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Abstract We tested a long-standing hypothesis

within river ecology, predicted by the River Con-

tinuum Concept, that dissolved organic matter (DOM)

diversity decreases with stream order. We measured

DOM molecular composition across three stream

orders in the headwaters of well characterized forested

catchments with ultrahigh-resolution mass spec-

trometry to assess DOM chemogeography and

chemodiversity over the spatial scales of climatic

regions and fluvial networks. Stream waters with

similar dissolved organic carbon (DOC) concentra-

tions in different climatic regions had distinctive DOM

compositions, but shared 69.5 % of the 3286 indi-

vidual chemical formulae detected. DOM composi-

tions common to all watersheds were characterized by

abundant lignin-like and tannin-like molecules as well

as carboxyl-rich alicyclic-like molecules (CRAM);

50 % of all formulae were found in all streams. Of the

roughly 700 unique chemical formulae within a given

fluvial network, most were outside the CRAM region

within a van Krevelen diagram and 78 to 95 % were

restricted to 1st-order streams where diffuse ground

water sources surface, coalesce into a channel, and

flow downstream. The 1st-order streams within a

fluvial network also exhibited the highest formula

diversity as well as the greatest numbers of formulae

across a broad range of compound classes.

Keywords DOM � FT ICR-MS � Headwater
streams � Carbon cycling

Introduction

Dissolved organic matter (DOM) biogeochemistry

constitutes a critical link in the global carbon cycle,

contributing to the evasion of CO2 from freshwaters

(Battin et al. 2008), and connecting energy flow and
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nutrient cycling (Bernhardt et al. 2002; Qualls 2000)

as an energy source and cellular building blocks for the

microbial heterotrophs that dominate aquatic ecosys-

tem respiration (del Giorgio 2005). Because DOM

occupies such a central role in ecosystem-level

processes, attempts to describe the composition of

the DOM pool and relate organic composition to

function constitute an area of intensive research in all

aquatic habitats ranging from the oceans (Benner et al.

1992; Cauwet 2002; Hansell 2013) to inland waters

(Jaffe et al. 2008). As the connections between DOM

metabolism in inland waters and the global carbon

cycle have become more apparent (Cole et al. 2007;

Lauerwald et al. 2012), knowledge of DOM biogeo-

chemistry has taken on new urgency (Battin et al.

2009; IPCC 2014).

Significant strides have been made toward under-

standing sources, concentrations, biodegradability,

and seasonal dynamics of DOM in inland waters

(Cleveland et al. 2004; Fellman et al. 2009a; Fellman

et al. 2009b; Fellman et al. 2008; Wickland et al.

2007). However, in most studies, characterization of

DOM has been limited to bulk characteristics associ-

ated with d 13C signatures, excitation-emission

fluorescence spectroscopy, or fractionation with

XAD (hydrophobic cross-linked polystyrene copoly-

mer) resins. These bulk average techniques, as well as

elemental composition, acidic functional group con-

tent (Sun et al. 1997) and oxidation state (Vallino et al.

1996) have limited utility for addressing molecular

composition. Ultrahigh-resolution Fourier transform

ion cyclotron resonance mass spectrometry (FT-ICR

MS) overcomes some of these limitations and provides

a highly resolved view of molecular-level DOM

composition for natural waters (Kujawinski et al.

2002; Marshall et al. 1998), and has revealed stunning

diversity, with thousands of individual molecules

present in low concentrations, comprising the DOM

pool in streams and rivers (Hockaday et al. 2009; Kim

et al. 2006).

FT-ICR MS has shown great promise for analysis

of DOM quality in natural waters (Kim et al. 2003;

Kujawinski et al. 2002; Marshall et al. 1998). Studies

utilizing FT-ICR MS to examine DOM in aquatic

ecosystems have become more widely used in fresh-

water ecosystems (Kujawinski et al. 2002; Minor et al.

2012; Mosher et al. 2010; Stenson et al. 2002; Stenson

et al. 2003) and have addressed the compositional

variability in headwater streams across climatic

regions (Jaffe et al. 2012). However, to the best of

our knowledge, ours is the first study that considers the

spatial patterns of DOM molecular composition,

chemogeography (Dunlop and Jeffries 1985), and

DOM chemodiversity (Kellerman et al. 2014) both

across watersheds from different geographical regions

as well as the longitudinal patterns over fluvially

connected sites beginning in the headwaters of unim-

pounded stream ecosystems and subsequent down-

stream changes across stream orders within a stream

and river catchment as stream size increases

downstream.

