Heavy metals in sediments from constructed wetlands treating municipal wastewater

Jan Vymazal · Jaroslav Švehla · Lenka Kröpfelová · Jana Němcová · Vladimír Suchý

Received: 31 October 2009 / Accepted: 25 June 2010 / Published online: 11 July 2010 © Springer Science+Business Media B.V. 2010

Abstract Constructed wetlands are commonly used for treatment of municipal sewage. The treatment is usually aimed at removal of organics, suspended solids, nutrients and microbial pollution. The information on removal and fate of heavy metals is very limited. The purpose of this study was to evaluate the amount of sediments and heavy metal concentration in the sediments in filtration beds of seven constructed wetlands with horizontal subsurface flow treating municipal sewage with various length of operation. The results revealed that concentrations of Cd, Ni, Pb, Cu, Cr and Zn in the sediment are mostly comparable with concentrations occurred in natural unpolluted or slightly polluted wetlands. The concentrations are much lower than those found in wetlands impacted with mine drainage waters or wastewater from industrial operations. Concentrations of studied heavy

J. Vymazal (⊠) ∙ L. Kröpfelová Department of Landscape Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences in Prague, Náměstí Smiřických 1, 281 63 Kostelec nad Černými lesy, Czech Republic e-mail: vymazal@yahoo.com

J. Vymazal · L. Kröpfelová ENKI, o.p.s., Dukelská 145, 379 01 Třeboň, Czech Republic

J. Švehla · J. Němcová · V. Suchý Department of Applied Chemistry, Faculty of Agriculture, University of South Bohemia, Studentska´ 13, 370 05 Ceske Budejovice, Czech Republic

metals exceeded only occasionally limits set by the Czech legislation. However, when heavy metal concentrations are evaluated within the filtration material the concentrations are well below the limits set for soils in the Czech Republic. The results also revealed that concentrations of heavy metals in the sediment do not reflect the time of operation probably due to buildup of sediments from suspended solids contained in wastewaters. However, the sediment mass increases during the course of operation and consequently the metal mass increases as well.

Keywords Constructed wetlands - Gravel · Heavy metals · Horizontal flow · Wastewater treatment

Introduction

During last two decades the constructed wetlands with horizontal subsurface flow (HF CWs) have increasingly been used in the Czech Republic to treat municipal wastewater (Vymazal [1995,](#page-21-0) [1996,](#page-21-0) [2002,](#page-21-0) [2009;](#page-21-0) Vymazal and Kröpfelová [2005](#page-21-0)). The first constructed wetland was put in operation in 1989 and at present, there are about 300 systems in operation. Trace elements are usually not the target of the treatment of municipal wastewater but their concentrations in the sediments within the filtration bed may be the concern when the filtration bed would need to be excavated and disposed. So far only few investigations have been aimed at the heavy metals concentrations in the filtration beds of constructed wetlands with subsurface flow treating sewage (e.g. Obarska-Pempkowiak and Klimkowska [1999](#page-20-0); Obarska-Pempkowiak [2001;](#page-20-0) Vymazal [2003](#page-21-0); Vymazal and Krása 2003 ; Lesage et al. $2007a$, [b\)](#page-19-0).

Redox potential and pH of the sediment–water system are the major factors known to influence the mobility of trace elements in wetlands (DeLaune et al. [1998;](#page-18-0) Koretsky et al. [2008\)](#page-19-0). However, in most municipal sewage the pH is around neutral and, therefore, this parameter does not affect mobility and retention of heavy metals in constructed wetland too much. Particularly in wetlands, oxidation and reduction reactions are of prime importance (Du Laing et al. [2008\)](#page-18-0). Under aerobic conditions, the most important process affecting accumulation of heavy metals is precipitation of Fe/Mn hydrous oxides (Singer and Stumm [1970\)](#page-20-0). The most important processes affecting heavy metals accumulation/mobilization under anoxic and anaerobic conditions are creation of hydrogen sulfide via sulfate reduction and dissolution of Fe/Mn hydrous oxides (Khalid et al. [1978](#page-19-0); Green et al. [2003](#page-18-0); De Volder et al. [2003](#page-18-0); Mansfeldt [2004](#page-19-0)).

Sedimentation has long been recognized as the principle process in removal of heavy metals from wastewater in constructed wetlands. However, it is not a simple straightforward physical reaction and other chemical processes such as precipitation and co-precipitation have to occur first (Yao and Gao [2007\)](#page-21-0). Iron, manganese and also aluminum can form under aerobic conditions insoluble compounds through hydrolysis and/or oxidation. This leads to formation of variety of oxides, oxyhydroxides and hydroxides (Wieder [1989;](#page-21-0) Batty et al. [2002](#page-17-0); Woulds and Ngwenya [2004;](#page-21-0) Sheoran and Sheoran [2006](#page-20-0)). Once associated with the particulate phase, these elements become subject to removal from the water via sedimentation. The stability of these inorganic compounds is controlled primarily by the system pH, the solubility of the product, and concentrations of the metals and relevant anions (Gambrell [1994](#page-18-0); Sheoran and Sheoran [2006](#page-20-0)). At near-neutral to slightly alkaline pH levels, metals tend to be effectively immobilized (Gambrell [1994\)](#page-18-0). Co-precipitation is an adsorptive phenomenon in wetland sediments. The concentration and distribution of many elements, such as Ni, Cu, Zn or Cd, in sediments and overlying waters are strongly influenced by adsorption and/or co-precipitation with Fe and Mn oxides (Krauskopf [1956](#page-19-0); Jenne [1968](#page-19-0); Feely et al. [1983;](#page-18-0) Ferris et al. [1989](#page-18-0)). Copper, nickel, zinc and manganese are co-precipitated in Fe oxides and cobalt, iron, nickel and zinc are co-precipitated in manganese oxides (Stumm and Morgan [1981\)](#page-20-0). In addition, zinc is reported to be retained on iron plaques at the surface of plant roots (Otte et al. [1995](#page-20-0)). However, in filtration beds of HF CWs anoxic/ anaerobic conditions prevail (e.g., Dušek et al. [2008\)](#page-18-0) and therefore precipitation of Fe/Mn compounds is not the major retention mechanism as Mn and Fe precipitates dissolute under these conditions (Laanbroek [1990](#page-19-0); Jacobson [1994;](#page-19-0) Lovley [1995](#page-19-0); Green et al. [2003](#page-18-0); Cooper et al. [2006](#page-18-0)).

Under reducing conditions, dissimilatory sulfate reduction transforms SO_4^2 ⁻ to H₂S during respiration by several genera of strictly anaerobic bacteria by reaction with a variety of organic substrates (Gambrell and Patrick [1978](#page-18-0); Laanbroek and Veldkamp [1982](#page-19-0); Mandernack et al. [2000;](#page-19-0) Megonikal et al. [2004\)](#page-19-0). Most of the heavy metals react with hydrogen sulfide to form highly insoluble metal sulfides (Krauskopf [1956](#page-19-0); Stumm and Morgan [1981;](#page-20-0) Kosolapov et al. [2004\)](#page-19-0):

$$
M^{2+} + H_2S \rightarrow MS \downarrow +2H^+
$$

where M^{2+} represents a divalent metal ion such as $Fe²⁺$ (pyrite, FeS₂; pyrrhotite, FeS), Pb²⁺ (galena, PbS), Cd^{2+} (CdS), Cu^{2+} (covellite, CuS; chalcocite, CuS₂; chalcopyrite, CuFeS₂), Ni²⁺ (NiS) or Zn^{2+} (sphalerite, ZnS). These compounds are very stable and insoluble under anaerobic conditions. However, under oxidized conditions sulfides dissolute and release metals. This may occur, for example, as a consequence of oxygen release from plant roots in the rhizosphere (Engler and Patrick [1975;](#page-18-0) Gambrell et al. [1980;](#page-18-0) Jacob and Otte [2003](#page-19-0)).

