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Abstract In the tropics, highly weathered soils with

high phosphorus (P) fixation capacities predominate,

reducing the P availability to plants. For this reason,

understanding the cycle of P in the soil is important to

develop management strategies that increase P avail-

ability to plants, especially in low-input production

systems. The aim of this study was to apply structural

equation modeling with latent variables, at an explor-

atory level, to test hypothetical models of the P cycle

using data from the Hedley extraction method. Specif-

ically, we evaluated interactions between the pools of P,

and identified which pools act as a sink or source of P in

unfertilized soils. The models of the P cycle for the

tested soil were able to distinguish between the direct

and indirect effects of labile and stable P on the available

P pool. This approach led to a proposed distinction of

functional P pools in the soil, and identifying the

processes of P transformation in the soil between the

pools based on a source–sink relationship. Based on

these analyses, the organic pool consists of the bicar-

bonate organic phosphate (Po), hydroxide Po, and sonic

Po fractions. The bicarbonate inorganic phosphate (Pi)

and hydroxide Pi fractions formed the inorganic pool.

The hydrochloride (HCl) Phot and residual P fractions

formed the occluded pool, the HCl Pi fraction formed

the primary mineral pool, and the resin Pi fraction

constituted the most available P pool. Organic P pool

was the major source to the available P pool.

Keywords P fractionation � Soil organic P �
Soil P cycling � Factor analysis � Structural

models

Introduction

Phosphorus (P) deficiency is the major nutritional

limitation for agricultural soils in the tropics (Grierson

et al. 2004). In this context, understanding the soil P

cycle is necessary to establish management efficient

strategies to increase plant P availability, especially in

low-input production systems. The P cycle can be

divided into biological and geochemical processes

(Smeck 1985; Frossard et al. 2000) that regulate the
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availability of soil P (Cross and Schlesinger 1995). The

method chosen for evaluating soil P pools greatly

influences estimates of soil P availability. The Hedley

method of sequential extraction or fractionation of P

(Hedley et al. 1982) enables characterization of the

different fractions of inorganic and organic P obtained

based on solubility of inorganic and organic P in

sequential extracting solutions based on changes differ-

ent pH and extracting strength. Resin inorganic phos-

phate (Pi) represents an index of exchangeable P that

any plant would have access to simply by removing

inorganic P from the soil solution by uptake (Sato and

Comerford 2006) Bicarbonate Pi and bicarbonate

organic phosphate (Po) fractions index P that can be

released by ligand exchange with the bicarbonate ion

(Sato and Comerford 2006). Hydroxide Pi, hydroxide

Po, sonic Pi, sonic Po, hydrochloride (HCl) Pi, and

residual P fractions are index P forms that are much

more difficult to move into the soil solution P (Cross and

Schlesinger 1995).

In tropical soils, especially those that are highly

weathered and clayey, the fixation capacity of P is high,

reducing P availability to plants. Thus, the soil with

strong buffering capacity competes with the plants for

the added P, and the soil becomes a sink. In these

unfertilized soils, the availability of P is highly depen-

dent on the mechanisms that the plant roots use for

accessing the range of soil P sources, both organic and

inorganic. The Hedley P fractionation is an effective

method for contrasting soil P forms between and among

different soils and soil treatments. Fractionation of soil P

alone does not permit evaluation of interactions between

P fractions. Path analysis with structural equations has

been used to study the magnitude of interactions

between the different P fractions in temperate soils

(Tiessen et al. 1984; Zheng et al. 2002). This modeling

method permits the decomposition of the correlations

among the observed variables into direct and indirect

effects in a model where the regressions of the

relationships between the variables can be simulta-

neously evaluated (Malaeb et al. 2000; Arhonditsis et al.

2006; Prober and Wiehl 2011). In addition, an essential

characteristic of structural equation modeling (SEM) is

the ability to include latent variables (not measured)

together with the measurable variables in hypothetical

models. The latent variables are used in the models to

represent potential underlying causes, while the mea-

surable variables serve as indicators of the effects or

manifestations of the latent factors (Grace and Bollen

2008). One of the advantages of SEM is its ability to

rank the descriptive ability of different models, thus

enabling comparisons between the models (Mitchell

1992).

Beck and Sanchez (1994) also used path models

(observed variable models) to analyze the transforma-

tions between P fractions in a tropical Ultisol. But as

they did not use structural models (latent variable

models) to evaluate the different P pools as latent

hypotheses with multi-indicators (P fractions). Signif-

icant uncertainties remain and pathways of P transfor-

mations in tropical soils worldwide remain poorly

understood. Accordingly, the present study aimed to

use the method of SEM with latent variables, at the

exploratory level, to evaluate hypothetical models of

the P cycle and to determine the interactions among the

pools of P and to identify which pools act as a P sink or

source in unfertilized tropical soils. We evaluated three

models in this study. Firstly, we formulated an a priori

basic structural model based on our knowledge of soil P

dynamics relationships among five latent variables (P

pools), described by multiple indicator variables (P

fractions): we expected a direct effect of organic pool,

inorganic pool, occluded pool and primary mineral

pool on available pool (Fig. 1). Secondly, the basic

model was split into two sub-models to assess changing

from a multi-indicator to single-indicator model.

Materials and methods

The soil P data were collected from the literature (see

Appendix Table 7) and were restricted to studies that

used the sequential fractionation technique developed

by Hedley et al. (1982) and modified by Tiessen and

Moir (1993). The fractions of P used were resin Pi,

bicarbonate P (Pi and Po), hydroxide P (Pi and Po),

sonic P (Pi and Po), HCl Pi, HCl Phot, and residual P.

The soil properties used in the correlations with the P

fractions were pH, clay content, organic carbon (C),

total nitrogen (N), iron oxides (Feox), and aluminum

oxides (Alox). The data set (N = 81) covers a wide

range of unfertilized soil types under different land use

systems in tropical regions.

Factor and path analysis

Initially, the relations between the P fractions and

various soil properties (pH, clay, organic C, total N,
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Feox, and Alox) were determined using Pearson

correlation coefficients and multiple regression anal-

yses. We made the assumption that the correlation

structure observed from the literature data is the same

that we would obtain from a single random sample.

