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Abstract The capacity of a soil to sequester organic

carbon can, in theory, be estimated as the difference

between the existing soil organic C (SOC) concentration

and the SOC saturation value. The C saturation concept

assumes that each soil has a maximum SOC storage

capacity, which is primarily determined by the charac-

teristics of the fine mineral fraction (i.e. \20 lm

clay ? fine silt fraction). Previous studies have

focussed on the mass of fine fractions as a predictor of

soil C stabilisation capacity. Our objective was to

compare single- and multi-variable statistical

approaches for estimating the upper limit of C stabili-

sation based on measureable properties of the fine

mineral fraction [e.g. fine fraction mass and surface area

(SA), aluminium (Al), iron (Fe), pH] using data from

New Zealand’s National Soils Database. Total SOC

ranged from 0.65 to 138 mg C g-1, median values

being 44.4 mg C g-1 at 0–15 cm depth and

20.5 mg C g-1 at 15–30 cm depth. Results showed

that SA of mineral particles was more closely correlated

with the SOC content of the fine fraction than was the

mass proportion of the fine fraction, indicating that it

provided a much better basis for estimating SOC

stabilisation capacity. The maximum C loading rate

(mg C m-2) for both Allophanic and non-Allophanic

soils was best described by a log/log relationship

between specific SA and the SOC content of the fine

fraction. A multi-variate regression that included

extractable Al and soil pH along with SA provided the

‘‘best fit’’ model for predicting SOC stabilisation. The

potential to store additional SOC (i.e. saturation deficit)

was estimated from this multivariate equation as the

difference between the median and 90th percentile SOC

content of each soil. There was strong evidence from the

predicted saturation deficit values and their associated

95 % confidence limits that nearly all soils had a

saturation deficit[0. The median saturation deficit for

both Allophanic and non-Allophanic soils was

12 mg C g-1 at 0–15 cm depth and 15 mg C g-1 at

15–30 cm depths. Improving predictions of the satura-

tion deficit of soils may be important to developing and

deploying effective SOC sequestration strategies.

Responsible Editor: W. Troy Baisden

M. H. Beare (&) � D. Curtin � J. Sharp

Sustainable Production Portfolio, New Zealand Institute

for Plant & Food Research Limited, Private Bag 4704,

Christchurch 8140, New Zealand

e-mail: Mike.Beare@plantandfood.co.nz

S. J. McNeill � R. L. Parfitt

Landcare Research, Private Bag 11052, Palmerston North,

New Zealand

H. S. Jones

Scion, Private Bag 3020, Rotorua 3046, New Zealand

Present Address:

H. S. Jones

Waikato Regional Council, Private Bag 3038, Hamilton

3240, New Zealand

M. B. Dodd

AgResearch Limited, Grasslands Research Centre, Private

Bag 11008, Palmerston North, New Zealand

123

Biogeochemistry (2014) 120:71–87

DOI 10.1007/s10533-014-9982-1



Keywords Soil organic carbon � Soil carbon

stabilisation � Soil carbon saturation deficit � Fine

mineral particles � Quantile regression

Introduction

Developing strategies to sequester organic carbon

(C) in soils depend on understanding the key factors

that affect soil organic carbon (SOC) stabilisation and

the capacity of individual soils to stabilise additional

SOC. The sequestration of stable SOC has been

attributed to several possible mechanisms including

biochemical recalcitrance, physical protection or

inaccessibility and the formation of organo-mineral

complexes involving fine (clay ? silt) soil particles

(Sollins et al. 1996; Baldock and Skjemstad 2000; von

Lützow et al. 2006; Dungait et al. 2012). The SOC

associated with fine soil particles is generally regarded

has highly stable, with a relatively long turnover time

(Buyanovsky et al. 1994; Balesdent et al. 1998) and

slow response to changes in management (Campbell

et al. 1991; Chung et al. 2008; Skjemstad et al. 2004).

It also represents a large proportion of the total SOC in

most soils and, therefore serves as a useful measure of

the stable organic C.

Hassink and Whitmore (1997) equated the capacity

of a soil to stabilise C with the maximum concentra-

tion of SOC found in the clay ? fine silt fraction (fine

fraction) of whole soil. A number of studies have

shown that total SOC content is strongly and posi-

tively correlated with the amount of fine mineral

particles in soils (Scott and Cole 1996; Bosatta and

Agren 1997; Hassink 1997; Homann et al. 2007). This

relationship is generally attributed to the role that the

fine fraction plays in providing mineral surface for the

formation of organo-mineral complexes. Several

studies have shown that the amount of SOC in the

fine fraction is positively correlated to its proportion of

the whole soil mass (Hassink 1997; Six et al. 2002;

Liang et al. 2009; Feng et al. 2011). The theoretical

maximum concentration of SOC has also been

referred to as the upper limit of soil C stabilisation

or the soil C ‘‘protective’’ or ‘‘saturation’’ capacity

(Baldock and Skjemstad 2000; Chung et al. 2010). The

difference between the theoretical saturation capacity

and the actual SOC concentration in the fine fraction is

often defined as the saturation deficit (Angers et al.

2011; Stewart et al. 2007; Six et al. 2002) and has been

taken to represent the potential for SOC sequestration.

Several different approaches have been used to

define the upper limit of soil C storage, based on the

stabilisation capacity of the fine fraction. Using a

meta-analysis of soil C data from temperate and

tropical regions around the globe, Hassink (1997)

reported that differences in the SOC content of paired

grassland and cropland sites were primarily due to

losses of C from the[20 lm fine fraction of soils. This

result, he argued, was evidence for a limit to the C

content of soils that was determined by the amount of

fine soil particles (i.e. a SOC saturation capacity).

Hassink (1997) proposed that the mass proportion of

fine soil particles (clay ? silt) in whole soil could be

used to predict the saturation capacity based on a least

squares regression (LSR) model, y = 0.37x ? 4.07,

where y is the SOC content of fine soil particles

(mg C g-1 soil) and x is the proportion of fine soil

particles in whole soil (g fine particles 100 g-1 soil).