Heavy metals may also form carbonates when the bicarbonate concentration in water is high. Although carbonates are less stable than sulfides, they can still perform a significant role in initial trapping of metals (Ramos et al. [1994;](#page-20-0) Sobolewski [1996](#page-20-0); Sheoran and Sheoran [2006](#page-20-0); Du Laing et al. [2008\)](#page-18-0). Carbonate precipitation is especially effective for the accumulation of lead and nickel in wetlands (Lin [1995\)](#page-19-0).

Metal complexes with large molecular weight organics tend to be effectively immobilized. There is some evidence that at least some metals are more tightly bound by organics under anoxic or reducing conditions compared with upland conditions because humic material may become structurally less complex under oxic conditions (Gambrell and Patrick [1978](#page-18-0); Gambrell et al. [1980](#page-18-0); Guo et al. [1997](#page-18-0)). However, complex formation with soluble and insoluble organic matter under all conditions of pH and oxidation intensity occurs (Verloo and Cottenie [1972\)](#page-21-0).

The purpose of this study was to evaluate the amount of sediments and heavy metal concentration in the sediments in filtration beds of constructed wetlands with horizontal subsurface flow treating municipal sewage with various time of operation.

Materials and methods

Seven constructed wetlands with horizontal subsurface flow (Fig. 1) with time of operation varying

Fig. 1 Schematic representation of a constructed wetland with horizontal sub-surface flow. 1—distribution zone filled with large stones, 2—surface of the bed, 3—water level in the bed, 4—impermeable liner, 5—medium (e.g., gravel, crushed stones), 6—collection zone filled with large stones, 7—collection drainage pipe, 8—outlet structure for maintaining of water level in the bed. The *arrows* indicate only a general flow pattern (Vymazal [2001\)](#page-21-0)

between 2 and 16 years (Table 1) were sampled in 2008. In each constructed wetland samples were taken in the inflow, middle and outflow zones (three samples in each zone). Gravel or crushed rock samples were taken using the reinforced stainless steel soil sampler (so called ''Russian corer'') which was driven into the filtration substrate to a depth of 60 cm. Samples were divided into surface (0–20 cm) and bottom sections (20–60 cm) in order to evaluate vertical distribution of sediments. In the laboratory, samples were cleaned from roots and freeze-dried under low pressure and temperature. Dried sediment material was weighed, homogenized and passed through a 0.5 mesh sieve. After drying both sediment and filtration material volume were determined in order to calculate the volume ratio between sediment and filtration material. 500 mg of the dry sediment was digested in reverted (Löfelt) aqua-regia $(4.5 \text{ ml HNO}_3 \text{ and } 1.5 \text{ ml HCl})$ under high pressure and temperature in microwave apparatus (MARS-5, CEM, USA) according to the modified U.S. EPA method 3052 (U.S. EPA [1995\)](#page-21-0). After digestion, the sample was filtered in order to obtain a clear sample. Heavy metals were analyzed by ICP-MS (PQ-ExCell, VG-Thermo Elemental, Winsford, Cheshire, UK) according to U.S. EPA method 200.8 (U.S. EPA [1994\)](#page-21-0). For statistical analyses of heavy metal concentrations along the filtration beds paired-sample t-test $(P<0.05)$ was used. Differences between sediment concentrations in the filtration beds were statistically evaluated through the two-way ANOVA ($P < 0.05$) for vertical (top and bottom) and horizontal (inflow, middle and outflow) profiles.

Table 1 Major design parameters of monitored constructed wetlands

	Cejkovice	Libníč	Břehov	Slavošovice	Mořina	Příbraz	Sp. Poříčí
Start of operation	2006	2006	2003	2001	2000	1999	1992
Length of operation (Years)	2	2	5	7	8	9	16
Designed PE	500	400	100	150	700	300	700
Type of sewer system	Combined	Combined	Combined	Combined	Separate	Combined	Combined
Area (m^2)	1.900	1.280	504	830	3.520	1.400	2,500
Filtration material	CR	CR	G	G	CR	G	G
Fraction (mm)	$4 - 16$	$4 - 8$	$4 - 8$	$4 - 32$	$4 - 8$	$4 - 8$	$0 - 16$
Vegetation	PHA	PHA	$PHA + PG$	PG	$PHA + PG$	$PHA + PG$	$PHA + PG$

PE population equivalent; CR crushed rock, G gravel; PHA Phalaris arundinacea, PG Phragmites australis

Results and discussion

Concentrations of heavy metals in the sediments

Cadmium

Under anoxic conditions, cadmium forms very insoluble compounds with sulfide (CdS) and under slightly reduced to oxidized conditions solid carbonate $(CdCO₃)$ is a major control mechanism for cadmium solubility (Khalid [\(1980](#page-19-0)). Precipitation of carbonate can be microbially mediated, for example, by Alcaligenes denitrificans (Remacle et al. [1992](#page-20-0)). Under aerobic conditions, cadmium could be adsorbed or co-precipitated with oxides, hydroxides, and hydrous oxides of Fe, Mn and possible Al (Khalid [1980](#page-19-0)). Cadmium complexed with the organic fraction may be divided into chelated and organic bound. Chelated Cd is the fraction that is loosely attached to immediately mobile and easily decomposable organic material while organic-bound Cd is the fraction incorporated into the insoluble organic material and can be solubilized only after intense oxidation of the organic matter (Khalid [1980\)](#page-19-0).

Fig. 2). In all systems, the concentrations in the top layer did not significantly differed from those found in bottom layers with the exception of Prtpraz and Spálené Poříčí where the Cd concentration was

cadmium, nickel and lead in seven horizontal subsurface flow constructed wetlands. Different letters indicate significant difference at $\alpha = 0.05$ between the means. Bars without letters are not significantly different

significantly higher at the outflow zone in the top layer. The results shown in Fig. [2](#page-3-0) indicate that in Břehov, Libníč, Mořina and Spálené Poříčí the concentration of Cd near the inflow was significantly higher than in the middle of the bed and near the outflow. Similar observations were also reported by Lesage et al. [\(2007a,](#page-19-0) [b](#page-19-0)) from HF CWs in Zemst and Zevergem, De Pinte, Flanders, Belgium and by Vymazal [\(2003](#page-21-0)) from HF CW Nučice in the Czech Republic. Also, the Cd concentrations found in our study were comparable with those reported by Lesage et al. ([2007b\)](#page-19-0). The values are slightly lower than those reported by Lesage et al. [\(2007a\)](#page-19-0), Haberl and Perfler [\(1990](#page-18-0)), Samecka-Cymerman et al. (2004) (2004) , Gschlössl and Stuible [\(2000](#page-18-0)) or Zuidervaart ([1996\)](#page-21-0) from HF CWs in Belgium, Austria, Poland, Germany and the Czech Republic, respectively. On the other hand, the concentrations were lower than concentrations reported from constructed wetlands for road runoff or mine wastewater treatment (Table 2). The data on sediment concentration in various wetlands (Table 2) indicate that concentrations found in our study are

Table 2 Concentration of cadmium (mg/kg) in sediments of natural and constructed wetlands