We used correlation analysis to determine the intensity

ratio of all of the P fractions, while the backward

multiple regression analysis was used with the resin Pi

fraction as the dependent variable and the other P

fractions as independent variables. The P fractions

(independent variable) in the soil that did not contrib-

ute significantly to the estimation of the resin Pi

fraction at P B 0.05 were eliminated using stepwise

regression. The model fit was measured by the

determination coefficient (R2) and by the significance

of the regression and b coefficients of the direct effect

of the independent variables (predictors).

The path analysis was conducted according to

Williams et al. (1990) and performed in two stages: the

first stage included all of the P fractions except the

sonic Pi fraction (eliminated by the test of multicol-

linearity; data not shown), and the second stage

encompassed the P fractions selected only by back-

ward multiple regression. In the path analysis, each

normal equation represents a decomposition of the

correlation coefficient into direct (path coefficient)

and indirect effects between the resin Pi fraction

(dependent variable) and the other P fractions (inde-

pendent variables). The path analysis results were

determined using the following equations (Williams

et al. 1990):

r19 ¼ P19 þ r12P29 þ r13P39 þ r14P49 þ r15P59

þ r16P69 þ r17P79 þ r18P89 ð1Þ

r29 ¼ r12P19 þ P29 þ r23P39 þ r24P49 þ r25P59

þ r26P69 þ r27P79 þ r28P89 ð2Þ

r39 ¼ r13P19 þ r23P29 þ P39 þ r34P49 þ r35P59

þ r36P69 þ r37P79 þ r38P89 ð3Þ

r49 ¼ r14P19 þ r24P29 þ r34P39 þ P49 þ r45P59

þ r46P69 þ r47P79 þ r48P89 ð4Þ

r59 ¼ r15P19 þ r25P29 þ r35P39 þ r45P49 þ P59

þ r56P69 þ r57P79 þ r58P89 ð5Þ

r69 ¼ r16P19 þ r26P29 þ r36P39 þ r46P49 þ r56P59

þ P69 þ r67P79 þ r68P89

ð6Þ

r79 ¼ r17P19 þ r27P29 þ r37P39 þ r47P49 þ r57P59

þ r67P69 þ P79 þ r78P89

ð7Þ

r89 ¼ r18P19 þ r28P29 þ r38P39 þ r48P49 þ r58P59

þ r68P69 þ r78P79 þ P89

ð8Þ

where rij is the simple correlation coefficient between

the P fractions and the resin Pi, Pij are the path

Fig. 1 The hypothesized

structural model for the soil

P cycle
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coefficients (direct effect), and rijPij are the indirect

effects of the P fractions on the resin Pi. The subscripts

are (1) bicarbonate Pi, (2) bicarbonate Po, (3)

hydroxide Pi, (4) hydroxide Po, (5) sonic Po, (6)

HCl Pi, (7) HCl Phot, (8) residual P, and (9) resin Pi.

The model residual (U) was calculated using the

following equation:

U ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� R2
p

where R2 is the determination coefficient. The corre-

lation, multiple regression, and path analyses were

done using the software SAEG 8.0 (SAEG Inst. Inc.).

Exploratory factor analysis was used to test the

hypothesis that functional P pools can be distinguished

(non-measurable variables—latent) based on the pattern

of covariance between the P fractions. Following this

system, pools of P are formed as a function of their

solubility in the range of extractions represented by the

Hedley procedure as described above (Gijsman et al.

1996; Novais and Smyth 1999). A basic assumption of

the factor analysis is that some latent structure (pool of

P) exists in the set of selected variables (P fractions),

accordingly we used four factors (latent variables)

considered sufficient to represent the latent structure of

the data. A factor loading of C0.60 was used as a

selection criterion to interpret the role that each variable

(P fraction) plays in the definition of each factor (pool of

P), considering the sample size of the database (N = 81)

at a significance level of 5 %. The factor loadings are the

correlation of each variable with the factor; therefore,

they indicate the degree of correspondence between the

variable and the factor (Hair and Anderson 2010). The

factor analysis was done using the GENE 7.0 software

package (GENE Inst. Inc.).

Structural equation modeling

The results of the isolated multiple regression, path,

and factor analyses served as a basis for the develop-

ment of candidate models of the P cycle in the soil.

These models constitute null hypotheses, and the

method of SEM was used for model evaluation. SEM

is included in the class of generalized linear models,

allowing for the simultaneous testing of a set of

regression equations. As a flexible multivariate ana-

lysis method that includes factor and path analysis,

SEM is ideally suited to evaluate the relative impor-

tance of the pathways in hypothetical models and to

compare models with experimental data (Mulaik

2009; Allison et al. 2007). The SEM variables are

classified into two major groups according to two

criteria. The variables may be observable (P fractions)

or latent (pools of P). The former are based on direct

measurement, while the latter are identified only by

their effect on the observable variables. The latent

variable (or structural) model specifies the causal

relationships among the latent variables, enabling the

study of the interdependence between the variables,

including the determination of whether they are

related (Arhonditsis et al. 2006). In addition, this

model also allows for testing of the indirect effects that

may be mediated by another intermediate variable

(Doblas-Miranda et al. 2009).

Structural equation modeling diagrams typically

use two symbols to indicate the relationship between

different variables: a single arrow, which indicates a

direct action or causal relation of the variable from

which the arrow departs (exogenous variable) on the

variable to which the arrow points (endogenous

variable), or a double arrow, indicating a covariance

between the variables involved. Because one of the

goals of SEM is to determine the regression coeffi-

cients for each of these relationships, each endogenous

variable in the model and each arrow that points to it

are considered. As a result, we obtain a set of

equations, namely structural equations that, in turn,

will produce a system of linear equations in which the

unknown factors are the coefficients of multiple

regressions (Kline 2005; Mulaik 2009).