Six et al. (2002) applied a similar approach to

estimating the stabilisation capacity based on a meta-

analysis of published SOC data from additional

studies covering soils of different mineralogies and

land use histories. They reported different LSR

parameters for soils dominated by 1:1 versus 2:1

minerals. For each mineralogy class, the slope of the

LSR was assumed to represent the SOC concentration

of the fine fraction at the theoretical saturation limit.

However, Feng et al. (2011) showed that the values

reported by Hassink (1997) and Six et al. (2002) were

relatively low compared with published values of

SOC in the fine fraction, suggesting that the LSRs

underestimated the upper limit of SOC stabilisation in

the fine fraction. They proposed two alternative

methods for estimating the stabilisation capacity of

soils, i.e. a SOC loading method and a boundary line

(BL) analysis method.

The SOC loading method is based on the knowl-

edge that different soil minerals have different specific

surface areas, SAs (Parfitt et al. 2001) and that there is

a positive relationship between specific SA and the

SOC concentration of particle size fractions and whole

soils (Kahle et al. 2002b; Mayer 1994; Wiseman and

Püttmann 2005). The upper limit of soil C stabilisation

is then estimated assuming a monolayer-equivalent C

loading of *1 mg C m-2 of specific SA, based on

evidence from marine sediments and mineral soils

(Mayer 1994). More recent work has shown that
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organic matter is not present as a continuously

dispersed monolayer (Mayer and Xing 2001; Wagai

et al. 2009), but rather as series of discrete irregular

bulges that may be associated with mesopores and

aluminous clay edges (Mayer 1999). However, SA

does appear to serve as a marker for clay domains that

are physically associated with organic matter and,

broadly speaking, the relationship between specific

SA and C content holds for a wide range of mineral

soils and sediments.

The BL analysis method was first used by Webb

(1972) to define the productivity potential of field

crops, but has subsequently been used to predict the

upper limits of N2O emissions in the field in response

to different soil conditions (Elliott and Dejong 1993;

Schmidt et al. 2000). The method is a statistical

approach to define the upper (or lower) limits of a

dependent variable where there is evidence for a

limiting response to an independent variable(s) along a

defined boundary (Schnug et al. 1996; Schmidt et al.

2000; Milne et al. 2006).

Based on their analysis of data from 32 published

studies (342 data points), Feng et al. (2011) showed

that the BL method produced an estimate of the upper

limit of soil C stabilisation that was more than twice

that of the LSR method in both 1:1 and 2:1 clay soils.

Their application of the organic C loading method

produced an estimate of the upper limit of SOC

stabilisation in 2:1 clay soils that was very similar to

that of BL method, but greatly underestimated a

majority of the values in 1:1 clay soils. However, Feng

et al. (2011) based their BL analysis on the upper 10 %

of fine fraction SOC content values (distributed across

the range from \10 to 90 % fine particle content).

Quantile regression (QR) analysis (Koenker 2005)

offers an alternative approach to examine the upper

distribution of SOC in the fine fraction, based on

analysis of the entire data set rather than the behaviour

of a subset of the data, which may well lead to a

different interpretation.

Given the differences observed between 1:1 and 2:1

mineral soils, Feng et al. (2011) concluded that a

model based on a mechanistic understanding of the

factors that affect soil C stabilisation was preferable to

a purely statistical approach for predicting the upper

limits of SOC stabilisation. They recommended that

future work should focus on the physical and chemical

properties of soils that may be useful in predicting the

upper limits of soil C stabilisation.

New Zealand has soils and soil databases that are well

suited to address this recommendation. The soil taxo-

nomic diversity is relatively high and encompasses a

wide range of clay mineral compositions. New Zea-

land’s National Soils Database (NSD) contains data for

soils covering a wide range of land uses, climatic zones

and soil depths. The NSD includes data on SOC, pH,

extractable aluminium (Al) and iron (Fe), texture, bulk

density and other potentially important soil properties

(Wilde 2003). Furthermore, previous research in New

Zealand suggests that the extractable Al is a better

predictor of SOC concentrations than the silt or clay

content (Percival et al. 2000). This is consistent with the

ability of Al to alter the solubility and conformation of

SOC molecules (Parfitt 2009). Volcanic soils, that have

sufficient rainfall to leach silicon (Si), have Allophanic

mineralogy, and allophane has a high specific SA that

can react strongly with SOC (Parfitt 2009).

The objectives of this study were to: (1) evaluate

the least-square linear regression (LSR), BL and QR

methods for estimating the SOC stabilisation capacity

of New Zealand soils, (2) compare estimates of SOC

stabilisation obtained by these statistical methods with

those of an organic C loading method based on an

indirect measure of soil specific SA, and (3) investi-

gate the potential to use a multi-factor analysis of soil

properties to better describe the upper limits of soil C

stabilisation and the saturation deficit of soils based on

a case study of New Zealand long-term pasture soils.

We hypothesized that a multi-factor model based on

the specific SA of mineral particles would provide a

more robust estimate of the C stabilisation capacity

and saturation deficit of New Zealand soils compared

to a model based the mass proportion of fine mineral

particles.

Materials and methods

Datasets

The data used in this study were obtained from New

Zealand’s NSD. The NSD consists of data for soil

samples collected from across New Zealand for a

range of purposes (Wilde 2003). It contains site

description, soil profile morphology and soil classifi-

cation information, as well as data on the physical,

chemical, and mineralogical properties for over 1,500

soil profiles (Wilde 2003). While the NSD is not the
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only soils database in New Zealand, it is unique in that

it contains data on soil properties thought to influence

the storage of SOC, and represents a wide range of

soils and sites across the country.

The NSD data used in this study were restricted to

long-term pasture soils/sites that included comprehen-

sive soil description information and where there was a

minimum dataset of selected physical and chemical

properties. The long-term pasture soils were targeted

because they are generally known to have high SOC

concentrations compared with soils under other land uses

and because this land use is well represented across a

wide range of soil classes and climatic zones. The

minimum dataset of properties included soil bulk density

and pH; SOC, Al, Si, and Fe concentrations; air-dry water

content; and sand, silt and clay content. Data for

individual sites were excluded where organic, calcare-

ous, or saline horizons, or podzolic pans were identified.