Location	Type of sediment	Concentration Reference	
Natural wetlands, unpolluted			
Zambia	Unpolluted wetland	< 0.2	Von der Heyden and New (2004)
South Carolina, USA	Unpolluted sediments	0.03	Babcock et al. (1983)
Czech Republic	Fishponds	$0.03 - 1.0$	Švehla et al. (2002)
Estonia	64 mires	0.12	Orru and Orru (2006)
Czech Republic	Fishponds	$0.13 - 2.34$	Pokorný et al. (1999)
Russia	Unimpacted West Siberia tundra wetlands	0.24	Zhulidov et al. (1997)
UK	Unpolluted pond	1.4	Ye et al. (1997)
Canada	Man-made lake marsh	$1.0 - 1.9$	Murdoch and Capobianco (1978)
Spain	Unaffected marsh	1.45	Madejón et al. (2006)
UK	Unpolluted wetland	$0.1 - 2.0$	Scholes et al. (1998)
Hong Kong	Natural marsh	$ND-3.46$	Liang and Wong (2003)
UK	Unpolluted wetland	4.2	Shutes et al. (1993)
Worldwide	Estuaries and deltas	$0.13 - 7.4$	Accornero et al. (2008)
Denmark	Oligotrophic lake	11.0	Schierup and Larsen (1981)
Natural wetlands, polluted			
Turkey	Polluted marsh	0.22	Aksoy et al. (2005)
Gaza Strip	Slightly polluted wetland	$ND-0.4$	Shomar et al. (2005)
Turkey	Lake sediments impacted by urbanization	$0.14 - 0.57$	Duman et al. (2007)
Vietnam	Water spinach cultivation sediments amended with wastewater	$0.33 - 0.67$	Marcussen et al. (2008)
Zambia	Wetland affected by mine waters	$< 0.1 - 0.8$	Von der Heyden and New (2004)
Poland	Three lakes receiving wastewater	$1.2 - 1.8$	Szymanowska et al. (1999)
Tanzania	Natural wetland receiving various wastewaters	$0.6 - 2.5$	Ojo and Mashauri (1996)
Spain	Marsh affected by tailing spill	3.29	Madejón et al. (2006)
Poland	Anthropogenic lakes (former open cut brown coal mines)	$< 0.08 - 3.3$	Samecka-Cymerman and Kempers (2001)
Canada	Infiltration field for petroleum refinery wastes	$< 0.5 - 4.0$	Higgins and Brown (1999)
New Jersey, USA	Freshwater tidal marsh receiving urban runoff	$4,8-6,1$	Simpson et al. (1983)
China	Coastal wetlands with various degree of pollution	$1.84 - 6.43$	Li et al. (2007)
UK	Natural wetland receiving highway runoff	$2.9 - 8.7$	Mungur et al. (1994)
Russia	Impacted West Siberia tundra wetlands	9.0	Zhulidov et al. (1997)
UK	Natural wetland receiving highway runoff	9.7	Shutes et al. (1993)

ND not determined, HF horizontal sub-surface flow, VF vertical sub-surface flow, FWS free water surface

^a For municipal sewage unless specified

also comparable with those found in natural unpolluted wetlands. It is obvious that the highest Cd concentrations are found in wetlands receiving industrial wastewaters or mine drainage waters.

Nickel

Under oxic or suboxic conditions, Ni sorbs to Mn oxides and can substitute for Ni in the lattice of some Mn oxides

Table 3 Concentration of nickel (mg/kg) in sediments of natural and constructed wetlands

For details see Table [2](#page-4-0)

(Green-Pedersen et al. [1997;](#page-18-0) Tonkin et al. [2004](#page-21-0)). Under anoxic/anaerobic conditions nickel forms insoluble sulfides (Sobolewski [1999](#page-20-0)) and is incorporated into pyrite (Morse and Luther [1999](#page-20-0)). Also carbonates could be an effective sink for nickel (Lin [1995\)](#page-19-0).

The concentration of nickel in sediments of monitored constructed wetlands varied between 7.0 and 111 mg/kg (Fig. [2](#page-3-0)). In all systems, the concentrations in the top layer did not significantly differed from those found in bottom layers. The results shown in Fig. [2](#page-3-0) indicate that in Břehov, and Spálené Poříčí the concentration of Ni near the inflow was significantly higher than in the middle of the bed and near the outflow. In Libníč, Příbraz, Slavošovice and Mořina, the Ni concentration in the sediments did not vary too much. In Čejkovice, the highest Ni concentration was measured at the outflow. The literature results on nickel distribution along the filtration bed also vary. Vymazal ([2003\)](#page-21-0) found significantly higher Ni concentration in the inflow zone while Lesage et al. [\(2007b](#page-19-0)) observed only a slight decrease along the bed and Lesage et al. ([2007a](#page-19-0)) a slight increase in Ni concentration in the sediments along the bed. Nickel concentrations were comparable with Ni concentrations reported from constructed wetlands treating municipal sewage (Table [3](#page-6-0)). Also, the Ni concentrations are within the range of Ni concentrations reported from both unpolluted and polluted wetlands. Results presented in Table [3](#page-6-0) revealed that by far the highest Ni concentrations are found in wetlands receiving industrial wastewater, mine drainage waters and also road runoff.

Lead

Koretsky et al. [\(2008](#page-19-0)) pointed out that lead, like Zn and Cu, is a chalcophile that forms discrete sulfide phases and may also bind strongly to organic matter. Also carbonates could be an effective sink for lead (Lin [1995](#page-19-0)). It has been shown that lead also strongly adsorbs to Fe/Mn oxides and it has been found in association with rhizosphere Fe(III) plaques (Dzombak and Morel [1990](#page-18-0)). However, it has been concluded that the Pb is not trapped by Fe oxides, but rather is complexed to organic matter either in the rhizosphere solution or on the root surface (Sundby et al. [2005](#page-20-0)).

The concentration of lead in sediments of monitored constructed wetlands varied between 9.3 and

125 mg/kg but most values were lower than 30 mg/kg (Fig. [2](#page-3-0)). In all systems, the concentrations in the top layer did not significantly differed from those found in bottom layers. The results shown in Fig. [2](#page-3-0) indicate that in Břehov, Libníč, Mořina and Spálené Poříčí the concentration of Pb near the inflow was significantly higher than in the middle of the bed and near the outflow. In Příbraz and Slavošovice the Pb concentration in the sediments did not vary too much and decreased slightly along the bed. In Cejkovice, similarly to Ni, the concentrations gradually increase along the bed. Lesage et al. [\(2007a,](#page-19-0) [b\)](#page-19-0) reported that lead concentration in the sediment decreased along the bed. Vymazal (2003) (2003) found a significant decrease after 16 m of the bed but than the concentration increased again and after 48 m the Pb concentration was only slightly lower as compared to the concentration near the inflow. Lead concentrations found in our study were comparable with Pb concentrations reported from natural unpolluted and lightly polluted wetlands (Table [4](#page-8-0)) In comparison with the results reported from various constructed wetlands the measured concentrations are slightly lower. The data in Table [4](#page-8-0) also clearly indicate that Pb concentrations in sediments of wetlands receiving mining drainage waters and waters affected by smelters are up to two orders of magnitude higher.

Copper

Copper forms under anoxic conditions very insoluble compounds with sulfur, including both cupric and cuprous sulfides (Sobolewski [1999;](#page-20-0) Morse and Luther [1999](#page-20-0)) and may also associate with pyrite (Huerta-Diaz et al. [1993\)](#page-18-0). Copper also forms insoluble hydroxides and carbonates (Morel and Hering [1993\)](#page-19-0) but those are important in presence of sulfides. Copper also forms strong complexes with organic matter and can be bound to Fe/Mn oxides under oxic conditions via formation of ternary complexes with organic matter (Achterberg et al. [1997\)](#page-17-0).

The concentration of copper in sediments of monitored constructed wetlands varied between 6.3 and 139 mg/kg but most values were lower than 75 mg/kg (Fig. [3](#page-12-0)). The concentrations of Cu in the top layer did not differ from those found in the bottom layers in all seven systems. With the exception of Čejkovice and Příbraz, in all other system the Cu concentration was significantly higher in the

Table 4 Concentration of lead (mg/kg) in sediments of natural and constructed wetlands