For testing hypothetical models of the P cycle, at

the exploratory level, we first designed a preliminary

basic structural model (Model generating) with five

latent variables to evaluate the relative importance of

P pools affecting the soil available P. These included

the organic pool, the inorganic pool, the occluded pool

and the primary mineral pool as exogenous variables,

and the available pool as an endogenous variable

(Fig. 1). The exploratory analysis of the basic hypoth-

esized structural model was done in five steps,

according to Malaeb et al. (2000): (1) model specifi-

cation, (2) model identification, (3) parameter estima-

tion, (4) testing model fit, and (5) re-specification of

the model. Thus, the basic model was split into two

sub-models and tested again using the same data. The

goal in this process is to obtain a model that is

consistent with the data based on comparisons

between the covariances in the data and those implied
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by the model (Travis and Grace 2010). The matrix

representation of the structural equation models is

shown in the Appendix 2.

The SEM was implemented using the software

AMOS v 21.0 (IBM; SPSS Inc., Chicago, IL, USA).

We used the method of Maximum Likelihood to

estimate the parameters, and to assess the general

model fit, we applied the Chi square test (v2). Because

of the Chi square test’s sensitivity to sample size, the

Goodness-of-Fit Index (GFI), the comparative fit index

(CFI), the Akaike Information Criterion (AIC) and the

root mean square error of approximation (RMSEA)

were also considered as alternative measures of model

fit (Malaeb et al. 2000; Grace 2006), assuming that the

observed variables follow a multivariate normal dis-

tribution. Both univariate and multivariate normality

were tested (skewness and kurtosis), followed by

appropriate transformations of all of the observed

variables; namely, we used the Log10 transformation

for the resin Pi, bicarbonate (Pi and Po), sonic Po, and

HCl Pi fractions, and we used the Log (x ? 1)

transformation for the hydroxide P (Pi and Po), HCl

Phot, and residual P fractions. The multivariate kurtosis

was assessed using the Mardia test (Mardia 1974). In

the v2 test, if the null hypothesis was not rejected

(P values [0.05), the model was assumed to have a

good fit. The RMSEA values less than 0.07 suggest an

adequate model fit, and similarly in the AIC index the

preferred model is the one with the lowest value, while

in the GFI and CFI indices the cut-off criterion C0.95 is

indicative of good fit (Hooper et al. 2008).

Results and discussion

Factor and path analysis

The soils used here exhibited a wide variation in

chemical and physical properties (see Appendix

Table 8) and in P concentrations (Table 1). This

variation allowed use of correlation and regression

analyses to assess how the P fractions vary in relation

to soil properties and to determine the interrelation-

ships between the different P fractions. pH values are

positively related to the changes in total soil N and

organic C but are negatively related to the levels of Fe

and Al oxides. Carbon shows a weak relationship with

clay. In contrast, Fe and Al are closely related to the

variation in clay content (see Appendix Table 9).

The interactions between the different P fractions

and other soil properties were also evaluated with

correlation analysis (Table 2). This analysis revealed a

close relationship of the organic P fractions with

organic C and total N, and positive relationships with

the pH and clay content. Additionally, organic C, total

N, and pH also have a positive influence on the

inorganic P fractions. The resin Pi is negatively

correlated with the Fe oxide content. Turner and

Engelbrecht (2011), using NaOH–EDTA extraction

and solution 31P nuclear magnetic resonance spec-

troscopy in soils under tropical forest in Panama,

found close and positive associations of the total soil

inorganic and organic P with soil pH and total soil C,

but clay content did not appear to influence the

contents of soil organic P as determined by simple

correlations. However, Harrison (1987) reported weak

relationship between organic C and organic P in

tropical soils unlike temperate soils.

Another analysis using multiple regressions of the

selected variables shows that only the contents of

organic C and total N had significant direct effects on

most of the P fractions (see Appendix Table 10). The

accumulation of organic C results in an increase in

sonic Po at the expense of labile Po (bicarbonate Po).

Resin Pi and hydroxide Pi were also positively related

to organic C. The total N content was related to the

reduction of bicarbonate Pi and hydroxide Pi amounts

but increased Po amounts (bicarbonate and hydrox-

ide). The clay content and pH had an insignificant

Table 1 Soil phosphorus fractions values of the literature

survey

Mean SD Max. Min. N

Resin Pi (mg kg-1) 6.4 7.5 34.3 0.2 81

NaHCO3 Pi (mg kg-1) 8.5 11.8 58.8 0.1 81

NaHCO3 Po (mg kg-1) 15.7 17.2 103 0.2 81

NaOH Pi (mg kg-1) 34.8 56.2 437 0.1 81

NaOH Po (mg kg-1) 64.8 77.7 496 4.1 81

Sonic Pi (mg kg-1) 7.6 7.7 39 1.0 81

Sonic Po (mg kg-1) 19.8 20.1 101 3.4 81

HCl Pi (mg kg-1) 13.1 22.3 143 0.5 81

HCl Phot (mg kg-1) 104 134 1,043 4.2 81

Residual P (mg kg-1) 119 118 626 4.2 81

Total Po (mg kg-1) 100 111 692 14 81

Total P (mg kg-1) 394 400 2,458 60 81

SD standard deviation, Max. maximum value, Min. minimum

value, N soil samples number

Biogeochemistry (2014) 118:453–469 457
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effect on all of the P fractions. No significant direct

effects of the soil properties were found on HCl Pi,

HCl Phot, and residual P amounts. The total organic P

fraction (bicarbonate, hydroxide, and sonic) was

positively related to the soil properties, but only the

total N had a direct effect on this fraction.

Table 3 shows the interrelationships of the different

P fractions as determined by simple correlations. Close

associations are observed between the P fractions. These

Pearson correlation coefficients were comparable with

those reported by Negassa and Leinweber (2009) for

subtropical and tropical soils. However, detailed infor-

mation regarding the interactions between the different

fractions cannot be obtained from a simple correlation

analysis. Factor analysis can reduce the dimensionality

of the problem by using fewer latent or unobserved

variables to explain variation in the measured variables.

Thus, using factor analysis we obtained four factors that

conceptually clarify the grouping of P fractions

(Table 4): factor 1 represents all of the Po fractions,

factor two represents the Pi fraction of the primary

minerals, factor three represents the occluded P frac-

tions, and factor 4 represents the Pi fraction of the

secondary minerals. Similar results were reported by

Tiessen et al. (1984) for temperate soils.