The River Continuum Concept (RCC) provides a

heuristic theoretical framework that has guided re-

search in stream and river ecosystems for more than

three decades (Vannote et al. 1980). The RCC predicts

that the diversity of DOM peaks in 1st-order streams

as ground waters with low DOM molecular diversity

surface and extract organic molecules from detritus,

but then diversity diminishes approximately 2-fold in

2nd order streams and 3-fold by 5th-order streams,

with little change through 11th-order streams as

heterotrophic microbial activity removes labile com-

pounds from downstream transport (Minshall et al.

1985; Vannote et al. 1980). The RCC was conceived

prior to the advent of ultrahigh-resolution mass

spectrometry, so that until recently the state of

knowledge has made it difficult to design an empirical

test of the prediction. We now know that DOM

throughout a broad range of aquatic environments,

including groundwater, is one of the most complex

mixtures on Earth (Longnecker and Kujawinski 2011;

Osterholz et al. 2014; Sleighter and Hatcher 2008) and

that the molecular composition in headwater streams

across broad geographic regions shows clear simila-

rities yet distinct differences (Jaffe et al. 2012).We use

that knowledge to amend the RCC prediction in a

broader context of global DOM biogeochemistry to

suggest that DOM diversity, while reaching a peak

where the connection of the aquatic environment and

the terrestrial environment is maximal, i.e., 1st-order

streams, is high in ground water and remains high

where surface flows originate and throughout a river

network. Furthermore, we note that others have shown

that the molecular character of DOM displays sub-

stantial overlap among streams globally, yet contains

components that make each DOM pool distinct (Jaffe

et al. 2012; Kim et al. 2006). In the study described

below, we harness a modern organic geochemical
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methodology, FT-ICR MS, exploiting the sensitivity

and resolution of molecular level organic geochemical

analyses (Hockaday et al. 2009; Kim et al. 2006) to test

these predictions in tropical and temperate stream

catchments.

Methods

Site descriptions and experimental design

Three forested headwater stream ecosystems were

sampled: the 1st–3rd order, 725 ha White Clay Creek

(WCC), an eastern deciduous forest catchment within

the Pennsylvania Piedmont (39�530N, 75�470W)

(Newbold et al. 1997), the 1st–3rd order, 319 ha Rio

Tempisquito (RT), a tropical evergreen catchment

within the Cordillera de Guanacaste of Costa Rica

(10�570N, 85�290W) (Newbold et al. 1995), and the

1st–5th order, 17,094 ha Neversink River (NVK), an

eastern deciduous forest catchment in the Catskill

Mountains of New York (41�900N, 74.580W) (New-

bold et al. 2006). A sampling design utilizing fluvially

connected sites was employed within each watershed.

In the WCC and RT watersheds 1st-, 2nd-, and 3rd-

order streams were sampled and in the NVK water-

shed 1st-, 3rd-, and 5th-order streams were sampled.

All sites were sampled a single time in April, 2012

with water collected from shallow (\0.5 m), well

mixed runs under base flow conditions.

DOM composition via FT-ICR MS

Stream water samples for DOM composition analyses

were collected in borosilicate glass bottles rendered

organic carbon-free by combustion (450 �C, 5 h). The

bottles were rinsed 39 with site stream water before

collection, stream water was filtered through pre-com-

busted glass fiber filters (Whatman GF/F), and the pH

was adjusted to 2.3–2.5withOptimagradeHCl.DOM in

1 L was extracted by use of 100 mg PPL Bond Elut

cartridges, a modified styrene divinyl benzene polymer

(Agilent Technologies, Santa Clara, CA) following

methods outlined by Dittmar et al. (2008) at loading

rates that ranged from 8 to 21 mg C g-1 adsorbent.

Ammonium hydroxide (5 lL, 30 %, Optima grade)

was added to 500 lL of each DOM sample to facilitate

deprotonation (Kim et al. 2003). Samples were intro-

duced into the mass spectrometer via a syringe pump at

400 nL/min and a 50 lm i.d. fused silica micro electro-

spray ionization (ESI) needle under typical ESI condi-

tions (-2.0 kV; tube lens,-300 V; and heated capillary

current, 2.4 A). Mass analysis was performed with a

custombuilt FT-ICRmass spectrometer equippedwith a

22 cm diameter horizontal bore 9.4 T actively shielded

magnet (Kaiser et al. 2011a). Data were collected and

processed with a modular ICR data acquisition system

(Predator) (Blakney et al. 2011). Ions were accumulated

external to the magnet (Senko et al. 1997) in a linear

octopole ion trap (25.1 cm long) equipped with axial

electric field (Wilcox et al. 2002) for 20 s and transferred

through rf-only multipoles to a seven segment, open

cylindrical cell with capacitively coupled excitation

electrodes similar to the configuration by Tolmachev

et al. (2008) and Kaiser et al. (2011b). Chirp excitation

(*1400–70 kHz at a sweep rate of 50 Hz ls-1 and

360 Vp-p amplitude) accelerated the ions to a detectable

cyclotron radius.