Location	Type of sediment	Concentration Reference	
Natural wetlands, unpolluted			
Estonia	64 mires	3.3	Orru and Orru (2006)
Russia	Unimpacted West Siberia tundra wetlands	5.7	Zhulidov et al. (1997)
Zambia	Unpolluted wetland	$7 - 10$	Von der Heyden and New (2004)
UK	Unpolluted pond	26	Ye et al. (1997)
Spain	Unaffected marsh	38	Madejón et al. (2006)
UK	Unpolluted wetland	$4 - 40$	Scholes et al. (1998)
Czech Republic Fishponds		12–47	Svehla et al. (2002)
Canada	Man-made lake marsh	$18.2 - 63.7$	Murdoch and Capobianco (1978)
Czech Republic	Fishponds	$28.4 - 67.6$	Pokorný et al. (1999)
UK	Unpolluted wetland	71	Shutes et al. (1993)
Hong Kong	Natural marsh	$17.1 - 90.7$	Liang and Wong (2003)
Italy	Volcanic lake	$47 - 93$	Baldantoni et al. (2009)
Denmark	Oligotrophic lake	361	Schierup and Larsen (1981)
Worldwide	Estuaries and deltas	$20 - 372$	Accornero et al. (2008)
Natural wetlands, polluted			
Turkey	Polluted marsh	7.91	Aksoy et al. (2005)
Poland	Three lakes receiving wastewater	$9.7 - 12.9$	Szymanowska et al. (1999)
Turkey	Lake sediments impacted by urbanization	$12.9 - 17.8$	Duman et al. (2007)
Russia	Impacted West Siberia tundra wetlands	34	Zhulidov et al. (1997)
Slovenia	Anthropogenic lake contaminated with ash from lignite coal	$10.4 - 36.4$	Mazej and Germ (2009)
Spain	Marsh affected by tailing spill	45	Madejón et al. (2006)
Mexico	Lagoon affected by industrial wastes	$20.3 - 55.2$	Carranza-Álvarez et al. (2008)
Poland	Anthropogenic lakes (former open cut brown coal mines)	$1 - 64$	Samecka-Cymerman and Kempers (2001)
Vietnam	Water spinach cultivation sediments amended with wastewater	32.5–67.4	Marcussen et al. (2008)
Czech Republic	Eutrophic pond	$1 - 68$	Zuidervaart (1996)
India	Anthropogenic lake affected by coal mine drainage	$45 - 74$	Mishra et al. (2008)
Zambia	Wetland affected by mine waters	$9 - 75$	von der Heyden and New (2004)
Tanzania	Natural wetland receiving various wastewaters	9.1–85	Ojo and Mashauri (1996)
China	Polluted lakes sediment	$27 - 86$	Yang et al. (2007)
China	Coastal wetlands with various degree of pollution	$12.3 - 86$	Li et al. (2007)
China	Impacted wetland	66–160	Bi et al. (2007)
Australia	Contaminated urban streams	$9.7 - 182$	Cardwell et al. (2002)
Gaza Strip	Slightly polluted wetland	$2.5 - 193$	Shomar et al. (2005)
China	Paddy fields	33–501	Deng et al. (2006)
UK	Natural wetland receiving highway runoff	506	Shutes et al. (1993)
China	River sediments contaminated with e-wastes	28.6–590	Wong et al. (2007)
USA	Contaminated urban lake	$102 - 1,130$	DeLaune et al. (1989)
Denmark	Eutrophic lake	1,298	Schierup and Larsen (1981)
UK	Natural wetland receiving highway runoff	929-1,329	Mungur et al. (1994)
Canada	Silver mine vicinity	1,800	Moore and Sutherland (1981)
New Jersey, USA	Freshwater tidal marsh receiving urban runoff	$237 - 2,161$	Simpson et al. (1983)
Poland	Two lakes near copper smelter/ore processing plant	1,460–2,220	Samecka-Cymerman and Kempers (2004)
China	Stream near Pb/Zn mine	400-4800	Deng et al. (2008)
China	Pond receiving mine waters	5,686	Ye et al. (1997)

Table 4 continued

inflow zone as compared to the middle and outflow zones. Lesage et al. [\(2007a,](#page-19-0) [b\)](#page-19-0) observed a steep decrease in Cu sediment concentration in two HF CWS in Belgium. Vymazal and Krása ([2003\)](#page-21-0) reported slight decrease in Cu concentration along the filtration bed of a HF CW in the Czech Republic. The copper concentrations found in our study were comparable with higher values found in unpolluted wetlands and with lower end of the range reported for polluted wetlands (Table [5](#page-10-0)). The copper concentrations shown in Fig. [3](#page-12-0) were similar to the concentrations reported from Poland and Italy and also by Zuidervaart ([1996\)](#page-21-0) who studied heavy metals in the Czech constructed wetlands more than 10 years ago (Table [5](#page-10-0)). On the other hand, copper concentrations found in our study were lower than concentrations reported from Belgium (Table [5\)](#page-10-0). The data in Table [5](#page-10-0) also clearly indicate that Cu concentrations in sediments of wetlands receiving mining drainage waters and waters affected by smelters are up to two orders of magnitude higher.

Chromium

Contrary to most heavy metals such as Zn, Cd, Pb or Ni, chromium undergoes a change in oxidation state as a consequence of soil oxidation–reduction conditions (Gambrell [1994\)](#page-18-0). These conditions play a major role in chromium speciation, solubility and mobility with reduction transformations being microbially mediated (Masscheleyn et al. [1992](#page-19-0); Cervantes et al. [2001](#page-18-0)). DeLaune et al. [\(1998](#page-18-0)) reported that reduction of Cr(VI) occurs at approximately same redox levels as nitrate reduction. Under oxic and suboxic conditions chromium typically sorbs to Fe, and especially Mn, oxides (Davison [1993;](#page-18-0) Guo et al. [1997](#page-18-0); Achterberg et al. [1997](#page-17-0)). Under anoxic sediments, reduced chromium is not readily incorporated into sulfides (Huerta-Diaz et al. [1998\)](#page-18-0) but instead tends to associate with organic matter (Otero and Macias [2002](#page-20-0)). Also Guo et al. [\(1997](#page-18-0)) reported that under reducing conditions, the behavior of Cr is controlled primarily by insoluble large molecular humic materials.

Table 5 Concentration of copper (mg/kg) in sediments of natural and constructed wetlands

Location	Type of sediment	Concentration Reference	
Natural wetlands, unpolluted			
Estonia	64 mires	4.4	Orru and Orru (2006)
Russia	Unimpacted West Siberia tundra wetlands	16	Zhulidov et al. (1997)
	Louisiana, USA Freshwater marsh	16.4	Fejitel et al. (1988)
UK	Unpolluted wetland	$4 - 20$	Scholes et al. (1998)
Czech Republic Fishponds		32.4	Pokorný et al. (1999)
Italy	Lake shore	$10.3 - 43$	Baudo et al. (1985)
Canada	Man-made lake marsh	$7.0 - 43.7$	Murdoch and Capobianco (1978)
Spain	Unaffected marsh	47	Madejón et al. (2006)
Italy	Volcanic lake	$6.1 - 76$	Baldantoni et al. (2009)
Hong Kong	Natural marsh	18.8-86.6	Liang and Wong (2003)
Belgium	Freshwater tidal marshes	79–198	Teuchies et al. (2008)
Zambia	Unpolluted wetland	53–463	Von der Heyden and New (2004)
Natural wetlands, polluted			
Turkey	Polluted marsh	6.72	Aksoy et al. (2005)
Poland	Anthropogenic lakes (former open cut brown coal mines)	$0.4 - 18.6$	Samecka-Cymerman and Kempers (2001)
Slovenia	Anthropogenic lake contaminated with ash from lignite coal 6.1–24.5		Mazej and Germ (2009)
China	Impacted wetland	27 (17–33)	Bi et al. (2007)
Turkey	Lake sediments impacted by urbanization	$17.8 - 35.5$	Duman et al. (2007)
Spain	Marsh affected by tailing spill	61	Madejón et al. (2006)
Vietnam	Water spinach cultivation sediments amended with wastewater	$34 - 62.1$	Marcussen et al. (2008)
China	Polluted lakes sediment	$12.1 - 72.9$	Yang et al. (2007)
Russia	Impacted West Siberia tundra wetlands	134	Zhulidov et al. (1997)
USA	Contaminated urban lake	$19 - 140$	DeLaune et al. (1989)
China	Stream near Pb/Zn mine	$160 - 220$	Deng et al. 2008)
Ontario, Canada	Near Cu smelter	3,738	Taylor and Crowder (1983)
New Jersey, USA	Freshwater tidal marsh receiving urban runoff	$111 - 129$	Simpson et al. (1983)
Uganda	Lake shore affected by mining	270-273	Lwanga et al. (2003)
China	Sediments contaminated with municipal and industrial wastewaters	27.9-452	Peng et al. (2008)
China	Coastal wetlands with various degree of pollution	$ND-351$	Li et al. (2007)
Spain	Saltmarsh affected by mining wastes	418	Jiménez-Cárceles et al. (2008)
Gaza Strip	Slightly polluted wetland	$4.7 - 566$	Shomar et al. (2005)
Worldwide	Estuaries and deltas	$7 - 648$	Accornero et al. (2008)
UK	Natural wetland receiving highway runoff	$323 - 1,441$	Mungur et al. (1994)
China	River sediments contaminated with e-wastes	$17 - 4,540$	Wong et al. (2007)
Poland	Two lakes near copper smelter/ore processing plant	4,600-5,620	Samecka-Cymerman and Kempers (2004)
China	Wetlands receiving wastewaters	95–5770	Deng et al. (2004)
Zambia	Wetland affected by mine waters	$109 - 12, 112$	Von der Heyden and New (2004)