Table 2 Pearson correlation coefficients between P fractions and selected soil properties

pH C N Feox Alox Clay

Resin Pi 0.51*** 0.54*** 0.71*** -0.57* -0.49� 0.22�

NaHCO3 Pi 0.42*** 0.48*** 0.48*** -0.46� -0.33� 0.11�

NaHCO3 Po 0.33** 0.74*** 0.81*** -0.46� -0.34� 0.30*

NaOH Pi 0.29** 0.48*** 0.45** -0.33� -0.17� 0.11�

NaOH Po 0.45*** 0.75*** 0.83*** -0.31� -0.19� 0.42**

Sonic Po 0.44*** 0.69*** 0.78*** -0.44� -0.31� 0.34*

HCl Pi 0.57*** 0.07� 0.31* -0.60* -0.57* -0.07�

HCl Phot 0.18� 0.35*** 0.39* -0.48� -0.36� 0.32*

Residual P 0.34** 0.53*** 0.73*** -0.56* -0.50* 0.20�

Significant at *** P \ 0.001; ** P \ 0.01; * P \ 0.05; � no significant

Table 3 Pearson correlation coefficients for nine soil P fractions (All the coefficients are significant at P \ 0.001)

NaHCO3 Pi NaHCO3 Po NaOH Pi NaOH Po Sonic Po HCl Pi HCl Phot Residual P

Resin Pi 0.71 0.55 0.68 0.80 0.86 0.65 0.67 0.71

NaHCO3 Pi 0.46 0.79 0.58 0.73 0.64 0.51 0.59

NaHCO3 Po 0.27 0.85 0.72 0.30 0.43 0.63

NaOH Pi 0.50 0.75 0.49 0.55 0.67

NaOH Po 0.89 0.42 0.61 0.73

Sonic Po 0.54 0.80 0.87

HCl Pi 0.43 0.42

HCl Phot 0.77

Table 4 Factor analysis of soil P in different fractions

Factor

1 2 3 4

Factor loading�

Resin Pi – 0.92 – –

NaHCO3 Pi – – – 0.75

NaOH Pi – – – 0.97

NaHCO3 Po 0.99 – – –

NaOH Po 0.86 – – –

Sonic Po 0.65 – – –

HCl Pi – 0.99 – –

HCl Phot – – 0.98 –

Residual P – – 0.62 –

� Only loadings C60 % of the maximum are given
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The relationships between the resin Pi fraction and

the other P fractions were evaluated using a series of

multiple regressions in a path analysis (Table 5). Only

the fractions of organic P (bicarbonate Po, hydroxide

Po, and sonic Po) had a significant direct influence on

the resin Pi fraction. Of these fractions, only the

organic fraction of bicarbonate Po showed a negative

effect. Furthermore, the bicarbonate Po, sonic Po, and

residual P fractions had a significant positive indirect

influence on the resin Pi fraction via the hydroxide Po

fraction. Similarly, the hydroxide Po, HCl Phot, and

residual P fractions had a significant positive indirect

influence on the resin Pi via the sonic Po fraction.

In the backward regression model only the bicar-

bonate Po, hydroxide Po, sonic Po, and HCl Pi

fractions were identified as statistically significant for

predicting resin Pi fractions, with a coefficient of

determination (R2) of 0.84 and a residue (U) of 0.40.

The fractions of organic P explain 71 % of the

variation in the resin Pi fraction (see Appendix

Table 11).

Backward stepwise regression analysis was used to

decompose the correlation coefficients between the

resin Pi and P fractions into direct and indirect effects

(Table 6). The effect of bicarbonate Po on resin Pi

(D = 0.35) was negative and not significant. The

significant positive correlations found in the correla-

tion analysis (Table 3) between bicarbonate Po and

resin Pi and between sonic Po and resin Pi were

attributed to the significant indirect effect of hydroxide

Po (D = 0.51 and 0.53, respectively; Table 6).

Although all of the P fractions analyzed were

significantly related to the resin Pi, only hydroxide

Po and sonic Po had significant direct effects on the

resin Pi, and hydroxide Po had the highest direct effect

(D = 0.60).

Structural equation modeling

The multiple regression, factor, and path analyses

were able to distinguish between the direct and

indirect effects of the soil properties on the P fractions,

as well as to support a hypothetical distinction

between the pools of P in the soil. When these

statistical techniques are used in combination with the

method of SEM, the levels of interdependence

between the pools of P are quantified, and thus, the

cause and effect relationship related to the

Table 5 Path analysis direct effects (diagonal, bold) and indirect effects (off-diagonal) of different soil P fractions on resin Pi

NaHCO3 Pi NaHCO3 Po NaOH Pi NaOH Po Sonic Po HCl Pi HCl Phot Residual P r

NaHCO3 Pi 0.10 -0.18 -0.05 0.34 0.37 0.15 -0.02 \0.01 0.71

NaHCO3 Po 0.05 -0.39* -0.02 0.50* 0.36 0.07 -0.01 \0.01 0.56

NaOH Pi 0.08 -0.10 -0.06 0.30 0.37 0.11 -0.02 \0.01 0.68

NaOH Po 0.06 -0.33 -0.03 0.59* 0.44* 0.09 -0.02 \0.01 0.80

Sonic Po 0.07 -0.28 -0.05 0.52* 0.50* 0.12 -0.03 \0.01 0.86

HCl Pi 0.06 -0.11 -0.03 0.25 0.27 0.23 -0.01 \0.01 0.65

HCl Phot 0.05 -0.17 -0.03 0.36 0.40* 0.10 -0.03 \0.01 0.67

Residual P 0.06 -0.24 -0.04 0.43* 0.44* 0.09 -0.02 \0.01 0.71

U = 0.39

Significant at * P \ 0.05

R2 = 0.85 (P \ 0.05)

r (P \ 0.001)