A small number of profiles on volcanic mud (i.e. ejected

lake-floor sediments) were also excluded, as were

profiles where topsoil data were missing. The resulting

dataset contained information for 256 soil profiles that

reflected a wide range of soil orders in the New Zealand

Soil Classification (Hewitt 2010). These soil orders and

the corresponding orders in the USDA Soil Taxonomy

(Soil Survey Staff 2010) are given in Table 1.

Soil physical and chemical properties

The soil physical and chemical properties included in

our analyses were determined by the following methods.

Soil pH (10 g air-dry soil in 25 mL in water), pyropho-

sphate-extractable Al (Al-p), oxalate-extractable Al

(Al-o), oxalate-extractable Si (Si-o), and dithionite–

citrate-extractable Fe (FED) were measured by the

standard methods reported in Blakemore et al. (1987)

and Parfitt and Childs (1988). The organic C content of

whole soils was measured using a LECO induction

furnace (Blakemore et al. 1987). Sand (50–2,000 lm),

silt (2–50 lm) and clay (\2 lm) content were measured

by sieving and sedimentation using the pipette method

(Claydon 1989). Bulk density was measured using the

driving hammer method (Parfitt et al. 2013).

As the NSD does not contain data on the SOC

content of the clay ? fine silt (\20 lm) fraction (fine

fraction), these values were estimated based on the

results of previous studies. Angers et al. (2011)

reported that the SOC stabilised by fine particles

represented 85 ± 2.5 % of the total SOC based on an

analysis of topsoils in France. This value agrees well

with the mean values (84–89 %) reported in other

studies (Balesdent 1996; Jolivet et al. 2003), including

a meta-analysis of data representing[400 particle size

fractions by Gregorich et al. (2006) and our own

measurements (81–89 %) for grassland soils repre-

senting three common soil orders (Allophanic, Brown

and Recent Soils) in New Zealand (Curtin unpub-

lished). For the purposes of this study, we assumed

that 85 % of the total SOC was associated with the fine

fraction.

The water content of air-dried soils was measured

by oven drying (105 �C for 24 h) soils that had first

been air-dried at 30 �C for 24 h and allowed to

equilibrate at the relative humidity of the laboratory

(Blakemore et al. 1987; Parfitt et al. 2001). The

specific SA of soil was then estimated from the water

content of air-dried soil as described by Parfitt et al.

(2001):

Surface area m2 g�1
� �

¼ 2� air

�dry water content g kg�1
� �

:

Data preparation

In order to achieve greater consistency with respect to

the depth of organic matter deposition, we converted

Table 1 Soil records used in this study by soil order in the

New Zealand Soil Classification (Hewitt 2010) and corre-

sponding orders in the USDA Soil Taxonomy (Soil Survey

Staff 2010)

NZ soil order USDA equivalent Number of records

Allophanic Andisols 31

Brown Inceptisols, alfisols 47

Gley Aquic groups 46

Granular Ultisols 3

Melanic Mollisols 10

Organic Histosols –

Oxidic Oxisols, ultisols 3

Pallic Inceptisols, alfisols 31

Podzol Spodosols 6

Pumice Andisols (vitric) 22

Raw Entisols –

Recent Entisols, inceptisols 38

Semiarid Alfisols 10

Ultic Ultisols 9

Total 256
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the NSD data, which were derived from samples

collected by genetic horizon, to values based on fixed

depth intervals. We estimated the soil property values

for the 0–15 and 15–30 cm layers of each soil profile

by fitting a quadratic mass-preserving spline model

(Bishop et al. 1999) where data are provided in the

form of mean values within adjacent soil horizons,

with the assumption that the underlying soil property

varies smoothly with depth. The spline fit is controlled

by a parameter k, which represents a trade-off between

the fit and the roughness penalty (Malone et al. 2009).

For this study, k values of 10, 1, 0.1, and 0.01 were

evaluated, with the best overall results (lowest RMS

error) obtained over a broad range of values; as a

result, a value of k = 0.1 was adopted. The spline fits

to the original horizon measurements for each profile

were checked by visual inspection.

Statistical analyses

Building on the original work of Hassink (1997) and

other more recent studies (Six et al. 2002; Feng et al.

2011; Zhao et al. 2006), we applied several different

methods to estimate the stabilisation capacity of the

fine fraction based on statistical analyses of the

relationship between the C content of the fine fraction

and the mass proportion of fine particles. These

methods included LSR modelling, BL analysis, and

QR analysis.

Single-factor regression analyses

Hassink (1997) first proposed the use of a LSR model to

estimate the stabilisation capacity of the fine fraction in

relation to the mass proportion of fine particles. We

applied a similar analysis to the New Zealand dataset,

using the mass proportion of fine particles (g fraction

100 g-1 soil) as the independent variable and the soil C

content of the fine fraction (mg C g-1 soil) as the

dependent variable. The regression parameters and

uncertainties from our analyses were compared with

those reported in other soil classification- or location-

specific studies (Hassink 1997; Liang et al. 2009; Zhao

et al. 2006) and to the meta-analyses of Six et al. (2002)

and Feng et al. (2011). Like Feng et al. (2011), we

carried out a further set of LSR analyses where we

forced the y-intercepts to 0 on the assumption that a

positive intercept reflects SOC that is not stabilised by

the fine fraction.

The BL analysis method described by Feng et al.

(2011) was also applied to our data as an alternative to

the LSR method for estimating the C stabilisation

capacity. The BL method is a statistical approach to

define the upper (or lower) limits of a dependent

variable where there is evidence for a limiting

response to an independent variable(s) along a defined

boundary (Schnug et al. 1996; Schmidt et al. 2000;

Milne et al. 2006). Briefly, the method involves

applying linear regression analysis to the upper-most

(e.g. the top 10 %) values of fine fraction C content

across a wide range of fine particle masses.

For comparison to the results of Feng et al. (2011),

we used the same BL method described in their study

to estimate the C stabilisation capacity of the fine

fraction. This involved sorting the data set into nine

groups based on the mass proportions of fine soil

particles, at intervals of 10 g fraction 100 g-1 soil,

ranging from\10 to[90 g fraction 100 g-1 soil. The

upper 10 % of soil C values in each group were

identified and extracted along with the corresponding

mass proportion data. These BL data were subjected to

a regression analysis where the y-intercept was forced

through 0 based on the assumptions outlined above.