Location	Type of sediment Concentration		Reference	
Constructed wetlands				
Poland	FWS CW	$16.2 - 31.9$	Samecka-Cymerman et al. (2004)	
Italy	FWS CW, non-point pollution	$21.6 - 33.4$	Bragato et al. (2006)	
Italy	FWS CW, non-point pollution	11.9–43.4	Mattiuzzo et al. (2007)	
Poland	VF CW, 5 years in operation	$57 - 65$	Obarska-Pempkowiak and Klimkowska (1999)	
Poland	HF CW	$90 - 99$	Samecka-Cymerman et al. (2004)	
Czech Republic	HF CW, 3 years in operation	110	Vymazal and Krása (2003)	
Czech Republic	4 HF CWs, 2–5 years in operation	$1.3 - 117$	Zuidervaart (1996)	
Belgium	HF CW, 4 years in operation	$52 - 139$	Lesage et al. $(2007a)$	
Germany	HF CW, 10 years of operation	$4 - 143$	Gschlössl and Stuible (2000)	
UK.	2 FWS CWs treating urban runoff	$17 - 178$	Scholes et al. (1998)	
Belgium	VF CW, 4 years in operation	201	Lesage et al. $(2007a)$	
Belgium	HF CW, 3 years in operation	$15 - 288$	Lesage et al. $(2007b)$	
Belgium	FWS CW, 16 years in operation	19 - 308	Lesage (2006)	

Table 5 continued

The concentration of chromium in sediments of monitored constructed wetlands varied between 13 and 163 mg/kg but in Příbraz, Slavošovice, Mořina and Spálené Poříčí the average Cr concentrations in sediments did not exceed 45 mg/kg (Fig. [3](#page-12-0)). The concentrations of Cu in the top layer did not differ from those found in the bottom layers in all seven systems. In Břehov and Spálené Poříčí the highest Cr concentrations were recorded in the inflow zone while in Cejkovice and Příbraz the highest concentrations were recorded in the outflow zone. Lesage et al. [\(2007a,](#page-19-0) [b\)](#page-19-0) observed a slight decrease in Cr sediment concentration in Belgium. The chromium concentrations found in our study were higher as compared to values found in natural unpolluted wetlands and are similar to concentrations found in polluted wetlands (Table [6](#page-13-0)). The data in Table [6](#page-13-0) indicate that Cr concentration in sediments in studied HF CWs was slightly higher than most data reported in the literature from constructed wetlands. The range of concentrations found in our study is comparable with concentrations found in a constructed wetland treating road runoff (Scholes et al. [1998\)](#page-20-0). However, the highest values found in our study were lower than concentrations reported by Gschlössl and Stuible [\(2000](#page-18-0)) from Germany.

Zinc

Under aerobic conditions zinc is commonly associated with Fe and Mn oxides, hydroxides and oxyhydroxides (Krauskopf [1956](#page-19-0); Jenne [1968;](#page-19-0) Ferris et al. [1989;](#page-18-0) Bostick et al. [2001](#page-17-0)). Zinc is also retained in iron plaques on plant root surface (Otte et al. [1995](#page-20-0)). Under anoxic conditions zinc forms very insoluble sulfides (Huerta-Diaz et al. [1993](#page-18-0); Achterberg et al. [1997;](#page-17-0) Stumm and Morgan [1981](#page-20-0); Kosolapov et al. [2004\)](#page-19-0) and carbonates Hansel et al. [2001;](#page-18-0) Bostick et al. [2001\)](#page-17-0).

The concentration of zinc in sediments of monitored constructed wetlands varied widely between 1.0 and $1,768$ mg/kg (Fig. [3](#page-12-0)). In Příbraz, Slavošovice and Spálené Poříčí significantly more zinc was found in the top layer. In most surveyed constructed wetlands significantly more Zn was found in the inflow zone. The extremely high concentrations of Zn in sediments in Mořina are influenced by naturally high inflow Zn concentrations (Kröpfelová et al. [2009\)](#page-19-0). Very high accumulation of zinc in the inflow zone of HF CWs was also reported by Lesage et al. [\(2007a,](#page-19-0) [b\)](#page-19-0) from systems in Zemst and Zevergem in Belgium and by Vymazal and Krása (2003) (2003) from the HF CW in the Czech Republic. Zinc concentrations Fig. 3 Concentration of copper, chromium and zinc in seven horizontal subsurface flow constructed wetlands. Different letters indicate significant difference at $\alpha = 0.05$ between the means. Bars without letters are not significantly different

found in our study were comparable with higher Zn concentrations reported from natural unpolluted wetlands and with lower range of concentrations reported from polluted wetlands (Table [7](#page-14-0)). Zinc concentrations found in our study has never reached concentrations reported from wetlands impacted by mining activity (Table [7](#page-14-0)). In comparison with the results reported from various constructed wetlands the measured Zn concentrations are within the same range with the exception of Zn concentrations reported from a constructed wetland treating mining waters from Pb/Zn mine in China (Table [7\)](#page-14-0).

In Table [8](#page-15-0), average concentrations of studied heavy metals in seven HF constructed wetlands are shown. The data could be compared with background values and legal limits (Table [9\)](#page-16-0). The data indicate that concentrations of Cd exceeded the Czech limits for light soils in Mořina and Příbraz but in general the concentrations were only slightly elevated as compared to concentrations found in unpolluted soils and sediments (Bowen [1979](#page-17-0)). Also concentrations of nickel were only slightly elevated as compared to unpolluted soils and sediments and only in Ceikovice the average Ni concentration exceeded the Czech limit for other soils.

Location	Type of sediment	Concentration Reference	
Natural wetlands, polluted			
Estonia	64 mires	3.1	Orru and Orru (2006)
Italy	Volcanic lake	$2.56 - 5.15$	Baldantoni et al. (2009)
South Carolina, USA	Unpolluted sediments	8.7	Babcock et al. (1983)
Turkey	Polluted marsh	15.3	Aksoy et al. (2005)
Zambia	Unpolluted wetland	$15 - 23$	Von der Heyden and New (2004)
Canada	Man-made lake marsh	$5.0 - 24.9$	Murdoch and Capobianco (1978)
Hong Kong	Natural marsh	$10.5 - 46.1$	Liang and Wong (2003)
UK	Unpolluted wetland	$7 - 71$	Scholes et al. (1998)
Worldwide	Estuaries and deltas	$11 - 288$	Accornero et al. (2008)
Natural wetlands, polluted			
Poland	Two lakes near copper smelter/ore processing plant	$10 - 17$	Samecka-Cymerman and Kempers (2004)
Turkey	Lake sediments impacted by urbanization	$13.1 - 22.5$	Duman et al. (2007)
Slovenia	Lake contaminated with ash from lignite coal	$18.1 - 82.3$	Mazej and Germ (2009)
Gaza Strip	Slightly polluted wetland	$32 - 117$	Shomar et al. (2005)
USA	Contaminated urban lake	$33 - 118$	DeLaune et al. (1989)
Vietnam	Water spinach cultivation sediments amended with wastewater	68-122	Marcussen et al. (2008)
Zambia	Wetland affected by mine waters	$9 - 130$	Von der Heyden and New (2004)
Poland	Anthropogenic lakes (former open cut brown coal mines)	$20 - 165$	Samecka-Cymerman and Kempers (2001)
Uganda	Lake shore affected by mining	$120 - 169$	Lwanga et al. (2003)
China	Coastal wetlands with various degree of pollution	$13.5 - 191$	Li et al. (2007)
Mexico	Lagoon affected by industrial wastes	$16.1 - 1,039$	Carranza-Álvarez et al. (2008)
Constructed wetlands			
Belgium	VF CW, 4 years in operation	17	Lesage et al. $(2007a)$
Belgium	HF CW, 4 years in operation	$29 - 41$	Lesage et al. $(2007a)$
Belgium	HF CW, 3 years in operation	$26 - 41$	Lesage et al. $(2007b)$
Poland	VF CW, 5 years in operation	$38 - 41$	Obarska-Pempkowiak and Klimkowska (1999)
Italy	FWS CW	$12 - 43$	Mattiuzzo et al. (2007)
Italy	FWS CW	$46 - 71$	Bragato et al. (2006)
Belgium	FWS CW, 16 years in operation	$20 - 140$	Lesage (2006)
UK	2 FWS CWs treating urban runoff	$3 - 167$	Scholes et al. (1998)
Germany	HF CW, 10 years of operation	$10 - 259$	Gschlössl and Stuible (2000)

