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Abstract To gain a more mechanistic understand-

ing of how soil organic matter (OM) characteristics

can affect carbon mineralization in tidal freshwater

wetlands, we conducted a long-term in situ field

manipulation of OM type and monitored associated

changes in carbon dioxide (CO2) and methane (CH4)

production. In addition, we characterized microbial

community structure and quantified the activity of

several extracellular enzymes (EEA) involved in the

acquisition of carbon, nitrogen, and phosphorus.

Treatments included a plant litter addition, prepared

using naturally-senescing vegetation from the site,

and a compost amendment, designed to increase the

concentration of aged, partially humified, OM. Both

types of OM-amended soils had CO2 production

rates 40–50 % higher than unamended control soils,

suggesting that the added OM had inherently higher

quality and/or availability than the native soil OM.

Rates of CO2 production were not correlated with

microbial community structure or EEA except a

modest relationship with cellulose breakdown via

the Km of b-1,4-glucosidase. We interpret this lack

of correlation to be a consequence of high functional

redundancy of microorganisms that are capable of

producing CO2. Rates of CH4 production were also

influenced by OM quality, increasing by an order of

magnitude with plant litter additions relative to

compost-amended and control soils. Unlike CO2,

rates of CH4 production were significantly correlated

with the microbial community structure and with

enzyme kinetic parameters (Vmax and Km) for both

carbon (b-1,4-glucosidase, 1,4-b-cellobiosidase, and

b-D-xylosidase) and nitrogen acquisition (leucyl

aminopeptidase). The monophyletic nature of meth-

anogenic archaea, combined with their reliance on a

small select group of organic substrates produced

via enzyme-mediated hydrolysis and subsequent

bacterial fermentation, provides a basis for the

strong links between microbial community structure,

EEA, and CH4 production. Our results suggest that

incorporating microbial community structure and

EEA into conceptual models of wetland OM

decomposition may enhance our mechanistic under-

standing of, and predictive capacity for, biogeo-

chemical process rates.
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Introduction

Though wetlands account for only *10 % of terres-

trial land area (Zedler and Kercher 2005), their

influence on the global carbon (C) cycle is dispropor-

tionately large. For example, wetland soils store

45–70 % of terrestrial organic C (Mitra et al. 2005)

and are responsible for nearly 25 % of global methane

(CH4) emissions (Conrad 2009). Carbon sequestration

is enhanced in these environments due to a combina-

tion of high primary productivity and slow rates of

decomposition. The quality and availability of organic

material (OM), as well as an interacting suite of

environmental factors (e.g., soil moisture and pH),

determine the degree of OM storage versus mineral-

ization to carbon dioxide (CO2) and/or CH4 (Segers

1998; Megonigal et al. 2004; Kayranli et al. 2010).

Understanding how OM properties affect the balance

between sequestration and mineralization is particu-

larly relevant in the context of wetland restoration and

creation, as these activities often involve OM amend-

ments to hasten the development of organic-rich

reduced soils (Davis 1995; Mitsch and Gosselink

2000).

The OM transformations that result in the produc-

tion of CH4 and/or CO2 are driven by diverse

microbial communities that depend on extracellular

enzyme activity (EEA) to breakdown complex organic

polymers into soluble compounds that can be trans-

ported into the cell and metabolized. Consequently,

this depolymerization is the putative rate-limiting step

in OM decomposition (Sinsabaugh et al. 1991) and

enzyme depolymerization rates have been associated

with microbial respiration in aquatic ecosystems

(Arnosti and Holmer 2003; Arnosti and Jørgensen

2006; Baltar et al. 2009). In soils however, surpris-

ingly few studies have explored the relationship

between EEA and either C mineralization rates

(Freeman et al. 1997, 2001; Allison and Vitousek

2005) or the composition of the associated microbial

communities (Kourtev et al. 2003; Gallo et al. 2004;

Costa et al. 2007; Kaiser et al. 2010). Even less

consideration has been given to how these three

components interact. Though some studies have found

a strong relationship between microbial community

composition and activity (Cleveland et al. 2007; Li

et al. 2011; Goberna et al. 2012; Lazar et al. 2012),

many others have not (Galand et al. 2003; Liu et al.

2011; Fromin et al. 2012). One common hypothesis

for this inconsistency is that the high functional

redundancy within microbial communities limits our

detection of community structure–function relation-

ships, especially when considering processes with a

relatively ubiquitous distribution among taxa (e.g.,

respiration to CO2, Griffiths et al. 2000; Nannipieri

et al. 2003). Some have proposed that community

structure only regulates ‘‘narrowly’’ distributed func-

tions (Schimel 1995; McGuire and Treseder 2010),

i.e., ones that are performed by only a small group of

organisms with specialized physiological pathways

such as methanogens.

In this study, we examined how microbial commu-

nity structure and EEA regulate greenhouse gas (CO2

and CH4) production in wetlands receiving long-term

in situ soil amendments of either plant litter or

compost. This research was conducted in a recently

restored tidal freshwater wetland, and the results have

implications for recovering ecosystem services facil-

itated by OM-rich soils in impaired wetlands while

simultaneously minimizing the production of CH4.

Methods

Experimental design

In January 2011, soil (5–15 cm depth) was collected

from the middle of a 30-ha tidal freshwater wetland at

Virginia Commonwealth University’s Walter and

Inger Rice Center for Environmental Life Sciences

(James River, Charles City County, VA, USA;

37�2000500N, 77�1202700W). This wetland was an

impounded lake for nearly 70 years before a storm

breached the dam and restored natural wetland

hydrology to the site in 2006. The site was continually

saturated, usually with standing water on the surface,

and dominated by obligate wetland vegetation such as

Leersia oryzoides, Juncus effusus, and Nuphar luteum.