Table 6 Path analysis direct effects (diagonal, bold) and

indirect effects (off-diagonal) of organic P fractions and HCl Pi

on resin Pi

NaHCO3

Po

NaOH

Po

Sonic

Po

HCl Pi r

NaHCO3 Po -0.35 0.51* 0.32 0.08 0.55

NaOH Po -0.30 0.60* 0.40 0.11 0.80

Sonic Po -0.25 0.53* 0.45* 0.14 0.86

HCl Pi -0.10 0.25 0.25 0.26 0.65

U = 0.40

Significant at * P \ 0.05

R2 = 0.84 (P \ 0.05)

r (P \ 0.001)
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transformation pathway of the element in the soil can

be inferred. Figures 2 and 3 show the versions of the

structural model of the P cycle based on factor

analysis. The biological and geochemical processes

of P in the soil are shown in the conceptual model A, in

which all of the organic P fractions are grouped in the

organic pool and all of the inorganic labile fractions

are grouped in the inorganic P pool. The recalcitrant

fractions (also included the sonic Po fraction) are

associated with the occluded pool, the HCl Pi fraction

is associated with the primary mineral pool, and the

resin Pi fraction constitutes the most exchangeable

pool (Fig. 2). Model A showed an unsatisfactory

overall adjustment based on the Chi square test

(v2 = 165.61, df = 17, P \ 0.0001) and the other

tests (GFI = 0.818; CFI = 0.777; CFI = 0.818;

AIC = 221; RMSEA = 0.331). Conversely, all of

the regression coefficients between the measured

variables (P fractions) and the latent variables (pools

of P) were highly significant (P \ 0.001), which

implies that all of the P fractions were appropriate

indicators of the pools of P, demonstrating a plausible

causality structure via the SEM method. Moreover, the

close relationship between the P fractions and the

pools of P reveals the functional nature of these pools

when one considers that no clear boundaries exist

between the quantified P fractions by the method of

sequential extraction. The covariance values of all of

the P pools (exogenous latent variables) were also

highly significant (P \ 0.001), but the regression

coefficients of the relationship of these P pools with

the resin P (endogenous latent variables) were not

significant. The high covariance between the P pools

(exogenous latent variables) affected the relationship

of each of these pools with the most exchangeable P

pool, yielding an overall apparently null effect for all

of the P sources.

We evaluated the different sub-models assuming

that at least one of the P sources should have a

significant relationship with the resin P pool. Model

B is a simplified version of the complete structural

model, consisting only of the organic and occluded

pools as exogenous variables (Fig. 3). In this model,

the regression coefficient of the relationship between

the organic pool and the resin P pool was significant

(P = 0.003). In contrast, model B also showed an

unsatisfactory overall fit (v2 = 105.13, df = 7,

P \ 0.0001; GFI = 0.842; CFI = 0.761; AIC =

133; RMSEA = 0.419).

Model C, a variation of model B shown in Fig. 4,

illustrates the logical dependency between the P

fractions (measurable variables) and available P pool

(endogenous latent variable). This model is a latent

variable model with single indicator (Resin Pi) and it is

not saturated, as not all of the paths are specified, and

represents a testable hypothesis. The general fit of the

Fig. 2 Model A, structural

equation model for the soil P

cycle. All measured

variables (in boxes) are

represented as effect

indicators associated with

latent variables (in circles).

The numbers correspond to

the standardized parameters

estimated (P \ 0.001).

Error variables

e1 � e9ð and f1Þ are

standardized values. Model

v2 = 165.61, df = 17,

P \ 0.0001
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model was satisfactory (v2 = 3.44, df = 3, P =

0.329; GFI = 0.986; CFI = 0.999; AIC = 39;

RMSEA = 0.043). All the regression coefficients of

the relationships between the P fractions were signif-

icant. The available P pool was directly dependent on

the organic P fractions (P \ 0.05). The hydroxide Po

and sonic Po fractions had a positive direct effect, and

the overall effect of sonic Po was greater [b =

1.67 ? (1.88 9 0.95) = 3.46] than the direct effect

of that fraction. The bicarbonate Po had a direct

negative effect and indirect positive effect via hydrox-

ide Po and sonic Po on the available P pool, but its

overall positive effect was low [b = (0.37 9 1.88) ?

(0.11 9 1.67) ? (0.11 x 1.67 9 1.88) - 0.91) =

0.17]. The indirect effects of the recalcitrant fractions

were complex. The residual P had a negative effect via

hydroxide Po and a positive effect via sonic Po, but its

indirect overall effect was positively very low [b =

(-0.28 9 1.88) ? (0.20 9 1.67) ? (0.20 9 0.95 9

1.88) = 0.16]. In contrast, HCl Phot showed high

overall positive effect [b = (0.55 9 1.67) ?

(0.55 9 0.95 9 1.88) = 1.90]. The residual P had

an overall negative effect on hydroxide Po very low

[b = (0.20 9 0.95) - 0.28 = -0.09].

The model C (Fig. 4) of the P cycle fitted by the

SEM method is theoretically consistent and is likely

general, considering that the present study is a

comprehensive analysis at an exploratory level of the

P fractions in a range of unfertilized tropical soils, but

this model needs confirmation using independent data.

The weak overall adjustment of the tested structural

models A and B (Figs. 2, 3) highlights the need for

future studies to improve the adequacy of these models

or that they are simply inadequate. However, it should

be noted that a well-adjusted model is not necessarily a

valid model (Kenny 2012). A good general fit only

shows that the model adequately describes the

observed data (Mitchell 1992). A model that is not

well adjusted can have parameters that are all statis-

tically significant (Kenny 2012). In this case, within

certain limits, the hypothetical model can be used to

describe the relationships between the variables that

comprise it (Fig. 3), where the regressions of these

relationships are evaluated simultaneously, allowing

for the comparison of the relative importance of the

indicator variables (Malaeb et al. 2000). Moreover, the

close correlation between the measurable variables (P

fractions, Table 3) and the covariance between the

latent variables (P pools) affects the overall degree of

fit of the hypothetical structural models evaluated by

the v2 test (Figs. 2, 3). This type of overall fit index is

affected by the size of the correlations in the model.