Table 6 Concentration of chromium (mg/kg) in sediments of natural and constructed wetlands

Concentrations of lead were very low and comparable with unpolluted soils and sediments (Bowen [1979](#page-17-0)). Also for Cu, concentrations in the sediments were quite low and only in Mořina the average value exceeded slightly the Czech limit for light soils. Concentrations of Cr exceeded slightly the Czech limit for light soils in Čejkovice and Libníč, otherwise the concentrations were low and comparable with unpolluted soils and sediments. Concentrations of zinc showed the greatest variation among studied constructed wetlands. In Mořina and Spálené Poříčí the average values exceeded the Czech limits for other soils.

Table 7 Concentration of zinc (mg/kg) in sediments of natural and constructed wetlands

Location	Type of sediment	Concentration Reference	
Natural wetlands, unpolluted			
Estonia	64 mires	10	Orru and Orru (2006)
Russia	Unimpacted West Siberia tundra wetlands	24	Zhulidov et al. (1997)
UK	Unpolluted wetland	$23 - 50$	Scholes et al. (1998)
Louisiana, USA	Freshwater marsh	54.5	Fejitel et al. (1988)
Italy	Lake shore	$50 - 103$	Baudo et al. (1985)
Spain	Unaffected marsh	104	Madejón et al. (2006)
Czech Republic	Fishponds	118	Pokorný et al. (1999)
Ontario, Canada	Lake marsh	$29 - 123$	Murdoch and Capobianco (1978)
Zambia	Unpolluted wetland	$1 - 138$	Von der Heyden and New (2004)
Italy	Volcanic lake	119-149	Baldantoni et al. (2009)
Hong Kong	Natural marsh	56–328	Liang and Wong (2003)
Worldwide	Estuaries and deltas	$47 - 649$	Accornero et al. (2008)
Belgium	Freshwater tidal marshes	531-1144	Teuchies et al. (2008)
Natural wetlands, polluted			
Turkey	Polluted marsh	39.6	Aksoy et al. (2005)
Turkey	Lake sediments impacted by urbanization	$39 - 75$	Duman et al. (2007)
Uganda	Lake shore affected by mining	$87.8 - 96.3$	Lwanga et al. (2003)
Zambia	Wetland affected by mine waters	$7 - 125$	Von der Heyden and New (2004)
Poland	Anthropogenic lakes (former open cut brown coal mines) 10-131		Samecka-Cymerman and Kempers (2001)
Gaza Strip	Slightly polluted wetland	$14.7 - 140$	Shomar et al. (2005)
Vietnam	Water spinach cultivation sediments amended with wastewater	99-189	Marcussen et al. (2008)
Slovenia	Anthropogenic lake contaminated with ash from lignite coal	$72 - 197$	Mazej and Germ (2009)
China	Polluted lakes sediment	54-236	Yang et al. (2007)
Russia	Impacted West Siberia tundra wetlands	294	Zhulidov et al. (1997)
Ontario, Canada	Near Cu smelter	343	Taylor and Crowder (1983)
China	Coastal wetlands with various degree of pollution	121-478	Li et al. (2007)
China	Impacted wetland	540	Bi et al. (2007)
New Jersey, USA	Freshwater tidal marsh receiving urban runoff	310-669	Simpson et al. (1983)
China	River sediments contaminated with e-wastes	$51 - 628$	Wong et al. (2007)
Spain	Marsh affected by tailing spill	718	Madejón et al. (2006)
UK	Natural wetland receiving highway runoff	583-742	Mungur et al. (1994)
China	Paddy fields	182-857	Deng et al. (2006)
China	Sediments contaminated with municipal and industrial wastewaters	$23.5 - 1,080$	Peng et al. (2008)
Poland	Three lakes receiving wastewater	$475 - 1,100$	Szymanowska et al. (1999)
USA	Contaminated urban lake	$113 - 1,340$	DeLaune et al. (1989)
Poland	Two lakes near copper smelter/ore processing plant	$1070 - 1,860$	Samecka-Cymerman and Kempers (2004)

Location	Type of sediment	Concentration Reference	
China	Wetlands receiving wastewaters	713-4,805	Deng et al. (2004)
China	Wetlands affected by mining activity and smelters	564-8,427	Deng et al. (2006)
China	Stream near Pb/Zn mine	1,500-9,000	Deng et al. (2008)
Spain	Saltmarsh affected by mining wastes	62,280	Jiménez-Cárceles et al. (2008)
Constructed wetlands			
Italy	FWS CW, non-point pollution	$26 - 103$	Mattiuzzo et al. (2007)
Italy	FWS CW, non-point pollution	$83 - 108$	Bragato et al. (2006)
Poland	VF CW, 5 years in operation	118-130	Obarska-Pempkowiak and Klimkowska (1999)
Poland	FWS CW	$71 - 131$	Samecka-Cymerman et al. (2004)
Belgium	HF CW, 4 years in operation	181-355	Lesage et al. $(2007a)$
Germany	HF CW, 10 years of operation	13-490	Gschlössl and Stuible (2000)
Poland	HF CW	$205 - 510$	Samecka-Cymerman et al. (2004)
Belgium	VF CW, 4 years in operation	662	Lesage et al. $(2007a)$
UK	2 FWS CWs treating urban runoff	$21 - 830$	Scholes et al. (1998)
Belgium	HF CW, 3 years in operation	65-934	Lesage et al. $(2007b)$
Belgium	FWS CW, 16 years in operation	$157 - 1,139$	Lesage (2006)
Czech Republic	4 HF CWs, 2–5 years in operation	$33.5 - 1,453$	Zuidervaart (1996)
Czech Republic	HF CW	$273(73 -$ 1,986)	Vymazal and Krása (2003)
China	FWS CW for Pb/Zn mine	4,729-6,863	Lan et al. (1990)

Table 7 continued

Values exceeding Czech limits for light soils in bold, values exceeding limits for other soils bold and underlined (for limits see Table [9](#page-16-0))

The results did not show any relationship between the concentration of heavy metals and the time of operation. This is probably a consequence of the sediment build-up in the filtration beds where the sediments are also formed by suspended solids. Haberl and Perfler [\(1990](#page-18-0)) documented that concentration of Zn, Cu and Cd remained steady during the 7-year study. While the concentrations do not change substantially during the course of constructed wetland operation, due to increase in the sediment biomass the amount of heavy metals increases. This was also observed in our study.

Concentrations of sediment in the filtration beds

For constructed wetlands in the Czech Republic, washed gravel or crushed stones are used. In the beginning of operation, the amount of sediment is zero and its concentration increases during the time of operation. In Table 10, concentrations of sediment expressed in %DM of the filtration bed material are shown. The results indicate the increase of sediment concentration with increasing time of operation. The amount of sediment was usually greater in the inflow zone as compared to outflow zone but the difference was not always statistically significant (Table 10). In Slavošovice, significantly more sediment mass was found at the bottom layer while in Spálené Poříčí significantly more sediment mass was found in the top layer in the inflow and middle zones. Also, in Břehov and Mořina, more sediment was found in the top layer. This variation is probably affected by the placement of the distribution pipes. While in Slavošovice the distribution pipes are buried near the bottom of the bed, in Spálené Poříčí, Břehov and Mořina, the distribution systems is either laid down on the surface of the filtration bed or it is buried only shallowly bellow the bed surface. Taking into consideration the sediment/filtration material mass ratio it was possible to calculate average heavy metal concentrations in the filtration material including sediments (Table [11\)](#page-17-0). As sediment mass varied between 0.42 and 10.55% of the filtration material, the final heavy metal concentrations are much lower than legal limits (Table 9).