Multipoles were operated at 1.8 MHz at a peak-to-

peak rf amplitude of 70 V. Broadband frequency

sweep (‘‘chirp’’) dipolar excitation (70 kHz to

1.27 MHz at a sweep rate of 150 Hz/ls and a peak-

to-peak amplitude of 190 V was followed by direct

mode image current detection (digitization rate at

twice the highest excited spectral frequency, in this

case 1.27 MHz) for 1.6 s to yield 4 Mword time-

domain data. The time-domain data were processed

and Hanning-apodized, followed by a single zero-fill

before fast Fourier transformation and magnitude

calculation (Marshall et al. 1998). Frequency was

converted to mass-to-charge ratio (m/z) by the

quadrupolar electric trapping potential approximation

to generate an m/z spectrum (Ledford et al. 1984; Shi

et al. 2000). External mass calibration for negative ESI

FT-ICR MS was performed with Agilent G2421A

electrospray ‘‘tuningmix’’ (highmass) and stearic acid

(lowmass) as previously reported byQian et al. (2001).

Molecular formulae were assigned according to the

parameters outlined by Kujawinski and Behn (2006).

This analysis resulted in a mass spectrum containing

2950–3700 peaks per sample. Mass spectral peak

height is a directmeasure of ion relative abundance, but

ionization efficiency can vary among different com-

pound classes, so that ion relative abundance does not

necessarily reflect the relative abundances of the parent

neutrals in the original sample.
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Geochemical and environmental parameters

Samples for concentrations of dissolved organic

carbon (DOC), anions, cations, and inorganic nutrients

were collected in pre-combusted (500 �C for 6 h)

borosilicate glassware. DOC samples were filtered

through pre-combusted glass fiber filters (Whatman

GF/F) with a syringe and syringe-type holder and

analyzed by UV-promoted persulfate oxidation with a

Sievers 900 total organic carbon analyzer equipped

with an inorganic carbon removal module.

Anion and cation samples were filtered through a

sterile Pall Gelman HF Tuffryn 0.2 lm acrodisc filter.

Anions were measured with a Dionex DX 500 ion

chromatography system equipped with an AS-15

column and conductivity detector. Volatile fatty acids

were determined as part of the anion analysis. Filtrates

for cation determinations were acidified with trace-

metal grade nitric acid and analyzed by inductively

coupled plasma-atomic emission spectrometry with an

Intrepid II XSP Duo View instrument (Thermo

Elemental).

Temperature, conductivity, pH and dissolved oxy-

gen (DO) were measured with a hand-held field meter

(Orion Star A329). Percent canopy cover was esti-

mated by use of a hand-held convex spherical crown

densiometer (Forestry Suppliers, Jackson, MS).

Statistical analysis

Principal coordinate analysis (PCoA), utilizing Bray-

Curtis similarity indices was applied by use of the

natural log transformed relative abundance of the

compound class data as the main (dependent variable)

matrix and natural log transformed environmen-

tal/geochemical data as the secondary (independent

variable) matrix in PC-Ord software (version 4, MjM

Software Design) (McCune and Mefford 1999).

Chemodiversity was estimated with the Chao1 matrix

(Kellerman et al. 2014).

Results

Concentrations of DOC in streamwater increased with

stream order within the WCC watershed (WCC 1st,

0.8 mg C L-1; WCC 2nd, 1.2 mg C L-1; WCC 3rd,

2.1 mg C L-1) but not in the other watersheds (RT

1st, 1.1 mg C L-1; RT 2nd, 0.8 mg C L-1; RT 3rd,

1.0 mg C L-1; NVK 1st, 1.0; NVK 3rd,

1.1 mg C L-1; NVK 5th, 0.9 mg C L-1) (Supple-

mentary Table 1). The DOM pool for each of the 3

watersheds was composed of approximately 2000 to

3000 different molecular formulae with declining

diversity from the tropical evergreen catchment (RT)