We report the results of our analyses, including the

slope and P values, along with those of Feng et al.

(2011) for comparison.

QR analysis (Koenker 2005) was also applied to the

data set as an alternative to the LSR (Hassink 1997)

and BL (Feng et al. 2011) methods. QR estimates a

specific conditional quantile of the response variable

(e.g. the 90th quantile), rather than the conditional

mean as in LSR. In this way, QR has the advantage of

modelling soil C data based on the entire response

distribution. The quantile approach avoids the

assumption of the LSR approach that most of the

values are at or near the upper range of the response

distribution (Feng et al. 2011). It also avoids a

reduction in accuracy of the estimated C stabilisation

capacity owing to a reduced sample size, which is a

risk with the BL method.

Organic C loading method

In this study, we used the water content of individual

air-dried soils to estimate the specific SA of the fine

fraction based on the method of Parfitt et al. (2001) as

described above. The specific SA estimates were then

used to calculate the assumed maximum SOC content
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of the fine fraction in each soil using an organic C

loading of *1 mg C m-2 (Mayer 1994). A LSR

analysis was then applied to derive an estimate of the

upper limit of soil C stabilisation from the relationship

between the maximum SOC content of the fine

fraction (by this organic C loading method) and the

mass proportion of fine particles in the soils studied.

This was then compared with the organic C loading

results derived from the meta-analysis of Feng et al.

(2011) and those derived from our study using the

LSR, BL and QR analyses. We also investigated the

relationship between measured specific SA and the

measured SOC content of the fine fraction, to derive an

independent estimate of the SOC loading limit of fine

particles.

Multi-factor regression analyses

Using the soil property data calculated for standard

depths, log-transformations were applied to all the soil

properties (except pH), since a paired plot indicated

increasing variability in the mean values, and the

distributions were strongly right-skewed.

A number of different QR models (Koenker 2005)

for different quantiles (s = 0.5, 0.9, 0.95) of

log(C) were developed in terms of specific SA [the

explanatory variable most strongly correlated with

log(C), as discussed below], and for combinations of

specific SA and the other potential explanatory

variables. The multivariate regressions were devel-

oped in order to maximise explanatory ability, mea-

sured by way of the minimum residual standard error.

Explanatory variables were dropped if their inclusion

resulted in coefficients that were not physically

plausible, resulting in, for instance, an increase in

SOC with a decrease in the physical quantity. This

situation occurs where two explanatory variables are

strongly correlated with each other [e.g. log(Al-o) and

log(Al-p), see Table 5], and one provides strong

correlation with SOC; in this case, the inclusion of

the second explanatory variable yields a negative

coefficient, contrary to the expected physical model.

Results and discussion

The data used in this study were obtained from soils

representing a diverse range of soil orders (Table 1). Of

the 256 records, 31 were for Allophanic soils. These

volcanic soils contain amorphous and poorly crystalline

minerals (allophane; oxides of Al and Fe) with a large

capacity to adsorb organic matter (Matus et al. 2006,

2008). The other soils, derived from sedimentary parent

materials, contain a mixture of 1:1 and 2:1 clay minerals

(Officer et al. 2006; Surapaneni et al. 2002). The data

also encompassed soils with a wide range of textures and

SOC contents (Fig. 1). The fine fraction (\20 lm)

content ranged from 1.4 to 98 g 100 g-1 soil and

followed a normal distribution; the median value at

0–15 cm depth was 55 g 100 g-1 and at 15–30 cm

depth was 54 g 100 g-1. The SOC content of the fine

fraction ranged from 0.55 to 117.5 mg C g-1 soil. The

SOC distribution was skewed towards low values, the

median values being 37.7 mg C g-1 soil at 0–15 cm

depth and 17.5 mg C g-1 soil at 15–30 cm depth. These

normal and skewed distributions for fine fraction and

SOC contents, respectively, are consistent with those

reported in previous studies (Angers et al. 2011).

Relationships between SOC and fine fraction

content

LSR analyses

In the first phase of our regression modelling, we applied

an unrestricted LSR analysis to the entire 0–15 cm soils

dataset (i.e. both Allophanic and non-Allophanic soils)

to describe the relationship between the SOC content of

the fine fraction (\20 lm clay ? fine silt, mg C g-1)

and the mass proportion of fine particles (g 100 g-1

soil), as in previous studies (e.g. Hassink 1997; Six et al.

2002; Feng et al. 2011; Zhao et al. 2006). The slope

(0.09) of this relationship was very low and the overall

relationship was not significant (P = 0.253). This

contrasts strongly with the slope (0.37, P = 0.001)

reported by Hassink (1997) and the overall slope (0.30,

P \ 0.01) obtained from the meta-analysis of 32

different studies reported by Feng et al. (2011). How-

ever, Feng et al. (2011) also reported substantial

variation in the slopes (0.08–0.64) derived from their

analysis of data obtained from a number of other

individual studies (e.g. Amelung et al. 1998; Barthès

et al. 2008; Feller and Beare 1997; Zinn et al. 2007). The

slope (0.06) of the relationship for the 15–30 cm soils in

this study was also non-significant (P = 0.089),

although there was greater evidence that the C content

of the fine fraction increased with increases in the mass

proportion of fine soil particles at that depth.
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Efforts to quantify the relationship between the SOC

