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Abstract We present 42 dual-isotope nitrate analy-

ses of fresh water samples collected in the St.

Lawrence River between June 2006 and July 2008.

Measured d15N–NO3
- and d18O–NO3

- values corre-

late negatively, while d18O–NO3
- displays no nega-

tive correlation with nitrate concentration. This

suggests that nitrate uptake and/or elimination by

denitrification is not the main driver of observed

variations in nitrate concentration and isotopic signa-

ture in the St. Lawrence River. In addition, d18O–

NO3
- is negatively correlated with the seasonally

variable d18O of ambient water, indicating that the

variation in the isotopic signature of nitrate is barely

modulated by in-stream nitrate regeneration (nitrifi-

cation). It rather is constrained by along-river changes

in the external sources of nitrate. Given the distinct

nitrogen (N) and oxygen (O) isotopic signature of

atmospheric nitrate, we argue that observed seasonal

variations of d15N–NO3
- and d18O–NO3

- in the St.

Lawrence River are due to variable contributions of

snowmelt-derived water. Based on a N and O isotope

mass balance, we show that total nitrate loading in the

St. Lawrence River is dominated by a N input from the

Great Lakes (47 ± 28 %) and from nitrate regenera-

tion of both internal and external N (48 ± 22 %).

While temporal nitrate N and O isotope dynamics in

the St. Lawrence River are mainly influenced by the

atmospheric N input fluctuations, with an increase in

atmospheric loading during spring, atmospheric N

plays overall a rather insignificant role with regards to

the N budget (5 ± 4 %).

Keywords St. Lawrence � Hydrology � Time series �
Nitrogen � Isotope � Eutrophication

Introduction

Riverine transport and processing of nitrogen (N) are

major links between terrestrial and marine/estuarine

nitrogen cycles, and exert a strong influence on

productivity and biodiversity of coastal marine eco-

systems (Galloway et al. 2004). Estuaries are partic-

ularly sensitive to terrestrial organic matter (OM) and

nutrient inputs (Gearing and Pocklington 1990), which

can affect primary productivity, OM deposition, and

OM remineralization rates. As a major nutrient, fixed

(i.e., bio-available) N is partly responsible for
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estuarine eutrophication, negatively affecting the

health of coastal marine ecosystems (Nixon et al.

1996; Howarth 1998; Howarth et al. 2006). Anthro-

pogenic N inputs from agricultural and fossil fuel

sources have increased tenfold globally since the late

nineteenth century, adding bio-available N to coastal

waters (Galloway et al. 2004).

Recent research in the Laurentian Channel has

shown that an hypoxic zone of approximately

1,300 km2 has developed in the bottom waters of the

Lower St. Lawrence Estuary (LSLE) over the last

decades (Gilbert et al. 2005). Climate-driven changes

in ocean circulation patterns, which determine the

partitioning of water masses that enter the Gulf of St.

Lawrence from the North Atlantic through Cabot

Strait, may have contributed to the historic decline in

dissolved oxygen (DO) (Gilbert et al. 2005; Thibodeau

et al. 2010a). However, eutrophication and increased

organic particle fluxes may also have caused a decline

in DO resulting from enhanced microbial respiration,

mostly within the sediments (Benoit et al. 2006;

Thibodeau et al. 2006; Lehmann et al. 2009). The

observed decline in oxygen content in the LSLE

bottom waters appears to coincide with a 70 %

increase of fertilizer sold within the St. Lawrence

watershed between 1970 and 1988 (Thibodeau et al.

2006). Hence, it is reasonable to assume that anthro-

pogenic inputs of N, as well as climatic/oceanographic

constraints, both play a role in the generation and

maintenance of hypoxic conditions in the LSLE

(Thibodeau et al. 2010b). While we know that the

major sources of nitrate in large catchments are

generally from agricultural areas (chemical fertilizers

and manure), soils, and atmospheric precipitation

(reviewed by Kendall et al. 2007), the contributions of

the various N sources to the St. Lawrence system are

poorly understood, and their relative contribution can

be expected to vary with time. Sufficient measures to

preserve the integrity of an aquatic system such as the

St. Lawrence River (SLR) and estuary require iden-

tification of the main fixed-N sources and the fate of

each nitrogen source within this system (i.e., in-stream

cycling through assimilation, denitrification, reminer-

alization or nitrification).