to the eastern deciduous forest catchments (WCC and

NVK) (Table 1). Nearly 70 % of these compound

formulae were common to all watersheds and 48.5 %

were found in all streams (Fig. 1a). When plotted on a

van Krevelen diagram, the common formulae centered

in the area associated with carboxyl-rich alicyclic

molecules (CRAM; Fig. 1a; Hertkorn et al. 2006)

whereas formulae unique by watershed were largely

outside of the CRAM region on the van Krevelen

diagram (Fig. 1b) and were overwhelmingly confined

to 1st-order streams (Fig. 2a,b). Of the 20.2 % of the

compound formulae that were unique to a single

watershed, most were found in the tropical evergreen

forest streams (14.4 %; Table 1) and were pre-

dominantly found in the van Krevelen diagram regions

associated with lignin, condensed hydrocarbon, and

protein compound formulae with O:C atomic ratios

\0.8 (Fig. 1b). The smaller number of compound

formulae found exclusively in the WCC watershed

(5.1 %) more closely resembled tannins, with O:C

ratios[0.6, whereas the 0.6 % of formulae unique to

the NVK watershed were distributed between these

major compound classes (Fig. 1b, Table 1). Because

location on a van Krevelen diagram is not a definitive

assessment of molecular identity, these compound

formulae are referred to as lignin-like, condensed

hydrocarbon-like, and CRAM-like. The DOM mole-

cular composition of stream waters within the tropical

evergreen forest (RT) was distinct from those of the

eastern deciduous forest (WCC and NVK); and

Table 1 Number of compound formulae (corresponding to

negative ion ESI 9.4 T FT-ICR mass spectral peaks) unique to

watersheds

# Compound formulae Percent

WCC 165 5.1

RT 469 14.4

NVK 22 0.7

WCC & RT 270 8.3

WCC & NVK 31 1.0

RT & NVK 59 1.8

All Watersheds 2235 68.7
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molecular compositions of all streams were distinct

from each other, with the composition in 1st-order

streams most different from the compositions in

higher order streams (Fig. 3a, b).

Within a stream catchment, 63–71 % of all formulae

were common across all stream orders (Table 1). The

NVK 1st-order stream sample was lost during process-

ing; therefore, much of the watershed focus in our

analysis is limited to RT and WCC samples. DOM

formula diversity was highest in 1st-order streams, with

17–21 % of all formulae unique to those streams and

chemodiversity declined by 15–27 % with increasing

stream size, changing little beyond the 2nd-order

streams (Tables 2 and 3). Most of the compound

formulae for all samples are located in the area of the

van Krevelen diagrams that is characteristic of lignin,

CRAM, tannin, and condensed hydrocarbon com-

pounds (Table 4). Stream water from the 1st-order

sites of WCC and RT contained the highest number of

lignin-like molecular formulae, which subsequently

decreased in the downstream direction by 18.4 % in the

WCC watershed and by 10.6 % in the RT watershed

(Table 4). Similar trends were observed for compound

formulae that were tannin-like (WCC 41.3 % decrease,

RT 23.2 % decrease), condensed hydrocarbon-like

(WCC 16.1 % decrease, RT 48.9 % decrease),

CRAM-like (WCC 4.9 % decrease, RT 17.9 % de-

crease), protein-like (WCC 16.8 % decrease, RT

48.0 % decrease), and ‘‘other’’ classes (WCC 26.7 %

decrease, RT 25.6 % decrease) although formulae

within these compound classes were lower in abun-

dance. We did not observe any consistent pattern in

compositional differences within a watershed based on

molecular size, H:C or O:C ratios, average O, C, or

double bond equivalents (DBE = number of rings plus

double bonds to carbon) (Table 3). The pattern of

unique compound formulae within stream orders

differed between the WCC and RT watersheds. Most

of the formulae unique to 1st-order streams inWCC had

O:C [0.8 (Fig. 2a) whereas in RT most formulae

unique to 1st-order streams had O:C\0.6 and (Fig. 2b).