content of the fine fraction and the mass proportion of

fine particles are based on the assumption that clay and

fine silt particles provide the majority of the mineral

surfaces needed to stabilise SOC. Previous studies have

shown positive relationships between the SOC content

and specific SA of mineral particles in both terrestrial

soils and marine sediments (Kahle et al. 2003; Mayer

1994; Zinn et al. 2007) that support this assumption. On

this basis, Feng et al. (2011) argued that a restricted

LSR model, where the intercept is forced through 0,

would provide a more mechanistic understanding of the

relationship between the SOC content of the fine

fraction and the mass proportion of fine particles. Our

application of a restricted LSR to the 0–15 cm data

from New Zealand produced regression models that

were highly significant (P \ 0.001), with an overall

slope (0.70 ± 0.03 SE) that was about twice that

reported by Feng et al. (2011) using the same approach

(Table 2). Within this wider dataset, the slope of the

relationship for Allophanic soils (1.35 ± 0.09 SE) was

substantially greater than the slope for non-Allophanic

soils (0.62 ± 0.03 SE). The relationships derived for

the 15–30 cm soils using a restricted LSR model were

also highly significant; the slopes being about one-half

those of the 0–15 cm soils but with similar relative

differences between Allophanic and non-Allophanic

soils. This difference between soil depths implies that

15–30 cm soils are further from their stabilisation

capacity. This is consistent with the expected inputs of

C from plant production being much lower at greater

soil depth and the idea that the SOC content is input-

limited. Feng et al. (2011) also noted differences in the

slope of the relationship between the SOC content and

the mass proportion of the fine fraction in soils of

different mineralogy. Their results showed that the

slope of this relationship for soils dominated by 2:1

minerals was significantly greater than that of soils

dominated by 1:1 minerals (Table 2), but they did not

report estimates for Allophanic soils.

The constraint imposed by the restricted LSR model

of Feng et al. (2011), where the intercept is forced

through 0, appears to give dubious results when applied

to New Zealand soils (Fig. 2). While the restricted LSR

model may be favoured from a mechanistic viewpoint,

our result suggests that a better model is needed, either

one with different covariates, with a curvilinear rather

than a simple linear relationship, or using a different

regression methodology. In the following sections,

several of these alternatives are explored, and then

compared.

BL and QR analyses

An important limitation of the LSR approach for

estimating the SOC stabilisation capacity is the

implicit assumption that the majority of the values

used to generate the relationship are at or near the

upper SOC limit and that any differences between the

LSR predicted and measured values are due to random

error (Feng et al. 2011). If this assumption is not met,

the LSR approach does not satisfy one of the key

criteria needed to predict the soil C stabilisation

capacity using this approach. The data used in this

study and the previous studies where the LSR

approach has been applied (e.g. Hassink 1997; Feng

et al. 2011) do not appear to meet this criteria.

Consequently, BL and QR modelling were applied to

Fig. 1 The distribution of

values for the a mass

proportion of fine soil

particles and the b soil

organic C content of the fine

fraction used in this study to

estimate the soil C

stabilisation capacity of

New Zealand soils using a

range of methods. The

histogram is derived from

the measured values, while

the solid line is a kernel

density estimate of the

distribution
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our data as alternatives to the LSR for estimating the

upper limits of SOC stabilisation.

The BL approach used by Feng et al. (2011)

estimates the upper limit of SOC stabilisation from

the upper 10 % of fine fraction SOC values in soils with

different mass proportions of fine soil particles, whereas

QR modelling estimates the limit based on analysis of

the entire dataset. Our analysis of the New Zealand data

using these two methods produced similar estimates of

the upper limits of SOC stabilisation in non-Allophanic

soils for each of 0–15 and 15–30 cm layers (Fig. 2), as

evidenced by the very similar slope and overlapping

95 % confidence intervals (CIs). Overall, these analy-

ses suggest that the stabilisation capacity of Allophanic

soils was 33–91 % higher than that of non-Allophanic

soils (Table 3). The higher C content of Allophanic

soils has been attributed to the stabilisation ability of

allophane and the associated reactive Al (Percival et al.

2000; Parfitt et al. 2002; Baisden et al. 2011). The

estimates of SOC stabilisation capacity derived from

the QRs of the Allophanic soils at both depths (0–15

and 15–30 cm) were significantly higher than those

derived using the BL method. As for the LSR results,

the slope of the relationship between the SOC content

and the mass proportion of the fine fraction for non-

Allophanic soils at the 15–30 cm depth was about one-

half the slope obtained for 0–15 cm soils using both BL

and QR methods (Table 3). This difference is perhaps

not surprising, given that surface soils are expected to

have higher inputs of C from primary production.

Table 2 Estimates of the stabilisation capacity of fine soil particles (\20 lm) based on the slope of the least-square linear regression

model with a forced 0 intercept

Sources Depth (cm) Dataset Slopea P n

New Zealand 0–15 All 0.70 ± 0.03 \0.001 213

0–15 Non-Allophanic 0.62 ± 0.03 \0.001 184

0–15 Allophanic 1.35 ± 0.09 \0.001 29

15–30 All 0.32 ± 0.02 \0.001 213

15–30 Non-Allophanic 0.28 ± 0.01 \0.001 177

15–30 Allophanic 0.70 ± 0.04 \0.001 36

Feng et al. (2011) Variable All 0.33 ± 0.01 \0.0001 342

Variable 1:1 Minerals 0.25 ± 0.01 \0.0001 101

Variable 2:1 Minerals 0.36 ± 0.01 \0.0001 241

a Units are mg C g-1 fine fraction soil particle ± 1 SE

Fig. 2 The C content of the fine fraction in relation to the mass

proportion of fine soil particles in Allophanic and non-

Allophanic soils from 0–15 to 15–30 cm sample depths. The

best-fit lines representing the boundary line (BL), quantile

regression (QR), and organic C loading (OCL) methods apply

only to non-Allophanic soils. The shaded regions represent the

95 % confidence interval for the relationship derived by each

estimation method
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Mineral SA and organic carbon loading

The result of this study and those of Six et al. (2002)

and Feng et al. (2011) showed clear differences in the

relationship between SOC and the mass proportion of

fine particles in soils of different mineral composition.

This indicates that the mass proportion of fine soil

particles alone is not sufficient to explain the variabil-

ity in soil C stabilisation capacity across a wide range

of soils and that other properties of the fine fraction

may be important in defining the stabilisation capac-

ity. One well established and potentially important

difference between soils of different mineral compo-

sition is the specific SA (Theng et al. 1999; Hedley

et al. 2000). Previous studies have shown that the

specific SA of whole soils is positively correlated to

the SOC concentration in bulk soil and in particle size

fractions (Kahle et al. 2002b, 2003; Kaiser and

Guggenberger 2003; Mayer 1994; Wiseman and

Püttmann 2005; Zinn et al. 2007). Other studies have

reported apparent differences in the organic C stabi-

lisation capacity in soils of contrasting mineralogy

(Schulten and Leinweber 2000; Denef et al. 2004).