The soil had an OM content of 8 %, a C:N ratio of 10

(by mass), a pH of 6.4, and soil texture was 30 % sand,

55 % silt, and 15 % clay. Following extensive

homogenization in the laboratory, one fraction of the

collected soil was amended with plant litter (standing
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dead material of the above mentioned species har-

vested from the field site in early December 2010;

99 % OM content, C:N = 72). A second fraction was

amended with compost (Black Kow, Oxford, FL;

organic blend containing 26 % OM, C:N = 18). The

compost and litter amendments were similar in

particle size (0.1–5 mm in diameter). Amendments

were added to raise the soil OM content to approxi-

mately double ambient levels. A third soil fraction was

unamended and served as an experimental control.

Litter bags (12 cm 9 22 cm), constructed of 0.5-mm

Nitex mesh (Wildlife Supply Company, Buffalo, NY,

USA), were filled with 400 ml (*215 g dry weight)

of control or amended soil for in situ incubation. In

January 2011, 10 bags of each type were buried

(5–15 cm depth) at random locations within a single

20 9 20 m experimental plot near the soil collection

site. Samples were incubated for either 6 or 18 months

(until July 2011 and 2012, respectively). At each

sampling event, five replicate bags of each type were

collected, as were five intact field cores. Samples were

placed in airtight plastic bags, quickly transported

back to the laboratory, and subdivided for soil

characterization (200 g) and molecular genetic anal-

yses (5 g, immediately archived at -20 �C). For the

18-month sampling, subsamples were also removed

for determination of CO2 and CH4 production (40 g,

stored for 7 days at 4 �C) and analysis of extracellular

enzyme activities (10 g, stored up to 5 days at 4 �C).

The field cores were analyzed only for soil properties

and gas production rates, and served to provide context

for interpreting the experimental manipulations.

Environmental analyses

At both the 6- and 18-month sampling events, soil

redox potential and pH were measured using a Hanna

Combo pH and ORP probe (QA Supplies, Norfolk,

VA, USA). Soil moisture (%) was determined gravi-

metrically (100 ± 5 �C for 72 h), and OM (%) was

measured as the mass loss on ignition following

combustion at 500 �C for 4 h. Total carbon and

nitrogen contents were determined using a Perkin

Elmer CHNS/O Analyzer (Waltham, MA, USA)

following grinding and acidification of samples using

10 % hydrochloric acid.

In addition, at the 18-month sampling, porewater

was extracted and analyzed for dissolved nutrient

concentrations. Briefly, water was collected from

50-ml soil samples by centrifugation (3,0009g for

15 min), filtered using a 0.45 lm pore-size mixed

cellulose ester syringe filter, and stored at -20 �C

until it could be analyzed for: (i) ammonium (NH4
?)

using the indophenol colorimetric assay of Grasshoff

et al. (1983), (ii) dissolved organic carbon (DOC)

using a Shimazdu TOC analyzer (Columbia, MD,

USA), (iii) total dissolved nitrogen (TDN) and phos-

phorus (TDP) using a Skalar Sans Plus System

(Buford, GA, USA).

Molecular analyses

Whole-community DNA was extracted from 0.5-g

subsamples of soil using the MoBio PowerSoil DNA

Isolation Kit (Carlsbad, CA, USA) and stored at

-20 �C. DNA purity and concentration were analyzed

using a Nanodrop ND-1000 (Thermo Scientific,

Wilmington, DE, USA). All DNA extracts and PCR

products were verified using agarose gel (1.5 %)

electrophoresis and ethidium bromide staining.

Microbial gene abundance via qPCR

Quantitative polymerase chain reaction (qPCR) assays

were performed to assess the genetic potential of the

microbial communities (Smith and Osborn 2009).

Assays were performed using SsoAdvanced SYBR

Green qPCR Supermix (BioRad, Hercules, CA, USA)

and a BioRad CFX 96 Real-Time System; data were

analyzed using Bio-Rad CFX Manager Version 2.1.

Results were reported as the log(10) of the number of

gene copies per gram of OM after averaging three

technical replicates per sample and comparing to

appropriate standard curves.

To estimate total bacterial abundance, the primers

Eub338 and Eub517 were used to target the 16S rRNA

gene (Fierer et al. 2005). Genomic DNA from

Escherichia coli (Strain 11775, ATCC, Manassas,

VA, USA) was used to establish the standard curve

(average efficiency = 101 %, r2 = 0.99). Reactions

(20 ll) were performed with 1.2 ng DNA template

and 0.1 lM concentrations of each primer; thermal

cycling conditions were: 95 �C for 4 min, and 40

cycles of 30 s at 95 �C, 30 s at 55.5 �C, and 60 s at

72 �C. The abundance of archaea was estimated using

the primers Arch 967F and Arch-1060R (Karlsson

et al. 2012), again targeting the 16S rRNA gene.

Standard curves (average efficiency = 94 %,
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r2 = 0.99) used genomic DNA from Methanococcus

voltae (Strain A3, ATCC). Reactions (20 ll) used

2 ng DNA template and 0.3 lM primers; thermal

cycling conditions were: 95 �C for 5 min, and

40 cycles of 20 s at 95 �C, 20 s at 59 �C, and 30 s at

72 �C. Finally, methanogen abundance was estimated

using the mlas and mcrA-rev primers to target the

methyl coenzyme-M reductase encoding mcrA func-

tional gene (Steinberg and Regan 2009). As with

archaea, Methanococcus voltae genomic DNA was

used for the standard curve (average effi-

ciency = 92 %, r2 = 0.99). Reactions (20 ll) had

2 ng DNA template and 0.56 lM mlas and 0.70 lM

mcrA-rev primer concentrations; thermal cycling

conditions were: 95 �C for 5 min, and 50 cycles of

20 s at 95 �C, 20 s at 59 �C, and 45 s at 72 �C.

