOC pool

may be the main source of organic carbon mineralized

within streams (Mayorga et al. 2005; Hall and

Beaulieu 2013; Hofmann et al. 2008; Van den

Meersche et al. 2009).

While stream metabolism has been shown to

contribute to DIC fluxes in several cases (Jones and

Mulholland 1998; Acuña et al. 2004), our results

demonstrate that the magnitude of metabolic contri-

butions vary across streamflow conditions. By assum-

ing that daily in-stream DIC production was

synonymous with net respiration (ER-GPP, or

NEP*-1), we found that in-stream DIC contributed

significantly to total inorganic carbon exports during

low baseflow conditions. GPP and ER are tightly

coupled across all sites throughout the year, which

suggests that much of ER is attributable to autotrophic

respiration and/or mineralization of recently produced

algal biomass (Hall and Beaulieu 2013). We observed

negative NEP on the majority of days in our study,

signifying heterotrophic conditions. By converting

metabolism measurements to units of CO2 uptake and

production, we equated heterotrophic conditions with

DIC production. While autotrophic respiration makes

up a significant portion of ER, continuously hetero-

trophic conditions such as those measured in our

streams require outside inputs of organic matter.

Microbial mineralization of terrestrial organic carbon

inputs is especially apparent when ER exceeds GPP

(negative NEP), given that autotrophic respiration

cannot exceed GPP. Heterotrophic conditions are

common in shaded forest streams, where GPP is

light-limited and terrestrial inputs are high. However,

many open-canopied streams are autotrophic due to

high light availability and lower terrestrial inputs

(Bernot et al. 2010; Demars et al. 2011). Urban

watersheds, such as the Anacostia have a mixture of

shaded and open channels, and this drives spatial and

temporal variability in NEP. One common pattern

found in forested streams is an autumnal spike in ER,

driven by pulses of labile carbon from fallen leaves

(Mulholland et al. 2001; Stelzer et al. 2003). Despite

the prevalence of terrestrial organic matter, we did not

find a clear pulse of ER or a seasonal drop in NEP

during the fall. This pulse of ER was also absent in

agricultural streams measured by Griffiths et al.

(2013), and suburban streams measured by Beaulieu

et al. (2013). In the former, the lack of riparian trees

may reduce autumnal leaf litter inputs. In the latter, the

authors suggest that scouring of banks during frequent

storms reduced the availability of in-channel storage

of labile organic C from riparian trees.

Conclusions

Urban and agricultural land use has contributed to

significant increases in DOC, DIC, and CO2 export by

streams and rivers globally (Raymond and Cole 2003;

Barnes and Raymond 2009; Zhang et al. 2009;

Andrade et al. 2010; Bianchi et al. 2013; Kaushal

et al. 2013, 2014a). As urbanization increases glob-

ally, it is critical to understand the factors that

influence transformations and transport of carbon in

nutrient-enriched streams and rivers. In the present

study, we found that transport and transformation are

both significant processes that influence the carbon

cycle in urban streams. We documented the impor-

tance of streamflow variability on exports, sources,

and metabolism of carbon over annual periods. DIC

was the predominant form of carbon transported from

these urban watersheds. There were major shifts

between carbon transport and transformation and net

ecosystem carbon production across variable stream-

flow conditions, which can impact river alkalinization

and biological oxygen demand in downstream receiv-

ing waters. Future work is necessary to test hypotheses
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regarding transport and transformation of carbon

across hydrologic variability in order to better under-

stand and manage stream ecosystem functions such as

denitrification and primary production and water

quality issues related to river alkalinization and

oxygen demand.
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