Table 9 Limits for heavy metals concentration (mg/kg) in soils and sediments

	C _d	Ni	Pb	Cu	Cr	Zn	Ref
Czech Republic: limit for light soils	0.4	60	100	60	100	130	
Czech Republic: limit for other soils	1.0	80	140	100	200	200	
Belgium: soil remediation values	2.0	100	200	200	130	600	
China: criteria for agricultural soil quality	0.3	50	300	100	200	250	
Netherlands: remedial intervention should be taken	12	210	530	190	380	720	
Consensus based probable effect concentrations	4.98	48.6	128	149	111	459	
Background values	0.8	9	40	17	37	62	
Average concentrations in unpolluted soils	0.35	40	35	30	70	90	6
Unpolluted freshwater sediments	0.17	52	19	33	72	95	6

1: PAS [\(1994](#page-20-0)), 2: VLAREBO [\(1996\)](#page-21-0), 3: National Standard of PR China [\(1995](#page-20-0)), 4: Department of Soil Protection, Netherlands ([1994\)](#page-18-0), 5: McDonald et al. ([2000\)](#page-19-0), 6: Bowen ([1979](#page-17-0))

Table 10 Average sediment concentration in inflow, middle and outflow parts of the filtration bed of surveyed CWs (in % DM, SD in parentheses)

	Layer	Cejkovice	Libníč	Břehov	Slavošovice	Mořina	Příbraz	Sp. Poříčí
Years of operation				5		8	9	16
Inflow	Top	$1.0(0.5)^{ab}$	$0.5(0.08)^a$	4.4(1.2)	$1.7(0.5)^{a}$	$4.0(1.3)^{a,b}$	$5.9(2.8)^a$	$14.8(1.8)^a$
	Bottom	$1.2(0.02)^a$	$0.6(0.3)^{a,b}$	2.7(0.5)	$4.2(0.7)^{b}$	$3.3(1.8)^{a,b}$	$2.9(0.2)^{b}$	$7.8(1.3)^{b}$
Middle	Top	$1.0(0.6)^{ab}$	$0.3(0.03)^{b}$	3.9(2.3)	$0.7(0.6)^a$	$3.4(0.4)^a$	$2.0(0.4)^{b}$	$15.3(3.7)^a$
	Bottom	$0.5(0.2)^{b}$	$0.4(0.09)^{a,b}$	2.5(0.4)	$3.8(1.0)^b$	$1.5(0.2)^{b}$	$3.4(0.6)^{b}$	$7.7(1.9)^{b}$
Outflow	Top	$0.1(0.07)^{b}$	$0.3(0.06)^b$	4.3(1.1)	$0.4(0.1)^a$	$4.7(4.4)^{a,b}$	$2.4(0.5)^{b}$	$7.8(3.7)^{b}$
	Bottom	$0.1(0.06)^{b}$	$0.4(0.1)^{a,b}$	2.1(0.5)	$2.7(0.5)^{b}$	$1.4(0.1)^{a,b}$	$2.8(0.2)$ ^b	$9.9(0.2)^{b}$

Different letters indicate significant difference at $\alpha = 0.05$ between the inflow ($n = 3$), middle ($n = 3$), outflow ($n = 3$), top ($n = 3$) and bottom $(n = 3)$ samples

	C _d	Ni	Pb	Cu	Cr	Zn
Čejkovice	0.0011(0.0009)	0.54(0.32)	0.09(0.02)	0.14(0.1)	0.70(0.45)	
Libníč	0.0014(0.001)	0.22(0.11)	0.07(0.02)	0.13(0.09)	0.45(0.27)	0.33(0.71)
Břehov	0.0070(0.005)	1.16(0.55)	0.63(0.38)	1.29(1.0)	2.82(1.16)	2.22(3.42)
Slavošovice	0.0038(0.002)	0.72(0.43)	0.29(0.11)	0.65(0.50)	0.97(0.51)	1.19(1.12)
Mořina	0.0171(0.012)	1.22(0.57)	1.62(0.91)	2.20(1.12)	1.02(0.85)	20.9(22.7)
Příbraz	0.0192(0.008)	0.68(0.63)	0.77(0.55)	0.85(0.65)	1.30(1.62)	2.93(2.80)
Sp. Poříčí	0.0243(0.014)	2.11(1.31)	1.76(1.12)	3.38(2.23)	2.85(1.76)	23.0(28.6)

Table 11 Average concentrations (mg/kg DM, SD in parentheses) of studied heavy metals in filtration material (i.e. sediment $+$ filtration substrate) of monitored constructed wetlands ($n = 18$)

Conclusions

Concentrations of Cd, Ni, Pb, Cu, Cr and Zn were evaluated in seven constructed wetlands with horizontal subsurface flow treating municipal wastewater in the Czech Republic. The time of operation varied between 2 and 16 years among systems. The results revealed that concentrations of heavy metals were low and comparable with concentrations found in unpolluted or lightly polluted natural wetlands. The concentrations were much lower than concentrations found in wetlands receiving mine drainage or industrial wastewaters. The concentrations of heavy metals did not reflect the length of operation but the amount of sediment mass increases with the length of operation. This will result in greater heavy metal mass in the system. The concentrations of heavy metals in the sediment exceeded occasionally the limits for agricultural soils but when filtration material was taken into consideration, the concentrations were well below the limits.

Acknowledgements The study was supported by grant no. 206/06/0058 ''Monitoring of Heavy Metals and Selected Risk Elements during Wastewater Treatment in Constructed Wetlands'' from the Czech Science Foundation and grants no. 2B06023 ''Development of Mass and Energy Flows Evaluation in Selected Ecosystems'' and no. ZF JU-MSM 6007665806 ''Sustainable Methods in Agricultural Operations in Submontane and Mountainous Regions Aimed at Harmonization of Their Production and Extraproduction Functions'' from the Ministry of Education, Youth and Sport of the Czech Republic.

References

Accornero A, Gnerre R, Manfra L (2008) Sediment concentrations of trace metals in the Berre Lagoon (France): An assessment of contamination. Bull Environ Contam Toxicol 54:372–385

Achterberg EP, Van den Berg CGM, Boussemart M, Davison W (1997) Speciation and cycling of trace metals in Esthwaite Water: a productive English lake with seasonal deep-water anoxia. Geochim Cosmochim Acta 61:5233–5253