Nitrate N isotopes (d15N–NO3
-; for definition see

method section), and more recently nitrate O isotopes

(d18O–NO3
-) have proven to be excellent tracers of

nitrate sources. The dual isotope approach is based on

the fact that nitrate from different origins have distinct

isotopic signature ranges (see Kendall et al. 2007 for a

review). For example, inorganic nitrate fertilizers

show significantly higher d18O values compared to

most other nitrate sources, whereas their d15N value is

generally quite low. In contrast, nitrate derived from

organic sources tend to exhibit elevated d15N values,

but comparatively low d18O values (Amberger and

Schmidt 1987). For simple point-source analyses,

these generalizations are useful. However, in riverine

systems the situation may be more complex. The

isotopic composition of SLR nitrate, for example, is

not necessarily only modulated by variable nitrate

source loading, but may also depend on isotopic

fractionation during in-stream removal processes such

as denitrification, assimilation, and in-stream nitrifi-

cation (i.e., regeneration of nitrate with a different

isotopic signature than nitrate from external sources).

The dual isotopic analysis of nitrate allows the

identification and assessment of coincidental pro-

cesses such as (1) N-elimination processes (i.e.,

denitrification and assimilation), (2) nitrification and

(3) input from multiple external sources that may have

a cancelling effect on the nitrate concentration and

d15N–NO3
- alone (Burns and Kendall 2002; Mayer

et al. 2002; Lehmann et al. 2003, 2004; Kendall et al.

2007; Burns et al. 2009).

Denitrification refers to the dissimilatory reduction

of NO3
- to gaseous products (N2, N2O, or NO) and

usually occurs when O2 concentrations are lower than

20 lM (Kendall et al. 2007). Denitrification causes the

d15N and d18O values of the residual nitrate pool to

increase exponentially as nitrate concentration

decreases (Kendall et al. 2007). Measured nitrate

isotope enrichment factors are variable and range from

10 to 40 %, with a nitrate N:O isotope enrichment

ratio (Dd18O/Dd15N) of 0.5–1 (Böttcher et al. 1990;

Cey et al. 1999; Lehmann et al. 2003; Granger et al.

2004a; Panno et al. 2006). To some parts, the extent of

measured fractionation depends on environmental

conditions. For example, strong nitrate isotope frac-

tionation is associated with water column denitrifica-

tion (up to 40 %), expressed in the high N and O

isotopic composition of residual NO3
-, whereas

denitrification within sediments (0–3 %) is limited

by diffusive substrate supply so that the expression of

the biological N isotope fractionation in the environ-

ment is significantly suppressed (Lehmann et al. 2004,

2007; Sigman et al. 2005; Alkhatib et al. 2012). While

denitrification in the water column should not play a
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role in the SLR at given DO concentrations, closed

system conditions are often prevalent in anaerobic soil

compartments along the groundwater flow path in

aquifers and riparian zones, and occasionally in river

sediments (Kellman and Hillaire-Marcel 1998; Sebilo

et al. 2003). Nitrate that has undergone partial

denitrification in these watershed compartments

should, therefore, have elevated d15N and d18O values

compared to input values. Another removal process

that is known to discriminate between nitrogen (and

O) isotopes is the assimilation of inorganic nitrogen

compounds into living organisms via biosynthesis

(Altabet et al. 1999). As with dissimilative nitrate

reduction by denitrifiers, the nitrate assimilation

results in a strongly coupled N and O fractionation

(Granger et al. 2004b; Lehmann et al. 2005), with

Dd18O/Dd15N of 1:1 in saltwater environments.

During the regeneration of nitrate by nitrification,

d15N and d18O of new nitrate are affected in different

ways (Sigman et al. 2005; Bourbonnais et al. 2009).