Community structure via T-RFLP

Microbial community structure was analyzed using

terminal restriction fragment length polymorphism

(T-RFLP) targeting the 16S rRNA gene of bacteria and

archaea and the functional gene mcrA for methano-

gens. All PCR reactions (50 ll) were performed with

10 mM Tris HCl (pH 8.3), 50 mM KCl, 200 lM of

each dNTP, 20 lg BSA, and 2.5 units of AmpliTaq

DNA polymerase (reagents obtained from Applied

Biosystems, Foster City, CA, USA). Bacteria PCRs

including the domain-specific primers 27F (labeled

with FAM) and 1492R at a concentration of 0.2 lM

each (Lane 1991), 3.0 lM MgCl2, and 1.2 ng DNA.

Thermal cycling conditions were: 95 �C for 3 min, 30

cycles of 45 s at 95 �C, 60 s at 57 �C, 120 s at 72 �C,

followed by 72 �C for 7 min (PTC-100 Thermal

Controller, MJ Research, Waltham, MA, USA).

Archaea PCRs included the primers 21F (labeled with

FAM) and 958R (Cytryn et al. 2000), each at 0.2 lM,

as well as 1.5 lM MgCl2, and 4 ng DNA. Thermal

cycling conditions were: 94 �C for 3 min, 34 cycles of

60 s at 95 �C, 60 s at 55 �C, 60 s at 72 �C, followed

by 72 �C for 7 min. The methanogen mcrA gene was

targeted with MLf (labeled with FAM) and MLr

(Smith et al. 2007) in a reaction with 60 nM of each

primer, 2 lM MgCl2, and 4–8 ng DNA. Touchdown

PCR thermal cycling conditions were: 95 �C for

3 min, six cycles of 45 s at 95 �C, 60 s at 56 �C

(-0.5 �C cycle-1), 60 s at 72 �C, followed by 31

cycles of 45 s at 95 �C, 60 s at 53 �C, 60 s at 72 �C

and final extension at 72 �C for 7 min.

PCR products were purified using the MinElute 96

UF PCR purification kit (Qiagen, Valencia, CA, USA)

prior to restriction enzyme digest (associated materials

from New England Biolabs, Ipswich, MA, USA).

Digests were conducted in 19 Buffer #4 with 30 ng

BSA, using either 10 units of Hha1 (16S rRNA) or

20 units of RsaI (mcrA). After digestion (16 h at 37 �C,

20 min at 65 �C), amplicons were purified using the

MinElute kit, recovered in molecular-grade water, and

detected using capillary electrophoresis with a MegaB-

ACE 1000 DNA Analysis System (Amersham Biosci-

ences, Buckinghamshire, UK). An aliquot of

50–120 ng of purified, digested PCR product was

combined with 0.3 ll of MapMarker 400 ROX ladder

(Bioventures, Murfreesboro, TN, USA) plus 4.75 ll

injection buffer (0.1 % Tween-20). Samples were

injected at 3 kV for 100 s, and electrophoresed using

genotyping filter set 1 for 100 min at 10 kV. T-RFLP

fragments between 70 and 400 base pairs (bp) were

analyzed using Fragment Profiler software (Version

1.2; Amersham Biosciences) using a 1 bp size differ-

ential and a 15 relative fluorescent unit peak height

threshold. Samples were standardized by calculating

peak area as a percent of the total sample fluorescence;

peaks accounting for \1 % of total sample fluores-

cence were removed prior to analysis.

Extracellular enzyme activity (EEA)

Soil slurries were prepared fresh each day of analysis

by sonicating 1.0 g soil in 100 ml sterile deionized

water (15 W for 2 min; Misonix Sonicator 3000,

Farmingdale, NY, USA). The slurries were kept on a

shaker table (150 rpm) during use to prevent settling

of the soil particles. The activities of five hydrolytic

enzymes were measured using fluorometric assays

following modified protocols from Stursova et al.

(2006) and German et al. (2011) with reagents

obtained from Sigma-Aldrich Co. Ltd. (Table 1).

Three technical replicates of each sample were

assayed at each of ten substrate concentrations, as

were three negative (no sample) controls. For the

methylumbelliferone (MUB) assays, MES buffer

(0.1 M, pH 6.1) was used, and quench curves were

established for each sample using a range from 0 to

9 nmol MUB. For the amino-4-methylcoumarin

hydrochloride (AMC) assay, a Trisma buffer was

used (50 mM, pH 7.8) and quench curves ranged from

0 to 7.5 nmol AMC.
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Plates were prepared by adding soil slurry (50 ll)

first, followed by substrate, and then buffer sufficient

to achieve a final volume of 200 ll per well. Plates

were pre-incubated at 30 �C for either 1 h (for CBH,

LAP, and AP) or 4 h (for BG and BX), and then read

for an additional 6 h using a Synergy 2 plate reader

(Biotek, Winooski, VT, USA) programmed for

360 nm excitation and 460 nm emission wavelengths

and an incubation temperature of 30 �C. Activity was

calculated for each sample after fitting a regression

of the fluorescent reading versus MUB or AMC

concentration for the corresponding quench curve.

Rates were determined as the change in MUB or

AMC generated in each sample during the 6 h

incubation in the plate reader (each plate was read a

minimum of twelve times). Technical replicates were

averaged, and maximum reaction velocity (Vmax) and

half-saturation constant (Km) values were calculated

on Sigma Plot Version 10 (San Jose, CA, USA)

using the Michaelis–Menten hyperbola function in

the regression wizard.

Phenol oxidase (POX) activity was measured

colorimetrically (Sinsabaugh et al. 2003). Three

technical replicates containing soil slurry (50 ll),

50 mM sodium bicarbonate buffer (pH 6.1), and

l-DOPA (6.5 mM) were performed for each sample, as

were triplicate no-sample and no l-DOPA controls.

The plates were incubated in the dark at 30 �C for

30 min and then read on the Synergy 2 at 460 nm

wavelength for 6 h at 30 �C.