Because many soils are composed of a mixture of clay

minerals [e.g. allophane, and 1:1 (kaolinite), and 2:1

clay (mica, smectite, vermiculite)] with different

specific SAs (Theng et al. 1999; Hedley et al. 2000;

Parfitt et al. 2001), a measure of soil SA could provide

a more universal predictor of organic C stabilisation

capacity than the mass proportion of fine particles.

Where the specific SA of soil particles is known, the

results of previous studies suggest that the upper limit

of soil C storage in the fine fraction is approached at a

monolayer equivalent C loading of *1 mg C m-2

(Mayer 1994; Keil et al. 1994). Although the assump-

tions of the mono-layer equivalent loading method

have been challenged (Mayer and Xing 2001; Wagai

et al. 2009), evidence of SOC loadings[1 mg C m-2

are typically associated with coarse mineral fractions

with a high proportion of labile (unstable) organic C

(Kahle et al. 2002a; Mayer 1994; Wiseman and

Püttmann 2005). Those cases where estimated SOC

loadings are \1 mg C m-2 are typically associated

with cropping soils or deep soil horizons, where C

inputs are typically lower. Feng et al. (2011) used the

organic C loading method to estimate the soil C

Table 3 Estimates of the stabilisation capacity of fine soil

particles (\20 lm) in New Zealand soils based on boundary

line (BL) and quantile regression (QR) modelling with forced 0

intercepts and the organic C loading method (OCL) compared

with those reported by Feng et al. (2011)

Source/method Layers (cm) Datasets Slopea P n

New Zealand

BL 0–15 Non-Allophanic 1.16 ± 0.11 \0.0001 22

Allophanic 1.53 ± 0.17 \0.0001 9

15–30 Non-Allophanic 0.56 ± 0.05 \0.0001 21

Allophanic 0.86 ± 0.07 \0.0001 7

QR 0–15 Non-Allophanic 1.23 ± 0.09 \0.0001 184

Allophanic 2.35 ± 0.11 \0.0001 29

15–30 Non-Allophanic 0.64 ± 0.07 \0.0001 177

Allophanic 1.14 ± 0.06 \0.0001 36

OCL 0–15 Non-Allophanic 0.62 ± 0.04 \0.0001 207

Allophanic 1.35 ± 0.09 \0.0001 29

15–30 Non-Allophanic 0.28 ± 0.01 \0.0001 200

Allophanic 0.70 ± 0.04 \0.0001 36

Feng et al. (2011)

BL 1:1 Minerals 0.43 ± 0.04 \0.0001 5

2:1 Minerals 0.84 ± 0.04 \0.0001 20

OCL 1:1 Minerals 0.15

2:1 Minerals 0.80

a Units are mg C g-1 fine fraction soil particles ± 1 SE
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stabilisation capacity of the fine fraction from their

meta-analysis of data from 32 independent studies. To

do this, they assumed specific SAs of 15 and

80 m2 g-1 for soils dominated by 1:1 and 2:1 clay

minerals, respectively, based on the average specific

SA of selected 1:1 (i.e. kaolinite) and 2:1 (i.e.

montmorillonite, vermiculite and illite) minerals

obtained from Mitchell and Soga (2005).

In this study, we used measurements of the water

content of air-dried soil to estimate SA following the

method of Parfitt et al. (2001) as described above. We

recognise that some SA arises from organic C itself but

inspection of the data with multiple regression indi-

cated that clay content was a more important driver of

water content than SOC content, particularly for the

Allophanic soils. This is a topic that requires further

investigation, but at this stage water content is the best

measure of SA that is available. The SA estimates

ranged from 5.8 to 227 m2 g-1 of soil, but were

skewed to the low end of the range. The median values

were 57 m2 g-1 for 0–15 cm soil and 45 m2 g-1 for

15–30 cm soil. We then applied the same organic C

loading rate (*1 mg C m-2) used by Feng et al.

(2011) to our estimated SAs to predict the SOC

stabilisation capacity of individual soils. The slope of

the LSR between this estimate of stabilised SOC and

the mass proportion of the fine fraction in 0–15 cm

non-Allophanic soils (0.62 ± 0.04) was lower than

the slope reported by Feng et al. (2011) (based on an

assumed SA) for soils dominated by 2:1 minerals

(0.80), but much higher than their estimate for soils

dominated by 1:1 minerals (0.15; Table 3). However,

the slope of the relationship between the SOC content

and mass proportion of fine particles in 0–15 cm

Allophanic soils was about 1.7 times the values

reported for 2:1 soils by Feng et al. (2011). By

comparison, the slope of the relationship for both

Allophanic and non-Allophanic soils at 15–30 cm

depth was about one-half that reported for 0–15 cm

soils.

We also investigated the relationship between the

specific SA of soil (estimated from air-dried water

content) and the SOC content of the fine fraction for

both sample depths. There was a strong positive linear

relationship between the log-transformed SA of air-

dried soil and the log-transformed SOC content of the

fine fraction for both sample depths (Fig. 3). The 95 %

CIs showed a clear separation of median (s = 0.5) and

90th percentile (s = 0.9) quantile lines. Plots of the

untransformed data at both depths emphasize that the

uncertainty in this relationship increases with

increases in mineral SA, as evidenced by widening

95 % CIs (data not shown). Contrary to the linear

organic C loading rate assumed by Feng et al. (2011),

our results suggest that the relationship between the

SA and SOC content of the fine fraction is best

explained by a non-linear relationship of the form:

log Csð Þ ¼ a0;s þ a1;s � logðSAÞ þ e;

where log(Cs) is the log of SOC (mg C g-1), log(SA)

is the log of the surface area (m2 g-1), a0 is the

intercept for a given quantile s with residuals e. The

coefficients and 95 % CIs for the median (s = 0.50)

and 90th percentile (s = 0.90) regressions in 0–15 and

15–30 cm soils are given in Table 4.

The slope of the log–log relationship between the

SOC content and specific SA of the fine fraction in this

study was\1.0, which is equivalent to the organic C

loading rate of 1 mg C m-2 used by Feng et al. (2011)

(Fig. 3). Our estimate of a maximum (90th percentile)

organic C loading rate was very close to 1 mg C m-2

in soils with a relatively low to moderate specific SA.