The M-isotopic composition of nitrate produced in-

stream by nitrification is principally constrained by the

d15N of the OM that is subjected to remineralization. A

small isotope fractionation usually accompanies the

aerobic mineralization of OM, and results in ammo-

nium with a d15N value 0–4 % lower than the original

bulk OM (Lehmann et al. 2002; Dijkstra et al. 2008).

Nitrification of ammonium to nitrate is associated with

large 15N isotope effects (14–38 %; Casciotti et al.

2003). This process may be difficult to observe in river

systems, where remineralization and nitrification

proceed nearly in parallel and to completion (i.e.,

with no ammonium accumulation) (Miyajima et al.

2009). Thus, we can expect that nitrate from nitrifi-

cation will have a d15N slightly lower or equal (of

about 0–4 %) to the d15N of the particulate OM. For a

long time, it has been argued that up to 1/3 of the O

atoms in regenerated nitrate derives from DO (Aleem

et al. 1965; Hollocher 1984). However, more recent

work has shown that ultimately (due to strong nitrifier-

catalyzed nitrite-water exchange) the contribution of

oxygen atoms in marine and freshwater nitrate from

DO is minor or even nil (Casciotti et al. 2002; Wankel

et al. 2006, 2007; Knapp et al. 2008; Bourbonnais et al.

2009). Irrespective of the exact mechanisms that

determine the d18O of newly-nitrified nitrate, season-

ally-driven variation in the d18O of river water should

leave its imprint in the d18O of nitrate that has been

regenerated in-stream.

There are various potential external sources of

nitrate in riverine systems: (1) nitrate derived from

natural N2-fixation followed by remineralization and

nitrification in watershed soils, (2) anthropogenic

nitrate derived from manure, inorganic fertilizers,

septic and animal waste, and domestic and industrial

wastewaters and (3) nitrate derived from atmospheric

deposition of nitrogen oxides in the watershed. Each

pool of nitrate is characterized by generally distinct

values of d15N and d18O. While nitrate derived from

N2-fixation will carry a low-d15N signature, nitrate

originating from manure, septic or animal waste, and

domestic waste typically display high d15N values

(?10 % or higher; McClelland and Valiela 1998;

Bedard-Haughn et al. 2003). Since nitrate from these

sources are produced via nitrification in the soil, the

corresponding d18O should reflect the d18O of the

ambient soil water, which may be variably enriched in

18-O through evaporation. Synthetic fertilizers are

characterized by low d15N–NO3
- (0 to ?5 %) and

their d18O–NO3
- depends on whether they are applied

in reduced form (ammonium) or directly as nitrate.

Nitrification of fertilizer ammonium will lead to a

d18O–NO3
-, that again reflects the d18O of ambient

water during nitrification (in the catchment or later in

the river), while fertilizer in nitrate form will carry a

d18O–NO3
- that is significantly higher (*20 %)

(Amberger and Schmidt 1987). However, nitrate

fertilizers are used less frequently than ammonium

fertilizers by farmers in Québec (Agriculture and

Agri-Food Canada, Korol 2002) and are therefore less

likely to play a major role in the seasonal variation of

d18O–NO3
-. Nitrate from atmospheric deposition is

generally heavily enriched in 18O (d18O [ 60 %;

Kendall et al. 2007), and d18O measurements close to

the study area (Vermont) averaged ?83 % for an

annual cycle (Ohte et al. 2004). In the area surrounding

the Great Lakes and the SLR watershed, measured

d15N–NO3
- values in precipitation samples ranged

from -5.4 to ?0.6 % (reported in Kendall et al.

2007). Those estimates are consistent with time-series

nitrate isotope data from a site within the Great Lakes

watershed, with seasonal means of ?65 and ?90 %
and -6 to 0 %, for nitrate d18O and d15N, respec-

tively, with the lower values observed in summer

(Finlay et al. 2007). Since, on average, nitrate from

precipitation displays significantly higher d18O–

NO3
-, and lower d15N–NO3

-, than the nitrate isotope

values observed in streams (Kendall et al. 2007), the
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leverage effect can be strong and a concomitant

increase in d18O–NO3
- and decrease in d15N–NO3

-

during the spring would suggest a sensitive response of

the riverine nitrate pool to an elevated contribution of

N from atmospheric precipitation due to the spring

snowmelt.