The van Krevelen diagrams of the H:C versus O:C

ratios of the compound formulae from stream water
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DOM samples show a high degree of similarity but

display subtle shifts downstream of the 1st-order

streams. This trend is most clearly seen in the WCC

watershed as the cloud of points associated with

lowest relative magnitude molecular formulae (pink)

within the van Krevelen diagram shrinks along the

O:C axis, especially at high O:C values above 0.9, but

also at low H:C values\0.5. Whereas the column of

points in the CRAM region centered around

O:C = 0.5; H:C = 1 increases in relative magnitude

(Fig. 4a–c). Downstream changes across stream

orders in the RT watershed are most clearly seen in

the spreading of the points associated with the second

level of relative magnitude formulae (blue) across O:C

values[0.8 in the 3rd-order stream. In this watershed

the highest relative magnitude formulae diminish and

shift from O:C near 0.4 in the 1st-order stream to the

center of the CRAM region with O:C = 0.5; H:C = 1

in the 3rd-order stream (Fig. 4d–f). The relative

magnitudes of formulae with specific numbers of

oxygen atoms diminished between highest levels in

1st-order streams to lower and nearly equivalent levels

in the 2nd- and 3rd-order streams (Fig. 5).

The background biogeochemical parameters dif-

fered at the watershed level, but no downstream trends

were detected within watersheds. Base cations, alka-

linity, and pH reflected the geological characteristics

of each region with low ionic strength waters within

the NVK watershed, higher concentrations in the

WCC watershed, and intermediate concentrations

within the RT watershed (Supplementary Table 1).

Nitrate concentrations reflected the agricultural ac-

tivities within the WCC watershed for which oxalate

concentrations were particularly elevated. Concentra-

tions of DOC, soluble reactive P, NO2–N and NH4–N

were similar among all watersheds.

Discussion

Our study of DOM chemogeography and chemodi-

versity is the first to consider both the DOM patterns

Information Remaining (%)

RT 1st

RT 3rd

RT 2nd

WCC 3rd

WCC 2nd

WCC 1st

NVK 5th

NVK 3rd

100 75 50 25 0
b

a

Fig. 3 a Principal coordinate analysis of stream water DOM

molecular compositions (obtained from negative ESI 9.4 T FT-

ICRMS) for the eight streamwater samples collected from three

watersheds, with the DOM grouped by relative magnitude of

each compound formula. b Hierarchical cluster analysis (Bray-

Curtis similarity) depicting DOM molecular compositions for

each sample. Key: Rio Tempisquito-red, White Clay Creek-

blue, Neversink River-black. Number indicates stream order

376 Biogeochemistry (2015) 124:371–385

123



across watersheds from different geographical regions

and the longitudinal patterns over fluvially connected

stream orders. We identified a core set of molecular

formulae in the lignin/CRAM/tannin/condensed hy-

drocarbon region of the van Krevelen diagram and

noted their presence across distant watersheds and

throughout stream orders within a watershed. Similar

findings of common DOM molecular character have

been reported for aquatic environments that include

streams over small spatial scales (Mosher et al. 2010),

headwater streams across distant watersheds (Jaffe

et al. 2012; Kim et al. 2006), a lake with its tributary

swamps, streams, and river (Minor et al. 2012),

freshwater DOM and marine DOM (Gonsior et al.

2011; Koch et al. 2005), and large rivers, oceans, and

estuaries (Bae et al. 2011; Koch et al. 2005; Sleighter

& Hatcher 2008; Spencer et al. 2012; Stubbins et al.

2010). This phenomenon in freshwaters has been

attributed to common source materials and similar

diagenetic processes (Jaffe et al. 2012), or the natural

refractory nature of conserved portions of the DOM

pool, hydrological connectivity, terrestrial inputs, and

changes in the discharge regime (Minor et al. 2012).

The striking concentration within the ubiquitous

DOM of molecular formulae in the CRAM region of

the van Krevelen diagram also has been described in

marine waters (Hertkorn et al. 2006; Hertkorn et al.

2013), Lake Ontario (Lam et al. 2007), the main-stem

Congo River (Stubbins et al. 2010), a river to ocean

transect of the lower Chesapeake Bay (Sleighter and

Hatcher 2008), and a range of terrestrial to aquatic

ecosystems (Roth et al. 2014).The location of a peak in

a particular compound class region of a van Krevelen

diagram is a necessary but not sufficient condition for

compound class identification, and distinguishing

CRAM from lignin, for example, would require

information on molecular structure (Roth et al.

2014). Thus without definitive structural data it is

impossible to ascertain the identity of the common

core of molecules, but it does appear that they are

recalcitrant, heavily degraded, and originating from

terrestrial ecosystems.