However, there was a greater divergence in the

estimates of maximum organic C loading at the high

end of the specific SA range, particularly in the soils

from the 15–30 cm sample depth. This may be due to

true under saturation of soils with a high specific SA or

it may indicate that some of the mineral SA is

inaccessible (or less accessible) for SOC adsorption.

Furthermore, the role that Al and Fe oxides play in

relation to mineralogy and specific SA are not well

understood and may be important to reconciling

differences between the organic C loading method

and other statistical methods discussed above.

Multivariate QR analyses

Correlation analyses showed that specific SA was the

most important soil property among those we assessed

to explain variability in the SOC content of the fine

fraction (Table 5). Several other variables (extractable

Al and Si; soil pH) also exhibited significant relation-

ships with soil C. There was a positive relationship

with extractable Al, with Al-p giving a slightly

stronger correlation than Al-o. This observation is

consistent with the finding of Percival et al. (2000) that

Al is an important determinant of the SOC storage
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capacity of New Zealand soils. Concentrations of Al

are particularly high in the Allophanic and podzol soils

and this might help to explain the relatively high C

stocks in these soils. Our analysis indicated that soil C

tended to decrease as soil pH increased; however, the

effect of pH was relatively weak (Table 5). Previous

studies of factors underpinning soil C storage have not

identified pH as a significant explanatory variable and

the reason why pH might had a negative influence on C

in our soils is not clear. Raising pH can result in

desorption of some organic matter from Al and Fe

surfaces, although the amounts released are probably

small in relation to the total stock of soil organic

matter. The bacterial decomposition pathway tends to

dominate at higher pH, and possibly leads to more

mineralisation of SOC.

Based on the results of our correlation analyses,

multivariate QR analyses were undertaken to identify

the relationship that best explained variability in the

SOC content of the fine fraction. In this case, all the

explanatory variables in Table 5 were initially

included followed by a model selection process to

find the best fit for each QR. There are a variety of

possible strategies for model selection in the literature

for QR (Koenker 2005), but in this case we selected

the best model on the basis of minimisation of the

Akaike Information Criterion, AIC (Burnham and

Anderson 2002), while at the same time ensuring that

the coefficients of each model were physically plau-

sible. The AIC provides a measure of the relative

quality of one regression model compared to others by

incorporating the trade-off between goodness-of-fit

and model complexity. When used in this manner, the

AIC criterion defined for QR yields a model that may

have better predictive ability, but one that is possibly

not as parsimonious as the optimal model (Koenker

2005). The best-fit multivariate regression yielded a

relationship of the form:

log Csð Þ ¼ a0;s þ a1;s � logðSAÞ þ a2;s � ½pH� þ a3;s

� ½pH�2 þ a4;s � logðAl� pÞ þ e;

where log(C) is the log of SOC (mg C g-1) as defined

by the specific surface area (SA), pH, and Al-p for a

Fig. 3 The quantile

relationships between

specific surface area

(m2 g-1) and the soil

organic C content of the fine

fraction (mg C g-1) in both

Allophanic and non-

Allophanic soils at 0–15 and

15–30 cm depths. The

shaded regions are the 95 %

confidence interval of the

quantile estimates

Table 4 Coefficients for the best-fit single-variable quantile regressions for predicting log(C) from estimates of soil specific surface

area in 0–15 and 15–30 cm soils

Layers (cm) Variables Median

s = 0.50

90th Percentile

s = 0.90

Estimates 95 % CIa Estimates 95 % CI

0–15 Intercept 0.51 [0.28, 0.67] 0.87 [0.50, 1.44]

Log(SA) 0.76 [0.72, 0.81] 0.76 [0.63, 0.86]

15–30 Intercept 0.11 [-0.09, 0.37] 0.88 [0.21, 1.33]

Log(SA) 0.72 [0.65, 0.77] 0.63 [0.51, 0.80]

a 95 % confidence interval (CI)
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given quantile s with residuals e. The coefficients and

95 % CIs for the median (s = 0.50) and 90th percen-

tile (s = 0.90) regressions in 0–15 and 15–30 cm soils

are given in Table 6.

The best-fit 90th percentile quantile (s = 0.90)

regression models described above were used to

predict the SOC content of the fine fraction

(0–15 cm soils) from measurements of the mass

proportion of fine soil particles, soil SA or SA in

combination with Al-p and pH. These predicted results

were then plotted against the measured results to show

the improvements made in estimating fine fraction

SOC content using the multivariate regression com-

pared with the single variable regression models

(Fig. 4). The single-variable regression with log-

transformed fine-fraction C content as the response

variable and log-transformed SA as the predictor is a

model that is a subset of the multivariate regression

involving SA, pH, and Al-p, so comparison between

these models on the basis of the AIC is valid. For

0–15 cm soils, the change in AIC between the single

and multiple variable models (-71.2 at s = 0.50 and

-95.5 at s = 0.90) indicates that the multivariate

relationship is significantly better. Results for the

15–30 cm layer (-96.5 at s = 0.50 and -91.2 at

s = 0.90) also provide strong evidence that the

multivariate model is a significant improvement on

the single variable model based on SA alone. While it

is not possible to use AIC to compare the single or

multivariate models based on SA to the single-variable

model based on the mass proportion of fine particles,

the improvements are clearly visible in Fig. 4. It

Table 5 Matrix of the correlation q for 0–15 cm soil between response log(C) and the explanatory factors

q Log(C) pHa Log(Al-p) Log(Al-o) Log(Si-o) Log(SA) Clay

Log(C) 1.00 -0.37 0.72 0.68 0.40 0.81 0.16

pH 1.00 -0.34 -0.23 -0.04 -0.22 -0.05

Log(Al-p) 1.00 0.90 0.56 0.69 0.03

Log(Al-o) 1.00 0.76 0.77 0.04

Log(Si-o) 1.00 0.57 0.01

Log(SA) 1.00 0.40

Clay 1.00

a SA (specific surface area), pH, Al-p, Al-o and Si-o are as defined in the methods