Anaerobic CO2 and CH4 Production

Production of CO2 and CH4 was measured using an

anaerobic slurry assay (Neubauer et al. 2005). Briefly,

homogenized soil samples (7.0 ± 0.2 g) were com-

bined with 7 ml of filtered (glass microfiber filter GF/C;

Whatman Piscataway, NJ, USA), deoxygenated pore-

water in a 125-ml serum bottle under anaerobic

conditions using an N2-filled glove bag. Two technical

replicates were prepared for each sample, and slurries

were pre-incubated overnight (*16 h at room tem-

perature, 23 �C). The next morning, the headspace in

each bottle was thoroughly flushed with N2 to initiate a

two-day experimental incubation. Gas samples (5 ml)

were obtained from the headspace at 0, 8, 22, 32, and

46 h by shaking the slurry briefly, injecting 5 ml of N2,

and immediately withdrawing 5 ml of gas. Measuring

headspace gas concentrations will underestimate

potential production rates to the extent that gases

accumulate in the slurry liquid rather than in the

headspace, although this will not affect the relative

comparison between our treatments since experimen-

tal conditions (pH, salinity, volumes of liquid and

headspace) were similar in all bottles. Concentrations

of CO2 were measured on a LI-COR LI-7000 infrared

Table 1 Summary of enzymes assays used in this study, their natural substrates and products, as well as artificial substrates and

concentration ranges used for determination of enzyme kinetics

Enzyme Abbreviation Target molecule ? product Artificial substrate

(Sigma-Aldrich #)

Enzyme

commission#

Assay

conc.

(lM)

b-1,4-glucosidase BG Cellulose ? glucose 4-MUB-b-D-glucopyranoside

(M3633)

3.2.1.21 2–800

1,4-b-cellobiosidase CBH Cellulose ? disaccharide 4-MUB-b-D-cellobioside

(M6018)

3.2.1.91 2–800

b-D-xylosidase BX Hemicellulose ? xylose 4-MUB-b-D-xylopyranoside

(M7008)

3.2.1.37 2–800

Leucyl

aminopeptidase

LAP Polypeptides ? leucine L-leucine-7-AMC (L2145) 3.4.11.1 1–600

Alkaline

phosphatase

AP Phospho-

monoesters ? phosphate

4-MUB-phosphate (M8883) 3.1.3.1 1–600

Phenol oxidase POX Lignin ? oxidized lignin 3,4-dihydroxy-L-phenylalanine

(D9628)

1.10.3.2 6500

The phenol oxidase assay was colorimetric and measured reaction velocity at only one substrate concentration

MUB methylumbelliferone, AMC amido-4-methylcoumarin hydrochloride
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gas analyzer (Lincoln, NE, USA), and CH4 was

measured on a Shimadzu GC-14A gas chromatograph

with flame ionization detector. All samples showed a

linear increase in gas concentration over time, and

production rates (nmol CO2 or CH4 produced per g of

OM per hour) were calculated using linear regression.

Median correlation coefficients were 0.97 for CO2 and

0.99 for CH4. Analytical precision was ±0.87 % for

CO2 and CH4 (mean coefficient of variation for

replicate injections of CO2 and CH4 standards).

Statistical analyses

By design, our treatments differed in their OM

content. To account for this in data analysis, we

normalized all microbial abundance, enzyme activity,

and gas production data per gram of OM; this allowed

us to focus on the effect of OM type without the

confounding effect of amount. Shapiro–Wilks tests

confirmed the soil properties, gas production rates, and

microbial abundance data were normally distributed

within each population making them appropriate for

analysis using parametric techniques. Soil properties

and gas production rates for field cores and control

samples were compared using a Student’s t test (n = 5

per group, df = 8). Effects of treatment (control, plant

litter, or compost) on environmental variables, micro-

bial abundance, EEA, and gas fluxes were analyzed

using one-way analysis of variance (ANOVA; n = 5

per group, df = 14) with Tukey’s HSD for post hoc

comparisons. Analyses were performed using the JMP

statistical software (Version JMP Pro 9.0.2, Cary, NC,

USA; Sall 2005) with a 0.05 significance level.

T-RFLP results were analyzed using principal

coordinates analysis (PCoA) applied to the Bray–

Curtis index of similarity derived from normalized

fluorescence data; the first two axes from each analysis

were plotted to visualize relative similarity in com-

munity structure across samples. Treatment effects

were analyzed using a non-parametric multivariate

ANOVA (NP-MANOVA), again applied to the Bray-

Curtis similarity index. All community analyses were

conducted using the PAST Version 2.16 statistical

package (Hammer 2001).

For the 18-month data (July 2012), correlation

analysis was performed to examine the relationships

among the environmental, microbial, enzyme, and gas

production data. (SPSS Statistics Version 20, Armonk,

NY, USA). Multivariate normality was confirmed

using Doornik and Hansen omnibus test in PAST prior

to selecting Pearson’s coefficient.

Results

Controls versus field samples

After 6 months, the control samples did not differ

significantly from field cores for any of the soil

properties (pH, redox, OM, soil moisture, C:N; all

|t| \ 2.0 with p [ 0.05). In contrast, for the 18-month

sampling, t-tests revealed significant differences for all

parameters except pH (for pH: t = 0.8 and p = 0.45;

for all others, |t| [ 2.5, all p \ 0.05). Though the

magnitude of the differences were small, redox (mV,

mean ± SE; control: -128 ± 13, field: -83 ± 9),

soil moisture (%; control: 52 ± 1, field: 60 ± 1), and

OM (%; control: 7.8 ± 0.2, field: 9.7 ± 0.3) were all

lower in the control samples; C:N was slightly higher

(control: 9.6 ± 0.2, field: 8.4 ± 0.1). Gas flux rates

(nmol g OM-1 h-1) were also measured for the

18-month sampling event, and no significant differ-

ences were observed for CO2 (control: 329.8 ± 50.4,

field: 369.8 ± 120.0), CH4 (control: 5.1 ± 0.8, field:

40.9 ± 39.9), or total C gas production (control:

335.0 ± 50.9, field: 410.8 ± 157.5; all t \ 1.0,

p [ 0.30).