DOM formulae that were unique among watersheds

largely fell outside the CRAM region of the van

Table 2 Number of compound formulae (corresponding to

negative ion ESI 9.4 T FT-ICR mass spectral peaks) unique to

steam order within a watershed

# Compound formulae Percent

WCC (total 2889)

1st Order 451 16.7

2nd Order 49 1.8

3rd Order 48 1.8

1st and 2nd 129 4.8

1st and 3rd 65 2.4

2nd and 3rd 40 1.5

Ubiquitous 1919 71.0

RT (total 3032)

1st Order 637 21.0

2nd Order 30 0.9

3rd Order 53 1.7

1st and 2nd 179 5.9

1st and 3rd 196 6.5

2nd and 3rd 31 1.0

Ubiquitous 1906 62.8

Table 3 Characteristics of DOM molecular formulae analyzed by negative ESI 9.4 T FT-ICR MS

# Compounds Ave m/z Ave H:C ratios Ave O:C ratios Ave O Ave C Ave DBE Chemodiversity

(Chao1)

WCC 1st 2564 515.68 1.08 0.54 12.66 23.97 11.86 3026

WCC 2nd 2137 523.84 1.07 0.52 12.51 24.80 12.37 2813

WCC 3rd 2072 516.23 1.09 0.51 12.24 25.52 12.02 2710

RT 1st 2918 527.05 1.07 0.50 12.38 25.21 12.58 3113

RT 2nd 2146 518.91 1.08 0.52 12.42 24.52 12.13 2238

RT 3rd 2186 498.75 1.09 0.51 11.78 23.72 11.57 2209

NVK 1st NA NA NA NA NA NA NA NA

NVK 3rd 2134 522.23 1.07 0.54 12.78 24.36 12.24 2074

NVK 5th 2275 523.48 1.08 0.53 12.67 24.56 12 2322

DBE is double bond equivalents = number of rings plus double bonds to carbon. H:C and O:C ratios are number averaged

Biogeochemistry (2015) 124:371–385 377

123



Krevelen diagram and were overwhelmingly confined

to 1st-order streams.Within a watershed, the chemodi-

versity of DOM peaked in 1st-order streams. However

the measured diversity of molecular formulae based

on FT-ICR MS cannot be extrapolated unequivocally

to the true molecular diversity of DOM, because each

formula could represent an unknown number of

structural isomers (Hertkorn et al. 2006; Sleighter

and Hatcher 2007). Thus the chemodiversity peak is,

in fact, a peak in molecular formula diversity.

Nevertheless, the chemogeography and chemodiver-

sity patterns we observed suggest that unique DOM

formulae are products of terrestrial origin and soil

diagenetic alterations that are susceptible to selective

Table 4 Compound classes of DOM molecular formulae characterized by negative ESI 9.4 T FT-ICR MS

Lignins Tannins Condensed hydrocarbon Cellulose Protein Lipid Amino sugars CRAM Others

WCC 1st 1557 579 224 0 89 0 13 1440 101

WCC 2nd 1444 347 208 0 67 0 0 1370 74

WCC 3rd 1392 340 188 2 74 0 9 1312 65

RT 1st 1784 477 370 0 177 3 20 1637 90

RT 2nd 1430 372 190 0 79 0 9 1344 67

RT 3rd 1456 366 189 0 92 1 9 1337 76

NVK 1st NA NA NA NA NA NA NA NA NA

NVK 3rd 1437 460 148 0 36 0 6 1382 47

NVK 5th 1542 454 152 0 55 0 6 1459 66

CRAM-like molecular formulae were defined as DBE:C = 0.3–0.68, DBE:H = 0.2–0.95, and DBE:O = 0.77–1.75 (Hertkorn et al.

2006)
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Fig. 4 Three-dimensional van Krevelen diagrams (based on

negative ESI 9.4 T FT-ICR mass spectra) for a 1st-order White

Clay Creek, b 2nd-order White Clay Creek, c 3rd-order White

Clay Creek, d 1st-order Rio Tempisquito, e 2nd-order Rio

Tempisquito, f 3rd-order Rio Tempisquito. Colors indicate

relative magnitude of DOM compounds
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adsorption on mineral surfaces and/or biotic and

abiotic oxidation during downstream transport.

First-order streams are intimately connected to the

landscape and the associated riparian zones that are a

major source of organic matter entering streams

through shallow subsurface pathways (Mei et al.