We present 42 dual-nitrate isotope measurements

of nitrate sampled from the SLR at its outlet (Québec

City) to the estuary, beginning in June 2006 and

ending July 2008. We hypothesize that nitrate in the

St. Lawrence at Québec City likely derives from three

main sources (Great Lakes, atmospheric deposition

and external sources ultimately nitrified in-stream or

in the catchment) and that variation in the isotopic

composition of nitrate are mostly constrained by

seasonal changes in the partitioning of theses sources.

In order to test this hypothesis we first need to evaluate

potential N-elimination and nitrification influence on

the isotopic composition of nitrate on a seasonal

timescale in the SLR, potentially masking external

nitrate source signatures. We will compare the nitrate-

d18O data to water-d18O data obtained from the same

location during the same time interval, in order to

assess if and how natural d18O variations of the stream

water affect variations in the isotopic composition of

the riverine nitrate pool, and what, if any, information

on in-stream-nitrate regeneration can be gained from

these observations. Finally we will quantitatively

validate our hypothesis using an isotopic mass balance

model to asses the partitioning between the various N

sources that contribute to the St. Lawrence N loading.

Methods

Dissolved nitrate concentrations were determined at

the Geochemistry and Geodynamics Research Center

(GEOTOP) using a Braan and Luebbe autoanalyzer,

with a detection limit of *0.1 lmol L-1 (Strickland

and Parsons 1972). Stable N and O isotope ratios of

dissolved nitrate (d15N, d18O; where d = [(Rsample/

Rstandard) - 1] * 1,000, and R refers to the 15N/14N or
18O/16O ratios) were measured using the denitrifier

method (Sigman et al. 2001; Casciotti et al. 2002).

Sample nitrate (and nitrite) was converted to nitrous

oxide (N2O) by denitrifying bacteria that lack N2O

reductase activity (Pseudomonas chlororaphis ATCC

#43928 or ATCC #13985). The N2O was purged from

the sample vial with helium carrier gas, cryo-

concentrated, and purified using a Micromass Trace-

GasTM inlet. The N and O isotopic composition was

determined using a Micromass IsoprimeTM universal

triple collector isotope ratio mass spectrometer in

continuous flow mode. The target sample size was

always 20 nmol. Blank contribution was generally

lower than 0.3 nmol (*1.5 % of the sample). For d18O

isotope analyses, only P. chlororaphis ATCC #13985

(subspecies aureofaciens) was used. Oxygen isotope

exchange with the ambient water during N2O produc-

tion resulted in a d18O-scale compression, which was

corrected according to Casciotti et al. (2002). The O

isotope exchange was never higher than 5 %. Based on

replicate measurements of laboratory standards and

samples (intra- and inter-run), the reproducibility (1r)

of d15N and d18O were better than ±0.3 and ±0.5 %,

respectively. Isotopic values were normalized using

IAEA-N3, which has a d15N value of ?4.72 ± 0.13 %
relative to atmospheric N2 (Gonfiantini et al. 1995 ) and

a d18O value of ?25.6 ± 0.2 % relative to V-SMOW

(Bohlke et al. 2003). All isotope measurements are

reported in the delta notation in permil (%), relative to

atmospheric N2 (AIR) for d15N and VSMOW for d18O.

The oxygen isotopic composition of water was

analyzed at the GEOTOP research center. Water

samples were collected in 60 mL plastic bottles, with

no headspace, and stored at 4 �C. Unfiltered water

(200 lL) was equilibrated with 200 lL of CO2 at

40 �C. The water/CO2 equilibration progressed for

7 h, after which the CO2 was sampled and measured

on a Micromass IsoprimeTM universal triple collector

isotope ratio mass spectrometer in dual inlet mode

coupled to an AquaprepTM system. The resulting

isotopic values were drift and temperature-corrected

using two internal laboratory standards previously

calibrated on the VSMOW-SLAP scale. The overall

analytical uncertainty of the water O-isotope analysis

was ±0.05 %. All reported correlation coefficients

(R2) and two-tailed P values were estimated using the

Spearman nonparametric correlation between mea-

sured variables using the software Prism 6�.