Large correlations result in low fit indices (Kenny

2012). Thus, we must consider that this is perhaps a

problem inherent to the structural models of P

fractions in the soil, based on the sequential extraction

method. In this method, the P fractions are not true

independent variables. Thus, given that the variables

that contribute the most to any high collinearity of the

data are discarded, the hypothetical model of the P

Fig. 3 Model B, structural

equation model for the soil P

cycle. All measured

variables (in boxes) are

represented as effect

indicators associated with

latent variables (in circles).

The numbers correspond to

the standardized parameters

estimated (P \ 0.001).

Double asterisks significant

at P \ 0.01. Error variables

e1 � e6ð and f1Þ are

standardized values. Model

v2 = 105.13, df = 7,

P \ 0.0001
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cycle can be evaluated using the set of regression

coefficients to make inferences about the direction and

strength of relationship between their variables, as

obtained using the SEM method (Tiessen et al. 1984;

Beck and Sanchez 1994; Zheng et al. 2002).

Our analysis of the P cycle models, based on all of

the statistical techniques, showed that the resin Pi

(indicator of available P pool) was closely related to

the Po fractions. Thus, there is strong support for the

control of available P pool by the mineralization of

organic P, from which the moderately stable fraction

of hydroxide Po acts as the primary source of available

P pool and as a transitional fraction of the other Po

fractions. In model C (Fig. 4), the labile bicarbonate

Po seems to act as a sink of available P pool,

considering the dependency of available P pool with

respect only to the organic P fractions (indicators of

organic P pool). The sonic Po is also revealed as a

fraction with an important role in the overall dynamics

of P in tropical soils, although this fraction is

considered as the recalcitrant/stable form of Po (Cross

and Schlesinger 1995). This fraction showed a close

relationship with the other recalcitrant P fractions in

the soil. In part, this may occur because the HCl Phot

and residual P fractions have a considerable and very

stable Po content (Tiessen and Moir 1993; Cross and

Schlesinger 1995; Oberson et al. 2001; Linquist et al.

1997; Frizano et al. 2002, 2003; Giardina et al. 2000).

In general, the total organic P made up 25.5 % of

the total P, and the average proportion of the

hydroxide Po of the total organic P was 64.5 %

(Table 1). Other studies reported similar values of the

proportion of organic P (24.9–28.7 %) in strongly

weathered soils, determined by both ignition and

extraction procedures (Sharpley et al. 1987; Harrison

1987; Turner and Engelbrecht 2011). Using path

models, Tiessen et al. (1984) and Beck and Sanchez

(1994) showed that in highly weathered Ultisols,

44–80 % of the variation in resin P was explained by

the organic fractions (bicarbonate and hydroxide). Soil

organic P is a major source of plant-available P in low

input tropical agriculture and forests (Negassa and

Leinweber 2009; Reed et al. 2011). The transforma-

tion pathway of P in the soil, especially the magnitude

of influence of the organic P on the available P,

depends on the type of soil, climate, type of P sources

and land use history. But as a number of factors

contribute to transformations of P fractions, it is

difficult to exactly determine the kinetics of exchange

reactions (Negassa and Leinweber 2009).

The models tested in this study may be used like

tool in understanding of some processes of P cycling in

Fig. 4 Model C, structural

equation model for the soil P

cycle. Hypothesized model

relating labile and stable P

fractions (measured

variables) to available P

pool (latent variable). The

numbers correspond to the

standardized parameters

estimated (P \ 0.001) and

the R-squared values

(numbers in bold). Asterisk,

double asterisk significant at

P \ 0.05 and 0.01

respectively. Error variables

e1 � e3ð and f1Þ are

standardized values. Model

v2 = 3.42, df = 3,

P \ 0.329
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determining the function and productivity of tropical

forest and perennial plants, considering that the

Ultisols and Oxisols are the dominant tropical orders

and are characterized by relatively low P availability

(Reed et al. 2011). As occluded pool of P was the

sparingly available P and organic pool of P was

considered reversibly available (Model C, Fig. 4), the

uptake of P by plants would be regulated by the

turnover of organic P and the rapid recycling of P from

accumulated litter (Turner and Engelbrecht 2011).

However, what is the real contribution of soil organic

P to the nutrition of ecosystems is not yet known.

Therefore, further research is now required to refine

the model C (Fig. 4) to maximize the efficiency of P

use in low-input agricultural systems.

Conclusion

We proposed and analyzed conceptual models of P

cycling in unfertilized tropical soils, finding that the

organic P pool constitutes the main source of available

P pool with resin P fraction as its single indicator. This

result implies that caution should be used in low-input

agricultural systems, when using conventional meth-

ods of soil fertility analysis that are not sensitive

enough to detect changes in the forms of soil P.

Structural equation modeling proved to be a

suitable tool with which to understand the various

possible cycles of P in the tested soils, indicating the

degree to which the alterations in the P level of a pool

can affect the other P pools. Thus, SEM can be used

not only to evaluate hypotheses but also to help

improve them in an exploratory manner.
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Appendix 1

See Tables 7, 8, 9, 10, 11.

Table 7 Studies using sequential phosphorus fractionation for tropical soils under different land use type

Reference Cover Soil type Location

Szott and Melendez (2001) Native forest Typic Humitropept (Inceptisol) Costa Rica

Native forest Typic Paleudult (Ultisol) Peru

Alley cropping/Multistrata agroforest

Lehmann et al. (2001) Native forest Typic Hapludox (Oxisol) Brazil

Secondary forest

Garci-Montiel et al. (2000) Native forest Kandiudult (Ultisol) Brazil

Pastures (13, 20 and 41 years)

Native forest Paleudult (Ultisol)

Pasture (20 years)

Solomon and Lehmamn (2000) Native woodland Chromic Luvisol Tanzania

Solomon et al. (2002) Native forest Plintic Alisol Ethiopia

Native forest Humic Nitisol

Frizano et al. (2002) Secondary forest (16, 30, 51,

66, 300 years)

Oxisols, Ultisols and Inceptsols Puerto Rico

Frizano et al. (2003) Native forest Oxisol (Yellow Latosol) Brazil

Secondary forest (10, 20

and 40 years)