2012). The near-stream environment supports both

aerobic and anaerobic soil processes that change with

hydrologically driven fluctuations in redox potential

(Sawyer et al. 2014) and generate a diverse spectrum of

microbially produced organic end-products. The flu-

vial geomorphology of 1st-order streams is typically

restricted to shallow water depths and slow water

velocities (Leopold et al. 1964). The highwater table in

the adjacent terrestrial environment that renders trees

susceptible towind throw creates openings in the forest

canopy (Kaplan et al. 1980). In combination, these

attributes make 1st-order streams particularly suited to

process DOM. The short uptake lengths over which

microbial processing of DOM occurs in 1st-order

streams are directly proportional to depth and velocity

(Hall et al. 2013; Newbold et al. 1982); the shallow

depths promote interactions with streambed sediments

that fostermass transfer of DOM to sedimentmicrobial

communities, biological uptake, and processing (Ka-

plan et al. 2008); selective abiotic sorption on mineral

surfaces (Aufdenkampe et al. 2001;Kleber et al. 2011);

and shallow depths plus open canopies allow sunlight

penetration that can promote photooxidation of DOM

(Cory et al. 2013; Moran et al. 2000; Tranvik and

Bertilsson 2001;Wetzel et al. 1995)which has not been

exposed previously to sunlight. However, the magni-

tudes of changes in DOM formula diversity with

downstream transport were not matched by similar

changes in DOC concentration, so we suspect that the

chemodiversity pattern is the result of alterations to the

DOM molecules involving partial molecular degrada-

tion rather than complete oxidation.
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We also observed a decline in DOM formula

diversity from the tropics through temperate forest

watersheds with increasing latitude. With more than a

1000 % greater tree species diversity in the seasonally

dry, evergreen tropical forests (Hartshorn 1983)

compared to temperate forests, and a decline in tree

species diversity between the Pennsylvania piedmont

forest (Fike 1999) and those within the Catskill

Mountains (McIntosh 1962), there was a positive

relationship between the watershed-level diversity in

DOM formulae and the diversity of tree species.

Collectively, these observations about DOM chemodi-

versity are consistent with prior suggestions that

aquatic organic matter compositions in streams and

rivers are set by degradation processes that occur

upslope in soils and riparian zones in a drainage basin

(Hedges et al. 2000), are strongly correlated with the

terrestrial vegetation (Goni et al. 2003), and impacted

by processes within the riparian zone (Mei et al. 2012).

The fact that a significant number (20 %) of the

unique lignin-like and condensed hydrocarbon mole-

cular formulae in the Rio Tempisquito watershed and

34 % of the unique tannin-like molecular formulae in

the White Clay Creek watershed were present in the

1st-order streams and disappeared with increasing

stream order, indicates that many of the compounds

historically thought to be recalcitrant are actually

subject to removal from the system by biotic, photo-

chemical, or abiotic adsorption processes. A growing

body of evidence strongly supports the idea that

molecularly uncharacterized humic material con-

tributes to the DOM pool that is susceptible to

biological oxidation (Cory and Kaplan 2012; Sleighter

et al. 2014; Volk et al. 1997). Further support for the

biological oxidation of this group of molecules is

provided by a positive correlation between humic

fluorescent DOM and percent biodegradable DOM in

Arctic rivers (Mann et al. 2012) and measurement of

the extensive degradation of lignin and associated

macromolecules in the Amazon River (Ward et al.

2013). The notion that DOM in headwaters undergoes

extensive processing is consistent with the finding that

longitudinal changes in DOM in fluvial networks

involve decreasing DOM biolability and the accumu-

lation of modern DOC of terrestrial origin as stream

size increases (Fellman et al. 2014).

Most DOM molecular formulae unique to the Rio

Tempisquito watershed were lignin-like and condensed

hydrocarbon-like whereas most molecular formulae

found exclusively in the White Clay Creek watershed

streams were tannin-like. Lignin and tannin molecules

are part of a natural group of aromatic organic

substances in soils, produced by decaying vegetation

that are susceptible to photodegradation. However,

despite the differences in the tropical and temperate

streams in canopy cover, we are unable to ascribe the

differences in DOM between the watersheds to photo-

chemistry, as there is no evidence that tannins and

lignins differ in their susceptibility to photodegradation

(Gonsior et al. 2011; Gonsior et al. 2013; Rossel et al.

2013; Stubbins et al. 2010). Instead, it seems more

likely that inter-specific differences in the content of

tannins (Coq et al. 2010) and lignin (Osono and Takeda

2004) within the tree species and associated forest floor

litter, combined with differences in bacterial commu-

nities that dominate tropical and temperate zone leaf

litter (Kim et al. 2014) influence the quality of DOM

passing through the litter layer into the soils.