Regional settings

All samples were collected from a water filtration

plant located on the south shore of the SLR, near its

outlet to the upper St. Lawrence Estuary, close to

Québec City (see Hélie and Hillaire-Marcel 2006 for
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methods). Here, the SLR water represents a mixture of

various water sources originating from the Great

Lakes and northern tributaries, such as the Ottawa

River (Fig. 1; Table 1). The discharge from Lake

Ontario does not display significant seasonal varia-

tions. In contrast, discharge from tributaries can be

strongly modulated by the seasonal hydrological

cycle. During spring snowmelt, outflow rates are three

times higher than the mean annual discharge (Envi-

ronment Canada, unpublished data). Hence, the pro-

portional contribution from Great Lakes water to the

total discharge at Québec City varies from [70 % in

summer to \55 % in spring (Environment Canada,

unpublished data). Base-flow conditions can be

assumed for the summer months. The watershed is

composed of different eco- and land use zones, i.e.,

boreal and mixed forests, as well as agricultural and

urban areas, which are located primarily around the

Great Lakes and the SLR (Fig. 1).

Results

Nitrate concentrations in the SLR exhibited strong

annual cyclicity, with minimal concentrations

(\15 lmol L-1) in fall and maximum concentrations

([30 lmol L-1) in winter/spring (Fig. 2). The

d15N–NO3
- values increased during the summer and
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climaxed in the fall ([7 %), then decreased during the

winter months to a minimum in April (\4.5 %;

Fig. 2). Values for d18O–NO3
- parallel the nitrate

concentration data, with a minimum (\3 %) at the end

of the summer (August) and a maximum ([6 %) in

April (Fig. 2). As a logical consequence, d18O–NO3
-

and d15N–NO3
- show a negative correlation

(R2 = 0.60, P \ 0.0001; Fig. 3). The observed corre-

lation between d18O–NO3
- and d15N–NO3

- is similar

for every season except fall, when no trend is apparent.

Strong intra-seasonal variability is observed in the

spring but seems to be of less importance during other

seasons (Table 2). Mean [NO3
-], d15N–NO3

- and

d18O–NO3
- show distinct, discernible signatures for

each season except between winter and spring, which

may be due to the gradual (but irregular) input of

snowmelt, as illustrated by the larger standard devi-

ation of d18O–NO3
- data in spring. The d18O–H2O at

Québec City obeys a seasonal cycle, with 18O-

depleted values during the spring during snowmelt,

and more 18O enriched values in the fall (Fig. 4).

Discussion

In-stream nitrate removal processes

The present dataset is characterized by a significant

negative correlation between d15N–NO3
- and d18O–

NO3
-, yet the correlation of d18O–NO3

- and nitrate

concentration is positive (R2 = 0.32, P \ 0.0001).

These observations suggest that the isotopic variations

throughout the year cannot be attributed solely to

seasonally variable removal processes within the

stream water. While the lack of negative correlation

between nitrate concentration and the d18O–NO3
-

could be due to denitrification occurring under diffu-

sion-limiting conditions (i.e., in the sediment), which

would likewise limit isotopic fractionation (Lehmann

et al. 2007), the negative d18O–NO3 versus d15N–

NO3
- correlation speaks against denitrification in

general as the dominant modulator of nitrate concen-

trations and isotope ratios. Denitrification within the

system cannot totally be excluded, yet, if present at

all, the isotopic fractionation linked to nitrate con-

sumption processes appears to be overprinted by

stronger signals possibly due to external N loading.