Effects of organic matter manipulation

Environmental analyses

Addition of plant litter and compost increased soil OM

relative to the controls; these differences persisted

throughout the study (Fig. 1a; Table 2). After

6 months, OM content in the plant litter (14.5 %) and

compost treatments (13.7 %) was similar to the levels

at the start of the study (averaged across both

treatments: 14.0 ± 1.4 %). However, after 18 months,

average OM for these treatments decreased (litter:

10.0 %, compost: 11.9 %), but was still significantly

higher than the unamended control (7.8 %).

The compost and litter amendments also affected

soil C:N, which was always lower in the controls

(averaged by date: 9.5 ± 0.1) relative to the experi-

mental treatments (Fig. 1b). At the 6-month sampling,

average C:N was higher in the plant litter treatment

(11.8) than in the compost treatment (10.6), reflecting
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a substantial decrease from the start of the study

(Litter: 24.4 ± 2.4, Compost: 13.9 ± 0.2). These

differences disappeared after 18 months of incubation

(combined average for both treatments: 10.5 ± 0.2).

For all treatments at all times, redox potential was

negative (Fig. 1c). After 6 months of incubation, there

were modest differences between the plant litter

(-54 mV) and compost treatments (-105 mV), but

neither was significantly different from the control

(-82 mV). After an additional year of incubation,

there were no significant differences between any

treatments (combined average across treatments:

-135 ± 6.4), though values were generally more

negative than at 6-months.

Soil moisture was consistently lower in the com-

post-amended soils (%; 6-months: 47.4 ± 0.5,

18-month: 50 ± 1.2) relative to the plant litter

(6-months: 56 ± 1.1, 18-month: 52.1 ± 0.9) and

control soils (6-months: 55.0 ± 2.1, 18-month:

57.1 ± 2.0) (Table 2). For pH, there were significant

treatment effects at the 6-month sampling event only;

pH was higher in the compost (6.1 ± 0.1) compared to

the control (5.7 ± 0.1) or plant litter amendment

(5.6 ± 0.1). There were no significance differences in

porewater chemistry for any of the parameters

(mg L-1, mean ± S.E.; DOC: 5.9 ± 0.9, TDN:

0.50 ± 0.08, TDP: 0.06 ± 0.01, NH4
?: 0.18 ± 0.04).

Microbial abundance and community structure

For all three groups, abundance was lowest in the

compost-amended soils, where it changed little over

time [gene copies g OM-1; averaged across both

sampling events for bacteria: 17.9 9 109, archaea:

1.4 9 109, methanogens: 1.2 9 109 (Fig. 1 d–f)].

Bacterial abundance was *fivefold higher in the

control and litter-added soils for the 6-month sampling,

and not significantly different at the 18-month sam-

pling. For both times, archaea abundance in the control

and litter-added soils was similar and * threefold

higher than in the compost. For methanogens, signif-

icant differences were detected across all treatments

for the 6-month sampling (gene copies g OM-1;

control: 4.3 9 109, litter: 12.9 9 109, compost:
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Fig. 1 Treatment effects on environmental parameters (a, b,

c) and microbial abundance (d, e, f) following 6 (July 2011) and

18 (July 2012) months of in situ field incubation. Treatment

effects were evaluated using one-way ANOVA within each

sampling event; data are presented as mean ± SE, n = 5 per

group. For all the graphs, lowercase letters denote statistically

significant subgroups within the 6-month data set; letters with

prime were used for the 18-month data. Treatments are color-

coded and the symbols for the 6 month data are distinguished

with a (plus) on the symbol
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1.6 9 109). Abundance was slightly lower for all three

treatments at the 18-month sampling, and the control

and litter-added soils were no longer different (gene

copies g OM-1; control and litter: 2.2 9 109, com-

post: 0.9 9 109).

Treatment effects on microbial community struc-

ture were visualized using PCoA (Fig. 2a–c) and

statistical significance was evaluated using NP-MA-

NOVA (Table 2). For all three groups and both

sampling events, community structure in the plant

litter treatment was significantly different from that in

the control and the compost addition. Generally, the

compost treatment did not significantly alter microbial

community structure relative to the control; the only

exception is for the archaea community at the

18-month sampling.

Extracellular enzyme analysis

Treatment effects varied depending on the substrate

tested and the kinetic parameter of interest (Table 2;

Figs. 3 and 4; see Online Resource 1 for examples of

the saturation curves from which these data were

obtained). In general, the addition of plant litter

corresponded to an increased Vmax relative to the

control, which was statistically significant for BG

(200 % higher), BX (550 %), and LAP (50 %).

Conversely, the addition of compost suppressed Vmax

relative to the control, though the trend was only

statistically significant for AP (*25 % decrease). For

Km, fewer treatment effects were observed, and there

were never any differences in Km between the control

and compost soils. In the presence of plant litter, Km

was significantly lower for CBH (by 75 % vs. control)

and LAP (by 15 %). The activity of POX was reduced

by 10 % (relative to controls) in the litter-amended

soils and by roughly 40 % when compost was added.