Table 6 Coefficients for the best-fit multivariate quantile regressions for predicting log(C) from selected soil properties in 0–15 and

15–30 cm

Layers (cm) Variablesa Median

s = 0.50

90th Percentile

s = 0.90

Estimates 95 % CIb Estimates 95 % CI

0–15 Intercept 6.61 [4.54, 8.35] 6.36 [4.82, 23.5]

Log(SA) 0.610 [0.580, 0.664] 0.568 [0.451, 0.672]

pH -1.69 [-2.30, -0.929] -1.41 [-9.08, -0.771]

(pH)2 0.135 [-0.049, -0.178] 0.103 [-0.041, -0.792]

Log(Al-p) 0.144 [0.117, 0.191] 0.040 [-0.019, 0.082]

15–30 Intercept 2.10 [-3.00, 3.66] 4.80 [2.41, 12.4]

Log(SA) 0.479 [0.374, 0.538] 0.405 [0.332, 0.627]

pH -0.116 [-0.713, 1.78] -0.744 [-3.64, -0.033]

(pH)2 -0.001 [-0.172, 0.058] 0.040 [-0.011, 0.335]

Log(Al-p) 0.189 [0.168, 0.246] 0.167 [0.056, 0.207]

a SA (specific surface area), pH and Al-p are as defined in the methods
b 95 % confidence interval (CI)
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should be noted that the results of our study did not

provide clear and irrefutable evidence of a limiting

response of organic C using any of the models we

investigated. Formal tests of such a limiting behaviour

have been proposed in the literature (Milne et al. 2006)

for bivariate data, but it is far from clear how one

would test for limiting behaviour with multivariate

data. Consequently, we believe that the QR models

proposed in this study (i.e., using SA or the multiple

factors) should more accurately be described as

providing a prediction of the lower bound of the true

upper limit of SOC stabilisation.

SOC saturation deficit

In the final phase of our research, we used the

multivariate model to predict the SOC saturation deficit

for each soil in our dataset. In this case, the saturation

deficit was defined as the difference between the fine

fraction SOC contents estimated for the upper quantile

(90th percentile, s = 0.90) and median quantile

(s = 0.50) regressions. The CI for this difference was

estimated by assuming that the two quantile estimates

were uncorrelated, yielding a conservative estimate of

the interval. For each point in the analysis dataset, the

potential increase in SOC concentration from the

median (s = 0.50) to the upper quantile (s = 0.90)

was calculated, along with the 95 % CI of the concen-

tration increase. This difference was taken to represent

the saturation deficit. These values were plotted against

both the SOC content and the mass proportion of

fraction particles (Fig. 5). The results of these model

predictions suggest that the median saturation deficits

for 0–15 cm soil was 12 mg C g-1 and for 15–30 cm

soil was 15 mg C g-1. In the 0–15 cm soils, all the soils

with a fine fraction C content \60 mg C g-1 had

positive saturation deficit values and [93 % of those

values had CIs that did not overlap with 0. In those

0–15 cm soils with a fine fraction C content

[60 mg C g-1, all but two of the soils had positive

Fig. 4 Measured fine

fraction C content (mg C

g-1) compared with the fine

fraction C content estimated

(predicted) from single

variable quantile (s = 0.90)

regressions based on a the

mass proportion of the fine

fraction, or b the specific

water surface area of soils,

and c a multivariate quantile

(s = 0.90) regression based

on specific surface area, pH

and pyrophosphate-

extractable aluminium (Al-

p). The results presented are

for both Allophanic and

non-Allophanic soils
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saturation deficit values and[60 % of those values had

CIs that did not overlap with 0. Similar differences were

noted for the 15–30 cm soils, albeit over a narrower

range of fine fraction C contents. Although, on average,

the saturation deficit remained relatively constant across

a wide range of fine fraction SOC contents, there was

some evidence that the saturation deficit increased

slightly with increases in the mass proportion of fine soil

particles.

These data provide strong evidence, at least empir-

ically, that a positive saturation deficit exists, based on

the application of the best-fit multivariate regression

model described above, and taking into account the

inherent uncertainty in the modelling. Although it is

clear that the saturation deficit is no smaller than the

values presented here, we are unable to say with

certainty how large the deficit is since we were unable

to find clear evidence of a limiting response of SOC

from the available data. In part, the difficulty lies in the

soil sampling approached used to establish the NSD

dataset, which imposed some limitations on the inter-

pretation of results from this study. The NSD sample

sites were selected to broadly represent specific land use

and soil type characteristics, but were not necessarily

selected to represent the extremes of these categories in

relation to potential SOC storage. Further work is

needed to identify those extreme conditions, and the

SOC contents associated with them, in order to improve

our confidence in the prediction of SOC saturation

deficits.

Based on the median values given above and

assuming a fixed bulk density of 1.1 g cm-3, we

calculated the size of the potential SOC stock increase

that could be achieved if the saturation deficit was filled

(i.e. if the potential increase was met). At a total SOC

content of 25 mg C g-1 in the top 15 cm, the median

increase would amount to about 19.8 Mg C ha-1, or a

48 % increase on the current stock of 41 Mg C ha-1.

At 75 mg C g-1 in the top 15 cm, the median increase

would be equivalent to a 16 % increase on a current

stock of 124 Mg C ha-1. We do not intend to imply by

these results that it may be possible to fill any large

proportion of the potential saturation deficit in most

soils in any meaningful timeframe. However, studies of

Fig. 5 The saturation

deficit of stable soil organic

C in relation to a the fine

fraction C content (mg C

g-1 soil) and b the mass

proportion of fine particles

of Allophanic and non-

Allophanic soils collected as

two sample depths (0–15

and 15–30 cm). The error

bars are the 95 %

confidence interval of the

saturation deficit estimates
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this form can help us to understand which soils or soil

characteristics may be most useful to target in devel-

oping SOC sequestration strategies or practices that

may help to mitigate any SOC losses that result from

land use change or intensification of agriculture. Further

research is needed to identify the key soil properties and

primary mechanisms that affect SOC stabilisation, as

well as any biophysical factors that may limit the rate of

SOC stabilisation in soils that have a significant

saturation deficit.
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