Table 1 Annual mean discharge at Québec City and from the

Great Lakes (Lake Ontario) and northern tributaries (Ottawa,

Saint-Maurice and Richelieu Rivers) (Environment Canada,

unpublished data)

Station Discharge (m3 s-1)

Québec City 12,300

Lake Ontario 7,500

Ottawa River 2,000

Saint-Maurice River 660

Richelieu River 360
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In analogy to the argument above, the negative

correlation between d18O–NO3
- and d15N–NO3

-

suggests that either nitrate assimilation is not impor-

tant or, more likely, that its N and O isotopic signature

is overprinted by (1) other fractionating N reactions or

(2) the input of nitrate sources, which would likely

decouple a parallel evolution of the nitrate d15N and

d18O. Hélie and Hillaire-Marcel (2006) demonstrated

that particulate organic carbon at the sampling station

was mainly of autochthonous origin, which confirms

the importance of primary productivity and, in turn,

implies assimilation of nitrate by algae. Therefore, we

conclude that although assimilation is present, its

fractionation signature has been overprinted by stron-

ger signals either from in-stream production of nitrate

or external inputs. Below we will further consider

these two aspects.

In-stream production of nitrate

The observed seasonal pattern in d18O–H2O (with
18O-depleted values during the spring due to snowmelt

compared to high-d18O water during the fall; Fig. 4) is

driven by variations observed in the d18O–H2O of

precipitation, which is due to the temperature-depen-

dent fractionation occurring during condensation of

water in air masses (Dansgaard 1964). Snowmelt

events represent an input of 18O-depleted precipitation

that was sequestered on land during winter (Myre

2006). Assuming that the d18O of nitrified nitrate is

controlled only by the d18O of the ambient water, we

would predict it to follow seasonal variations as shown

in Fig. 4. In turn, a positive relationship between the

d18O–H2O and the measured d18O–NO3
- is expected

if nitrate from nitrification is a dominant source for the

St. Lawrence riverine nitrate pool. There is a statis-

tically significant negative correlation (R2 = 0.24,

P = 0.0016) between d18O–H2O and the d18O–NO3
-

(Fig. 5), which essentially excludes in-stream nitrifi-

cation as the major factor driving the variation in

d18O–NO3 (and the incorporation of water O atoms in

the regenerated nitrate). Moreover, d18O–O2 data

(collected in 2000–2001 by Hélie, unpublished

results) were mostly constant throughout the year

(?22.0 ± 0.9 %), and the variations in d18O–NO3

originating from nitrification would still follow the

seasonal variations of the d18O–H2O, even when

considering potential incorporation of O atoms from

O2 in the nitrate molecules during nitrification. Hence,

irrespective of the O-atom source during nitrate

regeneration, the observed variations in d18O–NO3

are not modulated by nitrification. While we thus

exclude in-stream nitrate production as an important

constraint on observed d18O–NO3
- variations, we do

not argue that nitrification does not occur at all in the

river. Its isotopic traces may simply be overprinted by

variations in the external nitrate sources, which in fact

may to a large extent originate from nitrification in the

catchment, as we will discuss subsequently.

Partitioning of the N-sources

Nitrate in the SLR at Québec City likely derives from

three different main sources: (1) input from the Great

Lakes reservoir, (2) from atmospheric deposition (3)

and from external N sources in the catchment (mainly

from soils, ammonium fertilizer, manure, etc.). As

discussed in the previous section, N loading from the

catchment likely reflects the d18O of ambient water

during nitrification (in the catchment, or later in the

river). We can thus consider that external reduced N, if

Table 2 Seasonal average of nitrate concentrations (in

lmol L-1), d18O–NO3
- and d15N–NO3

- values with the

standard deviation (SD)

Season NO3
-

concentration

(lmol L-1)

d15N–

NO3
-

(%)

d18O–

NO3
-

(%)

Spring 30.4 ± 5.7 5.5 ± 0.7 5.4 ± 1.4

Winter 30.6 ± 5.6 5.3 ± 0.6 5.0 ± 0.4

Fall 23.7 ± 7.9 6.6 ± 0.6 4.1 ± 0.6

Summer 18.6 ± 5.3 7.0 ± 0.4 3.4 ± 0.7
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not already oxidized to nitrate during the transfer, is

later transformed to nitrate by nitrification occurring in

the river between the Great Lakes and Québec City. As

discussed previously, while nitrification does not

modulate the seasonal O isotopic variations it can still

be a significant source of NOx. The nitrified nitrate

pool at Québec City would thus originate from in-

stream nitrification in the SLR, as well as nitrate from

nitrification of N-inputs from the northern tributaries

and within the catchment soils. A dual isotope, three-

end-member linear mixing model can be formulated

from the following mass balance equations:

d18OQC ¼ fG:Lakesd
18OG:Lakes þ fAtmd18OAtm

þ fNitrid
18ONitri ð1Þ

d15NQC ¼ fG:Lakesd
15NG:Lakes þ fAtmd15NAtm

þ fNitrid
15NNitri ð2Þ

1 ¼ fG:Lakes þ fAtm þ fNitri ð3Þ

where the subscripts refer to the isotopic composition

of nitrate from the different sources (Great Lakes,

atmosphere and nitrification) and the observed nitrate

isotopic composition at the sampling location (QC;

Québec City). The source partitioning is represented

by the respective partitioning coefficients f. Calcula-

tions for each season were performed according to

Phillips and Gregg (2001).

The Great Lakes end-member d18O–NO3
- and

d15M–NO3
- values were estimated to be around ?7

and ?9 %, respectively (Ostrom et al. 2006; Table 3).

Atmospheric d18O–NO3
- and d15M–NO3

- values are

variable thorough the year (?65 to ?90 % and -6 to

?6 %, respectively) (Finlay et al. 2007). Obviously,

the N isotopic composition of the various sources of

nitrified nitrate likely covers a relatively large range so

that it is difficult to pinpoint the mean N isotopic

composition with one single d15N value (Fig. 6), so a

range of 0 to ?6 % was used. The theoretical

spectrum of possible d15N values extents to higher

d15N when considering sewage and manure. However,

d15N value higher than ?6 % yielded negative fAtm,

which suggests that it is not a possible solution. Thus,

the 0 to ?6 % range for d15N represent the largest

possible range to solve our mass balance equations.

The d18O of the nitrified d18O, however, is relatively

well constrained, defined by the relatively small range

of water d18O between -8 and -12 % (average *
-9 %) in the SLR and in regional catchment (*
-10 %; Spoelstra et al. 2007). Albeit moderate

seasonal variations (Fig. 4), a single average nitrate

d18O was assumed based on our SLR data for nitrified

nitrate. Given the relatively large difference between

the nitrate d18O of the other nitrate sources (Great

Lakes and atmospheric precipitation), this simplifica-

tion does not induce a large error in our isotope budget

calculations.

Despite a relatively large uncertainty introduced by

the large possible range of d15N values for nitrified

nitrate, our results indicate that nitrate input from Great

Lakes (47 ± 28 %) and nitrification (48 ± 22 %) are

the dominant N-source during all seasons (Table 4). In

summer, atmospheric-N only contributes about 0–4 %

to the total N-load, while in the spring about 4–11 % of

the total N load derives from atmospheric deposition.

These numbers are lower than estimates from previous

studies, which reported that between 12 and 19 % of the

total N loading in the SLR have its ultimate origin in

atmospheric deposition (Howarth et al. 1996; Nixon

et al. 1996; Prospero et al. 1996). The discrepancy may

partly be explained by the fact that our calculation

ignores that Great Lakes water feeding the St. Lawrence

stream may already contain a relatively large amount of

N from the atmosphere and only considered the

atmospheric deposition in the catchment between the

Great Lakes and Québec City. Deposition of atmo-

spheric N has been estimated to contribute up to 27 % to

the total N loading to the Great Lakes (Sterner et al.

2007). Still, while the atmospheric N deposition seems

be the main controlling factor with regards to the nitrate
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Fig. 5 Nitrate d18O versus water d18O. The negative slope

suggests decoupling of the nitrate d18O from the water d18O
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isotope composition in the river, dominating observed

seasonal isotope dynamics because of its very high

d18O, it does not play a prime role in the SLR N budget

in this portion of the SLR.