Anaerobic CO2 and CH4 production

Potential rates of CH4 and/or CO2 production in

anaerobic slurries increased in response to the OM

additions (Table 2; Fig. 5). The rate of CH4 produc-

tion did not change significantly for compost but

increased *tenfold for plant litter. Rates of CO2

production in the compost and plant litter soils were

40–50 % higher than rates in the controls, with no

significant differences in CO2 production between the

Table 2 Statistical results evaluating treatment effects

Parameter July 2011 (6 months) July 2012 (18 months)

F p F p

Environmental variables

Soil

pH 9.1 0.004* 2.5 0.12

Redox 6.8 0.01* 0.3 0.76

Moisture 11.8 0.001* 11.8 0.001*

OM 50.5 \0.001* 30.2 \0.001*

C:N 16.1 \0.001* 6.2 0.01*

Porewater

DOC – – 0.9 0.43

NH4
? – – 2.1 0.17

TDN – – 0.1 0.91

TDP – – 0.9 0.43

Microbial community

Abundancea

Bacteria 30.5 \0.001* 1.8 0.20

Archaea 12.7 0.01* 14.4 \0.001*

Methanogens 21.5 \0.001* 19.7 \0.001*

Structure

Bacteria 6.3 \0.001* 3.2 \0.001*

Archaea 8.2 \0.001* 7.1 \0.001*

Methanogens 3.2 \0.001* 2.9 0.006*

Enzyme activity

V

POX – – 84.5 \0.001*

Vmax

BG – – 5.7 0.02*

CBH – – 2.6 0.12

BX – – 45.6 \ 0.001*

LAP – – 16.6 \ 0.001*

AP – – 3.8 0.05*

Km

BG – – 0.4 0.66*

CBH – – 7.0 0.001*

BX – – 1.2 0.33

LAP – – 11.4 0.002

AP 1.5 0.26

Gas production

CO2 – – 6.1 0.01*

CH4 – – 74.9 \ 0.001*

Total – – 11.9 0.001*

Fraction CH4 – – 76.4 \ 0.001*

Analysis of microbial community structure was performed using

NP-MANOVA; all other parameters were analyzed using ANOVA

– No data available

* Statistically significant with a = 0.05
a Measures were log(10) transformed prior to analysis
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two. Relative to the controls, total C gas production

(CO2 1 CH4) increased by 40 % in the compost

treatment and by 70 % in the plant litter treatment

(Fig. 5c). CH4 accounted for *2 % of the total C gas

production in the control and compost treatments, but

that fraction increased to *15 % in the treatment with

the addition of plant litter (Fig. 5d).

Correlation analysis

When C gas production rates were correlated with the

environmental variables, only the relationship

between soil C:N and CO2 (r = 0.61, p = 0.01) was

significant (other results not presented; all r \ 0.50,

p [ 0.08). Similarly, microbial abundance did not

show a strong relationship to gas production, except

for the modest positive correlation of methanogen

abundance and CH4 rates (Table 3). To examine how

microbial community structure and gas production

were linked, correlation analysis was performed using

the scores from each PCoA. In each case, the first axis

describing bacterial, archaeal, and methanogen com-

munity structure was strongly correlated with CH4

production (Table 3), and no significant correlations
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were obtained for any of the second axes (not

presented; all r \ 0.39 and p [ 0.15). For EEA, CH4

production was significantly positively correlated with

Vmax for BG, CBH, BX and LAP, and negatively

correlated with Km for CBH and LAP (Table 3). The

only significant correlation with CO2 production was

for Km of BG (r = -0.60, p = 0.02).

Several aspects of the microbial community were

correlated with one another, including a significant

relationship between the abundance of all three

microbial groups (Table 3). Similarly, bacterial,

archaeal, and methanogen community composition

were correlated when each PCoA 1 was considered.

Significant correlations were found between microbial

community composition and EEA for Vmax for BG,

BX and LAP, and with Km for CBH and LAP. In

general, correlations were highest between EEA and

bacterial or archaeal community composition, and

were significant less often for methanogens.

Discussion

The loss of natural wetland ecosystems is often

mitigated by construction or restoration of wetlands

elsewhere in the watershed (EPA 2008). As a means of

improving soil quality and promoting plant produc-

tivity, OM amendments are regularly included in these

mitigation projects (Davis 1995; Mitsch and Gosselink

2000). Our study complements other research that has

examined how this practice affects soil characteristics,

redox gradients, vegetation, and nutrient cycling

(O’Brien and Zedler 2006; Bruland et al. 2009;

Sutton-Grier et al. 2009), and demonstrates that

amendments can alter rates of C mineralization and

induce shifts in microbial community structure and

function. Furthermore, because our manipulation

produced long-term changes in soil OM and C:N with

relatively limited effects on other soil parameters (e.g.,

redox, pH, and soil moisture), we were able to isolate

how OM characteristics can affect C biogeochemistry
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and identify key microbial drivers and feedbacks to the

multi-stage process of decomposition. The similarities

between measurements on control soils and intact field

cores suggest that the results remain applicable to

unaltered wetlands soils.

The amendments used in this study differ considerably

in their biochemical composition. Compost, although

derived from plant materials, undergoes a humification

process that yields chemically-complex OM with few

residual plant polymers and increased microbial necro-

mass (Tiquia et al. 1996; Tuomela et al. 2000). Compost

may be similar to native soil OM, which is also

considered to have a significant portion of C of microbial

origin (Simpson et al. 2007; Liang and Balser 2010;

Throckmorton et al. 2012). In general, microbial necro-

mass contains a larger fraction of proteins and lipids than

does plant litter, and has only a small fraction of the

carbohydrates and lignins dominant in plant litter

(Nelson and Baldock 2005; Simpson et al. 2007;

Throckmorton et al. 2012). Thus, while nutrient avail-

ability may have varied between the control and

compost-amended soils, the chemical composition of

the OM was probably more similar between these

treatments and distinct from that in the litter-amended

soil (that is, microbially-dominated vs. plant-dominated).

Treatment effects and carbon gas production

Overall, we found that both the plant litter and

compost-added treatments exhibited higher potential

rates of anaerobic C gas production relative to

unamended soils on a per gram-OM basis (Fig. 5),

which indicates that a greater fraction of the OM was

mineralized compared to the control soil. One expla-

nation for this result is that the OM in the plant litter

and compost amendments was more labile than the

existing soil OM. Additional factors at play include

the potential for enhanced decomposition of native

material through ‘‘priming’’ (Blagodatskaya and Ku-

zyakov 2008; Nottingham et al. 2009) or the possibil-

ity that some of the native soil OM was physically

inaccessible (e.g., via sorption onto mineral surfaces),

which could limit decomposition regardless of inher-

ent lability (Kalbitz et al. 2000).