Giardina et al. (2000) Native forest Typic Ustorthents Mexico

Kitayama et al. (2000) Native forest Sedimantary substrate and

ultrabasic substrate

Borneo

Möller et al. (2000) Native forest Humic Cambisol

Secondary forest (15 years) Skeletic Umbrisol

Pinus kesiya (20 years) Dystric Cambisol Thailand
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Table 8 Selected chemical and physical soil properties values of the literature survey

Mean SD Max. Min. N

pH 5.0 0.8 7.6 3.5 62

C (g kg-1) 23.0 18.7 103.0 0.8 70

N (g kg-1) 2.2 2.0 8.2 0.3 34

Feox (g kg-1) 17.3 15.2 42.2 1.0 12

Alox (g kg-1) 1.5 1.4 4.7 0.4 12

Clay (g kg-1) 318 224 800 62 35

SD standard deviation, Max. maximum value, Min. minimum value, N soil samples number

Table 7 continued

Reference Cover Soil type Location

Olander et al. (2005) Native forest Oxisol Brazil

Newbery et al. (1997) Native forest Cameroon

Beck and Sanchez (1994) Secondary forest (17 years) Typic Paleudult (Ultisol) Peru

Leite (2001) Secondary forest Oxisols (Red Yellow Latosol,

Red Latosol) and Cambisol

Brazil

Eucalyptus grandis (21 years)

Pasture

Lilienfein et al. (2000) Eucalyptus grandis Oxisols Brazil

Pinus caribaea

Native savanna

Neufeldt et al. (2000) Native savanna Anionic Acrustox (Oxisol) Brazil

Pinus caribaea

Native savanna Typic Haplustox

Eucalyptus citriodora

Tchienkoua and Zech (2003) Eucalyptus grandis Andic Palehumult Cameroon

Cardoso et al. (2003) Coffee agroforest Oxisol Brazil

Araújo et al. (2004) Native xerophytic vegetation Latosols and Luvisols Brazil

Tiessen et al. (1992) Thorn bush savana Oxisol (Paleustox) Brazil

Agbenin and Goladi (1998) Native savanna Typic Haplustalf (Alfisol) Nigeria

Oberson et al. (2001) Native savanna Tropeptic Haplustox (Oxisol) Colombia

Linquist et al. (1997) Pasture (45 years) Typic Palehumult (Ultisol) Hawaii

Table 9 Pearson correlation coefficients between different selected soil properties

pH C N Feox Alox Clay

pH 1 0.24* 0.53** -0.95*** -0.91*** -0.25�

C 0.97** -0.19� -0.07� 0.38*

N -0.70� -0.72� 0.17�

Feox 0.95** 0.66**

Alox 0.77**

Significant at *** P \ 0.001; ** P \ 0.01; * P \ 0.05; � no significant
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Appendix 2

The general matrix representation of structural

equation models

Structural equations modeling (SEM) is included in the

Generalized Linear Models class, which allows the

simultaneous test of a set of regression equations. In

order to obtain those equations, a fundamental assump-

tion is made: all equations relating the latent and

manifest, exogenous or endogenous variables are linear.

We will examine the matrix equations derived from

the basic hypothesized model (Fig. 1) and model

C (Fig. 4).

In order to write the structural equations in matrix

representation, first we obtain the vectors of endoge-

nous and exogenous variables as well as disturbances,

then the structural coefficients matrices. Each vector is

partitioned in blocks of latent and manifest variables,

as shown below:

N

Y

X

2

4

3

5 ¼
C
Ky

Kx

2

4

3

5

Z

N

� �

þ D 0

0 W

� �

N
E

� �

; ð9Þ

where N is a vector of the latent endogenous variables

g, Y is a vector of the manifest endogenous variables y,

X is a vector of the manifest endogenous variables x, C
is a matrix of structural coefficients relating latent

exogenous variables to latent endogenous variables, Ky

is a matrix of structural coefficients relating manifest

endogenous variables y to latent endogenous variables,

Kx is a matrix of structural coefficients relating

manifest endogenous variables x to latent exogenous

Table 10 Multiple regressions of P contained in different fractions with selected soil properties

b (direct effect) R2

pH C N Clay

Resin Pi 0.186� 1.163* -0.589� 0.194� 0.61 (P B 0.01)

NaHCO3 Pi 0.301� 1.528* -1.233* 0.004� 0.39 (P [ 0.05)

NaHCO3 Po 0.170� -1.439* 2.112* 0.159� 0.78 (P B 0.001)

NaOH Pi -0.208� 2.649* -1.984* -0.223� 0.45 (P B 0.05)

NaOH Po 0.138� 0.209 0.525* 0.251� 0.80 (P B 0.001)

Sonic Po 0.053� 0.650* 0.120 0.114� 0.69 (P B 0.001)

HCl Pi 0.665� -1.230* 1.001* 0.292� 0.29 (P [ 0.05)

HCl Phot 0.008� -0.273� 0.584� 0.217� 0.17 (P [ 0.10)

Residual P -0.299� 0.401� 0.537� -0.008� 0.60 (P B 0.01)

Total Po 0.133� 0.051� 0.710* 0.223� 0.82 (P B 0.001)

Significant at * P B 0.05; � no significant

Table 11 Multiple

regression of resin Pi with

organic P fractions and HCl

Pi

Regression coefficients b (direct effects)

NaHCO3 Po -0.153053 (P \ 0.00001) -0.352

NaOH Po 0.0575956 (P \ 0.0001) 0.598

Sonic Po 0.167571 (P \ 0.0001) 0.449

HCl Pi 0.0874324 (P \ 0.0001) 0.260

Constant 0.560753

R2 0.844 (P \ 0.00001)

U 0.394

Contribution to R2 (%)

NaHCO3 Po 22

NaOH Po 26

Sonic Po 23

HCl Pi 29
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variables, Z is a vector of the latent exogenous variables,

and N and E are vectors of disturbances of latent and

manifest endogenous variables, respectively.

Matrices and vectors in basic hypothesized model

(Fig. 1)

In this model, there are:

(a) Latent endogenous variables: The most available

P pool

(b) Latent exogenous variables: Organic P pool,

Primary minerals pool, Occluded P pool, Inor-

ganic P pool.