Once DOM enters the soils, differences in the

geology and resulting soils among the watersheds may

play a role in what enters the groundwater and

ultimately the stream. The Rio Tempisquito watershed

contains relatively young allophane-rich Andisols of

volcanic origin, whereas the White Clay Creek

watershed contains deep, unglaciated Ultisols devel-

oped from quartz, schist, gneiss, and marble, and the

Neversink River watershed soils are primarily shallow

Inceptisols of glacial origin with Histosols in wetlands

near some of the smaller streams. These differences in

the soils (Buurman et al. 2007; Hernandez et al. 2012)

and their associated microbial communities (Ramette

and Tiedje 2007) likely contributed to the resulting

patterns of DOM molecular composition across wa-

tersheds (Findlay et al. 2008).

The River Continuum Concept prediction of peak

DOM diversity in 1st-order streams and the suggestion

that DOM diversity would decline 2- to 3-fold with

downstream transport were made well before ad-

vances in geochemistry revealed the complexity of the

DOM pool (Hockaday et al. 2009; Kim et al. 2003;

Marshall et al. 1998) and thus could not be tested.

These advances in geochemical analyses and our

studies reported here are based on ultrahigh-resolution

mass spectrometry that allow for the calculation of

unique molecular formulae for the ion peaks present in

each DOM spectrum (Marshall et al. 1998). Our

measurement of formula diversity as opposed to the

molecular DOM diversity complicates an explicit test
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of the River Continuum hypothesis concerning DOM

and also presents a challenge to our understanding of

the geochemistry and biogeochemistry of natural

DOM as small changes in DOM structure can

influence its reactivity (Ball and Aluwihare 2014).

Determining the structure associated with molecular

composition within a complex mixture and relating

structure to DOM reactivity and degradation is a

contemporary analytical challenge that remains to be

solved. The current best approach appears to be a

combination of different techniques to constrain the

likely structures associated with an elemental compo-

sition (Abdulla et al. 2013).

Our findings of peak formula diversity and peak

number of unique molecular formulae in the 1st order

sites within theRio Tempisquito andWhite ClayCreek

watersheds support the River Continuum Concept

prediction, but the 15–27 % decline in formula diver-

sity from 1st-order streams to 2nd and 3rd order

reaches is considerably more gradual than the

200–300 % decline in DOM molecular diversity

envisioned (Vannote et al. 1980). Furthermore, the

molecular-level data presented here extend previous

observations that in-stream modifications to DOM

composition are most pronounced in 1st-order sites

within a river network and the resulting composition

persists over several subsequent stream orders (Kaplan

et al. 1980). Clearly, extending molecular analyses to

larger, downstream rivers would be a useful addition to

our studies. Those measurements are hampered by

limited access to large river networks without substan-

tial anthropogenic alteration. However, we anticipate

that our findings that dramatic changes were confined

to 1st-order streams and that little change occurred

with increasing stream order downstream would

persist beyond the 5th-order stream we sampled.

Although the number of samples analyzed in our

study was small and constrained to a single time of year

and the headwater streams within river networks, we

believe that the similarity of DOM trends across

watersheds adds credence to our interpretation, and

posit that the novel data we have generated provide

valuable insights to DOM patterns and processes within

a meta-ecosystem context (Vannote et al. 1980).

Additionally, the relatively uniform loading of DOC

onto the columns of PPL adsorbent gives us confidence

that the DOM diversity patterns we observed are real

and not artifacts associated with varying recoveries

during the solid phase extraction. Any contributions

from bacteria or similarly-sized particles that passed

through the GF/F filters are likely to be trivial, because

we have been unable to detect any DOC concentration

differences betweenGF/F and 0.2 lmfiltrates of stream

water (Kaplan, unpublished data) and estimates based

on calculations involving cell density, cell size, and C

cell-1 (Bott and Kaplan 1985) suggest a maximum

contribution of B20 lg C L-1.

Conclusion

Our study represents a major step toward affirming the

long-standing hypothesiswithin river ecology that DOM

molecular diversity decreases with stream order (Van-

note et al. 1980). Understanding of DOM biogeochem-

istry, including patterns of chemogeography and

chemodiversity within and among fluvial networks,

would benefit from analyses of a greater number of

samples that extend the spatial and temporal coverage of

our investigation. Including structuralmeasurements as a

complement to the compositional determinations could

lead to a true assessment of DOM chemodiversity and

improved understanding of DOM processing and diage-

nesis. Finally, combining recent advances in low

throughput, ultrahigh-resolutionmass spectrometrywith

more commonly used high throughput, low-resolution

optical techniques (Sleighter et al. 2014; Stubbins et al.

2010) could advance the understanding of temporal

dynamics of DOM molecules in river networks.
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