We did not identify any significant relationships

between either soil environmental conditions or pore-

water chemistry and any of the following: microbial

community composition, abundance, EEA, or C gas

production, excepting a small positive correlation

between C:N and CO2. Given the narrow range of C:N

for our treatment soils (Fig. 1b), it is likely that C:N is

not the driver of decomposition rates per se but instead

a co-variant associated with finer-scale OM charac-

teristics such as the degree of humification or OM

lability as discussed above. The general lack of

correlation between environmental variables and

either the soil microbial community or biogeochem-

ical response metrics suggests environmental condi-

tions were not major divers of the observed treatment

effects. It further supports our assertion that differ-

ences in C gas production were the result of microbial

responses to OM type and not an unintended conse-

quence of treatment on abiotic soil characteristics.

Role of microbial communities

Extracellular enzyme activity

Microorganisms can detect substrates in their envi-

ronment and regulate enzyme production accordingly

to balance resource needs with metabolic costs (Bhat

and Bhat 1997; Shackle et al. 2000; Allison and

Vitousek 2005; Allison et al. 2011; Shi 2011). In this

study, we found considerable evidence that OM type

(i.e., polymer availability) can influence EEA. For

example, in the plant litter treatment, enzymes that

target compounds abundant in plant litter (e.g.,

cellulose and hemicellulose) were elevated. This

response was observed for Vmax of all of the C and

N hydrolytic enzymes we measured, and was statis-

tically significant for BG, BX, and LAP (Fig. 3;

Table 2). Microbial adjustments of EEA are also

evident in the compost treatment, where the reduced

Vmax of AP was likely a response to decreased P

limitation. The compost we used contained 0.2 % P,

and microorganisms generally produce fewer acquisi-

tion enzymes for nutrients that are readily available

(Sinsabaugh and Moorhead 1994; Allison and Vito-

usek 2005). Similarly, POX decreased approximately

50 % following compost addition, likely due to lower

lignin content in compost (Sinsabaugh 2010).

Our results suggest that this variation in EEA across

OM types may be due, at least in part, to changes in

microbial community structure. Specifically, the

decrease in Km associated with CBH and LAP in the

plant litter treatment indicates the synthesis of isoen-

zymes with higher substrate affinity, which reflects

more efficient allocation of resources (Marx et al.
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2005; Stone et al. 2012). While multiple isoenzymes

are known to occur within an individual organism

(Esser et al. 2013), shifts in isoenzymes are also

consistent with changes in microbial community

composition (Farrell et al. 1994; Martinez et al. 1996;

Tabatabai et al. 2002). The significant correlations

between Km of CBH and LAP with bacteria PCoA 1

and archaea PCoA 1 (Table 3) further support our

conceptual model that community structure can influ-

ence enzyme activity (Fig. 6). We anticipate that most

of the EEA in our soils is of bacterial origin, as bacterial

abundance was *tenfold greater than that of archaea

(average bacteria:archaea 16S rRNA gene ratio at the

18 month sampling, with a range from 4 to 21).

Although enzyme parameters were correlated with

archaea in our study (Table 3), and archaea have been

demonstrated to produce extracellular enzymes in

marine sediments (Lloyd et al. 2013), we suggest that

these groups were not significant producers of enzymes

in our system. This assertion is based on the fact that

most of our archaea were likely methanogens (average

archaea 16S rRNA:methanogen mcrA ratio was 1.3,

with a range from 1.0 to 1.7), and methanogens

exclusively use fermentation products and CO2 as their

carbon source (Thauer et al. 2008; Reddy and De

Laune 2008). Thus, it is unlikely they would expend

resources to produce enzymes for carbon polymer

breakdown (e.g., BG, CBH, BX, and POX) to liberate

products they cannot directly utilize. Instead, we

propose that the correlations we observed between

EEA and archaea/methanogens are indirect based on

methanogen consumption of fermentation products

affecting upstream pathways of organic carbon break-

down (Fig. 6).

Microbial community structure

We demonstrated that the plant litter amendment

supported a distinct microbial community compared to

the control and compost-added soils (Fig. 2a–c), and

propose these differences developed in response to C

substrate availability as mediated by EEA (Fig. 6). The

initial mechanism for this OM effect is selection for a

distinct set of heterotrophs capable of directly metab-

olizing the unique oligomers and monomers generated

from EEA on plant litter. Given the current knowledge

on wetland soil microbiology (Reddy and De Laune

2008; Wüst et al. 2009), we anticipate a large fraction

of these organisms are fermentative bacteria.

Fermentation generates acetate and other simple

organic acids that support methanogens, the main

archaea in our system. Thus we hypothesize the plant

litter addition directly affected bacterial community

structure (similar to Nemergut et al. 2010), and resulted

in greater availability and altered composition of

fermentation end products (e.g., acetate vs. propionate,

Uz and Ogram 2006). Then, because many methano-

gen genera can use only a specific subset of fermen-

tation products (Garcia et al. 2000), this altered

substrate availability was the indirect mechanism for

the observed change in community structure of meth-

anogens (and archaea). These changes in community

structure have the potential to impact C mineralization

rates and the balance of CO2 and CH4 production.

Microbial regulation of C gas production

If polymer breakdown is the rate-limiting step in

decomposition, there should be a positive correlation

between EEA Vmax and C mineralization (e.g.,

Schimel and Weintraub 2003). In this study, no such

relationships were observed for the CO2 production

rates (Table 3). This may be partly due to the

Fig. 6 Conceptual model diagramming the hypothesized role

of microbial community structure and extracellular enzyme

activity in wetland organic matter decomposition. Microbially

mediated flows of carbon are represented as thick arrows

beginning with polymers and concluding with the terminal

decomposition end products CO2 and CH4 (after Megonigal

et al. 2004). Interactions between microbial structure and carbon

pools/flows are designated as supported, not supported, or not

tested in the current study
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particular suite of enzymes we considered. Although

commonly tested in soils, BG, BX, and CBH are fairly

selective for plant polymers, and thus may not be as

responsive to the availability of microbial necromass

or humified material, which potentially dominated our

control and compost treatments. Nonetheless, our

results are consistent with the work of Freeman et al.