(c) Disturbance related to latent endogenous vari-

ables: f1.

Structural equation:

g1 ¼ c1;1n1 þ c1;2n2 þ c1;3n3 þ c1;4n4 þ f1 ð10Þ

where g1 ? Available pool

n1 ? Organic Pool

n2 ? Occluded Pool

n3 ? Inorganic Pool

n4 ? Primary minerals Pool

Matrix:

N½ � ¼ C½ � Z½ � þ D½ � N½ �; ð11Þ

where, N = [g1], the vector of manifest endogenous

variable. C is the block matrix c1;1 c1;2 c1;3 c1;4

� �

of structural coefficients matrix relating just the

latent exogenous variables to the latent endogenous

variable g1.

Z ¼

n1

n2

n3

n4

2

6

6

4

3

7

7

5

; the vector of latent exogenous

variables.

D = [1], the 1 9 1 matrix of disturbance related to

the latent endogenous variable g1.

N ¼ f1½ � ; the vector of disturbance related to latent

endogenous variable.

So that, (Eq. 12) becomes:

g1½ � ¼ c1;1 c1;2 c1;3 c1;4

� �

n1

n2

n3

n4

2

6

6

4

3

7

7

5

þ 1½ � f1½ �;

ð12Þ

Matrices and vectors in model C (Fig. 4)

Now, in this model we have:

(a) Latent endogenous variables in the model:

Available Pool

(b) Manifest endogenous variables in the model:

Resin Pi, NaOH Po, Sonic Po.

(c) Latent exogenous variables in the model: none

(d) Manifest exogenous variables in the model:

HCO3 Po, HCl Phot, Residual P.

(e) Disturbance related to latent endogenous vari-

ables: f1

(f) Disturbance related to manifest endogenous

variable: e1; e2; e3

Therefore we obtain:

Y

N

� �

¼ K 0

Bx By

� � N

X

Y

2

4

3

5þ D 0

0 W

� �

E

N

� �

ð13Þ

Y ¼
y1 ¼ Resin Pi

y2 ¼ NaOH Po

y3 ¼ Sonic Po

2

4

3

5 ; the vector of manifest

endogenous variables.

N = [g1], the vector of latent endogenous

variable.

K = [k1,1], the structural coefficient matrix relating

latent endogenous variables to manifest endogenous

variables y1.

Bx ¼
0 b1;2 b2;2

0 b1;3 b2;3

0 b1;1 0

0

b3;3

0

2

4

3

5 ; the structural coeffi-

cients matrix relating manifest endogenous variables x

to endogenous variables y2 and g1.

By ¼
0

0

0

0 b3;2

0 0

b2;1 b3;1

2

4

3

5 ; the structural coefficients

matrix relating manifest endogenous variables y to

endogenous variables y2, y3 and g1.

X ¼
x1 ¼ HCO3Po

x2 ¼ Residual P

x3 ¼ HCl Phot

2

4

3

5 ; the vector of manifest

exogenous variables.

D ¼
1 0 0

0 1 0

0 0 1

2

4

3

5:

W ¼ 1½ � ; the 1 9 1 matrix of disturbance related to

the latent endogenous variable g1.
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The 0 on the right of W is a 1 9 3 block matrix of

zeros and the down 0 to W is a 3 9 1 block matrix of

zeros.

D is the 3 9 3 identity matrix (a matrix

with 3 rows and 3 columns with 1 in each position

of its principal diagonal and 0 elsewhere) of

disturbance related to the manifest endogenous

variables.

E ¼
e1

e3

e4

2

4

3

5 ; the vector of disturbances related to

manifest endogenous variables.

N ¼ f1½ �:
So that, (Eq. 13) becomes:

y1

y2

y3

g1

2

6

6

6

4

3

7

7

7

5

¼

k1;1 0 0 0 0 0 0

0 b1;2 b2;2 0 0 0 b3;2

0 b1;3 b2;3 b3;3 0 0 0

0 b1;1 0 0 0 b2;1 b3;1

2

6

6

6

4

3

7

7

7

5

g1

x1

x2

x3

y2

y2

y3

2

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

5

þ

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

2

6

6

6

4

3

7

7

7

5

e1

e2

e3

f1

2

6

6

6

4

3

7

7

7

5

;

ð14Þ
If we suppose that the covariances between latent

exogenous variables, n, and the disturbance variables,

e, are zero, as well the covariance between manifest

exogenous variables, x, and disturbance variables, we

obtain the following block matrix of covariance,

formed by the model structural coefficients:

H ¼
Hnn Hn x 0

Hxn Hxx 0

0 0 Hee

2

4

3

5

Now, in order to relate the covariances between the

original manifest endogenous variables, y, and man-

ifest exogenous variables, x, with the matrix U, we

need to extract them from block vectors
N

Y

� �

and

N
X

E

2

4

3

5. To accomplish it, we perform the following

operations:

Y ¼ 0 I½ � N

Y

� �

and X ¼ 0 I 0½ �
N
X

E

2

4

3

5:

Defining matrices GY ¼ 0 I½ � and

GX ¼ 0 I 0½ �, the matricial equation is:

Y

X

� �

¼ GY 0

0 GX

� �

g�
n�

� �

¼ GY 0

0 GX

� �

B�1 Cn�
n�

� �

¼ GY 0

0 GX

� �

B�1 0

0 I

� �

C
I

� �

n�;

which, after defining the block matrices G ¼

GY 0

0 GX

� �

; B*�1 ¼ B�1 0

0 I

� �

and C � ¼ C
I

� �

;

produces the following expressions:

Ryy ¼ GyB�1CHCT B�1
� �T

GT
y

Rxy ¼ GxHCT B�1
� �T

GT
y

Rxx ¼ GxHGT
y ¼ Hxx;

which are the covariance matrices for the manifest

variables, therefore, formed by known terms, so that

the three last expressions are true equations, although

their calculations can be lengthy and tedious, in

particular, the inverse matrix, B-1, is usually hard to

calculate. Fortunately, modern software, like AMOS,

performs those calculations without the explicit der-

ivations of the above equations.
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