Summary and concluding remarks

The negative correlation between d15N–NO3
- and

d18O–NO3
- observed in the SLR at Québec City

suggests that the isotopic fractionation associated with

removal processes such as in-stream nitrate uptake and

denitrification, are not the principal drivers of seasonal

variations in the isotopic composition of nitrate in the

river. Moreover, given that nitrate from nitrification

should reflect the d18O of the ambient water, the

decoupling between observed seasonal variations in

d18O–H2O and d18O–NO3
- indicates that, although

nitrification within the stream must occur to some

extent, its O isotopic signature within the nitrate pool

is masked by other processes. Nitrate isotope varia-

tions observed in the SLR system are mostly influ-

enced by nitrate sources that have not been

regenerated within the stream. Fluctuations in the

isotopic composition of nitrate in the SLR at the

Québec station can be best explained by mixing of

variable ‘‘external’’ sources of nitrate, and seasonal

variations in the relative nitrate source partitioning

modulates the nitrate isotope dynamics in the SLR.

The SLR receives greater portions of high-d18O/low-

Table 3 Seasonal values for each end-member used in (1)

Season Québec Citya Great Lakesb Atmosphericc Nitrification

d18O d15N d18O d15N d18O d15N d18Od d15N

Summer 3.4 7.0 7 9 68 -6 -5.1 0 to ?6

Spring 5.4 5.5 7 9 77 -4 -6.4 0 to ?6

Winter 5.0 5.3 7 9 83 0 -5.7 0 to ?6

Fall 4.1 6.6 7 9 75 0 -5.3 0 to ?6

a Our data
b Average value for Lake Erie, in August 2005 (Ostrom et al. 2006)
c Seasonal average values from Finlay et al. (2007)
d Our data, d18O = d18OH2O ? 3 %
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Fig. 6 Plot of nitrate d15N versus d18O for all samples.

Expected isotopic compositions of the end-members considered

here (atmospheric deposition, nitrification in the catchment and

in the river, and nitrate inputs from Great Lakes) are represented

by the shaded areas

Table 4 Partitioning of the different N-sources calculated

from (1)

Seasons Proportion (%)

Great Lakes Atmospheric Nitrification

Summera 77 ± 4 0 ± 0 24 ± 3

Summerb 48 ± 5 4 ± 1 48 ±5

Springa 63 ± 3 4 ± 1 33 ± 3

Springb 20 ± 5 11 ± 1 69 ± 5

Wintera 59 ± 3 4 ± 1 37 ± 3

Winterb 1 ± 7 12 ± 1 87 ± 6

Falla 73 ± 4 0 ± 1 26 ± 3

Fallb 33 ± 7 7 ± 1 60 ± 6

Average 47 ± 27 5 ± 4 48 ± 22

a With d15N of nitrified nitrate = 0 %
b With d15N of nitrified nitrate = ?6 %
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d15N nitrate in the spring compared to summer (i.e.,

during baseflow conditions). Spring is characterized

by intense snowmelt, and atmospheric nitrate stocked

in snowpack added to the riverine nitrate pool can

explain the observed nitrate isotope trends. During

baseflow conditions, in-stream d15N–NO3
- and d18O–

NO3
- values reflect the isotopic signatures of soil

nitrate, or a mixture of nitrate from agricultural and

urban areas. Our N and O isotope mass balance

considerations revealed a sixfold increase in the

atmospheric N input during spring compared to

summer. Yet with less than 10 % of the total N

loading, atmospheric precipitation does not play a

major role in the St. Lawrence N budget, leaving the N

input from the Great Lakes, as well as the N

regeneration as the most important fixed N sources.

Unfortunately, our approach does not allow more

detailed information on the actual source of N that is

regenerated, be it from soil-derived or agricultural N,

or from in-stream OM remineralization.

Nitrate source tracing using nitrate dual-isotope

measurements can be hampered if microbial immobi-

lization and transformation processes have an over-

printing effect on the bulk nitrate isotope composition

(Aravena et al. 1993; Mengis et al. 2001). Our study

demonstrates that in the SLR, in-stream N transforma-

tions have a minor impact on observed nitrate isotope

dynamics, and nitrate isotope measurements thus allow

valuable quantitative insight into temporal variation and

N source partitioning in a riverine system. The nitrate

isotopic composition in the SLR seems particularly

sensitive to the input of atmospheric nitrate.
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