(1997, 1998), who similarly found that BG activity did

not correlate with CO2 production in wetland soils.

The production of CO2 was also unrelated to microbial

community structure, similar to the work of Bell et al.

(2005) and Fromin et al. (2012). This may be because

CO2 is generated by a plethora of microbial species

with diverse metabolic strategies, creating consider-

able functional redundancy in natural communities

(Botton et al. 2006; Griffiths et al. 2000).

In contrast to CO2, we did observe strong relation-

ships between CH4 production, microbial community

composition, and EEA, which we hypothesize are

mediated through OM and bacterial community effects

on the abundance, composition, and activity of meth-

anogens (Fig. 6). Because methanogenesis is a fairly

well-conserved function, performed by a monophy-

letic group of organisms (Garcia et al. 2000) that can

utilize a limited range of organic substrates, there is

relatively low functional redundancy associated with

CH4 production and the contribution of individual

species to overall ecosystem function should be more

important (Allison and Martiny 2008; McGuire and

Treseder 2010). We were able to identify two terminal

restriction fragments (T-RF) in our data associated

with the genus Methanosarcinales (after Smith et al.

2007) and found their relative abundance was posi-

tively correlated with CH4 production (Spearman

correlation; T-RF 95 bp: r = 0.62, p = 0.01; T-RF

179 bp: r = 0.56, p = 0.02). These results suggest that

specific taxa of methanogens may be strong drivers of

CH4 production and are consistent with several other

recent studies (Beckmann et al. 2011; Angel et al.

2012; Parkes et al. 2012). Additional research into the

ecological and physiological attributes of these com-

munity members could further enhance our under-

standing of ecosystem-scale CH4 dynamics.

Conclusions

Our results have been used in conjunction with current

knowledge on wetland decomposition to develop a

conceptual model that incorporates microbial com-

munity structure and EEA to expand our understand-

ing of CO2 and CH4 production rates (Fig. 6). Models

such as this may be particularly helpful in understand-

ing methanogenesis, since rates of CH4 production

were strongly correlated with microbial community

structure and multiple enzyme kinetic parameters.

Relationships of enzyme activity and microbial com-

munity composition with CO2 production were con-

siderably more tenuous. This may be a consequence of

the numerous microorganisms, substrates, and meta-

bolic pathways associated with anaerobic CO2 pro-

duction (see Megonigal et al. 2004).

This work has direct implications for wetland

restoration as plant litter and compost produced

disparate changes in C gas production. Both OM

sources increased total rates of anaerobic C mineral-

ization relative to unamended soils, but only the plant

litter additions increased rates of CH4 production (by

roughly an order of magnitude). Similar results have

also been reported for rice paddy soils (Singh et al.

2009; Ruirui et al. 2011), suggesting that the incor-

poration of highly decomposed OM amendments such

as compost may help with wetland restoration (Stauf-

fer and Brooks 1997; Sutton-Grier et al. 2009) while

minimizing production of the greenhouse gas CH4.
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Beckmann S, Lueders T, Krüger M, von Netzer F, Engelen B,

Cypionka H (2011) Acetogens and acetoclastic Meth-

anosarcinales govern methane formation in abandoned

coal mine. Appl Environ Microbiol 77:3749–3756

Bell T, Newman JA, Silverman BW, Turner SL, Lilley AK

(2005) The contribution of species richness and composi-

tion to bacterial services. Nature 436:1157–1160

Bhat MK, Bhat S (1997) Cellulose degrading enzymes and their

potential industrial applications. Biotechnol Adv

15:583–620

Blagodatskaya E, Kuzyakov Y (2008) Mechanisms of real and

apparent priming effects and their dependence on soil

microbial biomass and community structure: critical

review. Biol Fertil Soils 45:115–131

Botton S, van Heusden M, Parsons JR, Smidt H, van Straalen N

(2006) Resilience of microbial systems towards distur-

bances. Crit Rev Microbiol 32:101–112

Bruland GL, Richardson CJ, Daniels WL (2009) Microbial and

geochemical responses to organic matter amendments in a

created wetland. Wetlands 29:1153–1165

Cleveland C, Nemergut D, Schmidt S, Townsend A (2007)

Increases in soil respiration following labile carbon addi-

tions linked to rapid shifts in soil microbial community

composition. Biogeochemistry 82:229–240

Conrad B (2009) The global methane cycle: recent advances in

understanding the microbial processes involved. Environ

Microbiol Rep 1:285–292
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Wüst PK, Horn MA, Drake HL (2009) Trophic links between

fermenters and methanogens in a moderately acidic fen

soil. Environ Microbiol 11:1395–1409

Zedler JB, Kercher S (2005) Wetland resources: status, trends,

ecosystem services, and restorability. Annu Rev Environ

Resour 30:39–74

490 Biogeochemistry (2014) 117:473–490

123


	Using microbial communities and extracellular enzymes to link soil organic matter characteristics to greenhouse gas production in a tidal freshwater wetland
	Abstract
	Introduction
	Methods
	Experimental design
	Environmental analyses
	Molecular analyses
	Microbial gene abundance via qPCR
	Community structure via T-RFLP

	Extracellular enzyme activity (EEA)
	Anaerobic CO2 and CH4 Production
	Statistical analyses

	Results
	Controls versus field samples
	Effects of organic matter manipulation
	Environmental analyses
	Microbial abundance and community structure
	Extracellular enzyme analysis
	Anaerobic CO2 and CH4 production
	Correlation analysis


	Discussion
	Treatment effects and carbon gas production
	Role of microbial communities
	Extracellular enzyme activity
	Microbial community structure
	Microbial regulation of C gas production


	Conclusions
	Acknowledgments
	References