- Aksoy A, Demirezen D, Duman F (2005) Bioaccumulation, detection and analyses of heavy metal pollution in Sultan Marsh and its environment. Water Air Soil Pollut 164:241–255
- Babcock MF, Evans DW, Alberts JJ (1983) Comparative uptake and translocation of trace elements from coal ash by Typha latifolia. Sci Total Environ 28:203–214
- Baldantoni D, Ligrone R, Alfani A (2009) Macro- and traceelement concentrations in leaves and roots of Phragmites australis in a volcanic lake in Southern Italy. J Geochem Explor 101:166–174
- Batty LC, Baker AJ, Wheeler BD (2002) Aluminum and phosphate uptake by Phragmites australis: the role of Fe, Mn and Al root plaques. Ann Bot 89:443–449
- Baudo R, Canzian E, Galanti G, Guilizzoni P, Rapetti G (1985) Relationship between heavy metals and aquatic organisms in Lake Mezzola hydrographic system (Northern Italy). 6. Metal concentrations in two species emergent of macrophytes. Mem Ist Ital Idrobiol 43:161–180
- Bi X, Feng X, Yang Y, Li X, Sin GPY, Qiu G, Qian X, Li F, He T, Li P, Liu T, Fu Z (2007) Heavy metals in an impacted wetland system: a typical case from southwestern China. Sci Tot Environ 387:257–268
- Bostick BC, Hansel CM, Force MJL, Fendorf S (2001) Seasonal fluctuations in zinc speciation within a contaminated wetland. Environ Sci Technol 35:3823–3829
- Bowen HJM (1979) Environmental chemistry of the elements. Academic Press, London
- Bragato C, Brix H, Malagoli M (2006) Accumulation of nutrients and heavy metals in Phragmites australis (Cav.) Trin ex Steudel and Bolboschoenus maritimus (L.) Palla in a constructed wetland of the Venice lagoon watershed. Environ Pollut 144:967–975
- Carapeto C, Purchase D (2002) Artificial wetlands and their importance for water quality. In: Pries J (ed) Treatment Wetlands for Water Quality Improvement. CH2M HILL Canada, Waterloo, pp 45–52
- Cardwell AJ, Hawker DW, Greenway M (2002) Metal accumulation in aquatic macrophytes from southeast Queensland, Australia. Chemosphere 48:653–663
- Carranza-Álvarez C, Alonso-Castro AJ, Alfaro-De La Torre MC, Garcia-De La Cruz RF (2008) Accumulation and

distribution of heavy metals in Scirpus americanus and Typha latifolia from an artificial lagoon in San Luis Potosí, México. Water Air Soil Pollut 188:297-309

- Cervantes C, Campo-Garcia J, Devars S, Gutierrez-Corona F, Loza-Tavera H, Torres-Guzman JC, Moreno-Sanchez R (2001) Interactions of chromium with microorganisms and plants. FEMS Microbiol Rev 25:335–347
- Cooper DC, Picardal EF, Coby AJ (2006) Interaction between microbial iron reduction and metal geochemistry: effect of redox cycling on transition, metal speciation in iron bearing sediments. Environ Sci Technol 40:1884–1891
- Davison W (1993) Iron and manganese in lakes. Earth Sci Rev 34:119–163
- De Volder PS, Brown SL, Hesterberg D, Pandya K (2003) Metal bioavailability and speciation in a wetland tailings repository amended with biosolids compost, wood ash and sulfate. J Environ Qual 32:851–864
- DeLaune RD, Gambrell RP, Knox RS (1989) Accumulation of heavy metals and PCB's in an urban lake. Environ Technol Lett 10:753–762
- DeLaune RD, Patrick WH Jr, Guo T (1998) The redox-pH chemistry of chromium in water and sediment. In: Allen HE, Garrison AW, Luther GW (eds) Metals in surface waters. Sleeping Bear Press Inc., Chelsea, pp 241–255
- Deng H, Ye ZH, Wong MH (2004) Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal-contaminated sites in China. Environ Pollut 132:29–40
- Deng H, Ye ZH, Wong MH (2006) Lead and zinc accumulation and tolerance in populations of six wetland plants. Environ Pollut 141:69–80
- Deng PY, Shu WS, Lan CY, Liu W (2008) Metal contamination in the sediment, pondweed, and snails of a stream receiving effluent from a lead/zinc mine in southern China. Bull Environ Contam Toxicol 81:69–74
- Department of Soil Protection, Netherlands (1994) The Netherlands soil contamination guidelines. Netherlands Intervention Values for Soil Remediation, DBO/07494013
- Du Laing G, Rinklebe J, Vandecasteele B, Meers E, Tack FMG (2008) Trace metal behaviour in estuarine and riverine floodplain soils and sediments: a review. Sci Tot Environ 407:3972–3985
- Duman F, Cicek M, Sezen G (2007) Seasonal changes of metal accumulation and distribution in common club rush (Schoenoplectus lacustris) and common reed (Phragmites australis). Ecotoxicology 16:457–463
- Dušek J, Picek T, Čížková H (2008) Redox potential dynamics in a horizontal subsurface flow constructed wetland for wastewater treatment: diel, seasonal and spatial fluctuations. Ecol Eng 34:223–232
- Dzombak DA, Morel FMM (1990) Surface complexation modeling: hydrous ferric oxide. Wiley, New York
- Eckhardt DAV, Surface JM, Peverly JH (1999) A constructed wetland system for treatment of landfill leachate, Monroe County, New York. In: Mulamoottil G, McBean EA, Rovers F (eds) Constructed wetlands for the treatment of landfill leachate. CRC Press/Lewis Publishers, Boca Raton, pp 205–222
- Engler RP, Patrick WH Jr (1975) Stability of sulfides of manganese, iron, zinc, copper, and mercury in flooded and nonflooded soil. Soil Sci 119:217–221
- Feely RD, Massoth GJ, Paulson AJ, Gendron JF (1983) Possible evidence for enrichment of trace elements in the hydrous manganese oxide phases of suspended matter from an urbanized embayment. Estuar Coast Shelf Sci 7:693–708
- Fejitel TC, DeLaune RD, Patrick WH Jr (1988) Biogeochemical control of metal distribution and accumulation in Louisiana sediments. J Environ Qual 17:88–94
- Ferris FG, Schultze S, Witten TC, Fyfe WS, Beveridge TJ (1989) Metal interactions with microbial biofilms in acidic and neutral pH environments. Appl Environ Microbiol 55:1249–1257
- Folsom BL, Lee CR (1981) Zinc and cadmium uptake by the freshwater marsh plant Cyperus esculentus grown in contaminated sediments under reduced (flooded) and oxidized (upland) conditions. J Plant Nutr 3:233–244
- Gambrell RP (1994) Trace and toxic metals in wetlands—a review. J Environ Qual 23:883–891
- Gambrell RP, Patrick WH Jr (1978) Chemical and microbiological properties of anaerobic soils and sediment. In: Hook DD, Crawford RMM (eds) Plant life in anaerobic environments. Ann Arbor Science Publishers, Ann Arbor, pp 375–423
- Gambrell RP, Khalid RA, Patrick WH Jr (1980) Chemical availability of mercury, lead, and zinc in mobile bay sediment suspensions as affected by pH and oxidationreduction conditions. Environ Sci Technol 14:431–436
- Green CH, Heil DM, Cardon GE, Butters GL, Kelly EF (2003) Solubilization of manganese and trace metals in soils affected by acid mine runoff. J Environ Qual 32:1323–1334
- Green-Pedersen H, Jensen BT, Pind N (1997) Nickel adsorption on MnO_2 , Fe(OH)₃, montmorillonite, humic acid and calcite: a comparative study. Environ Technol 18:807–815
- Gschlössl T, Stuible H (2000) Reed bed systems: design, performance and maintainability. Water Sci Technol 41(1):73–76
- Guo T, DeLaune RD, Patrick WH (1997) The influence of sediment redox chemistry on chemically active forms of arsenic, cadmium, chromium, and zinc in estuarine sediments. Environ Int 23:305–316
- Haberl R, Perfler R (1990) Seven years of research work and experience with wastewater treatment by a reed bed system. In: Cooper PF, Findlater BC (eds) Constructed wetlands in water pollution control. Pergamon Press, Oxford, pp 205–214
- Hansel CM, Fendorf S, Sutton S, Newville M (2001) Characterization of Fe plaque and associated metals on the roots of mine-waste impacted aquatic plants. Environ Sci Technol 35:3863–3868
- Higgins J, Brown T (1999) The use of constructed wetland to treat landfarm leachate at the Sunoco Refinery in Sarnia, Ontario. In: Mulamoottil G, McBean EA, Rovers F (eds) Constructed wetlands for the treatment of landfill leachates. CRC Press/Lewis Publishers, Boca Raton, pp 235–250
- Huerta-Diaz MA, Carigan R, Tessier A (1993) Measurement of trace metals associated with acid volatile sulfides and pyrite in organic freshwater sediments. Environ Sci Technol 27:2367–2372
- Huerta-Diaz MA, Tessier A, Carignan R (1998) Geochemistry of trace metals associated with reduced sulphur in freshwater sediments. Appl Geochem 13:13–33
- Jacob DL, Otte ML (2003) Conflicting processes in the wetland plant rhizosphere: metal retention or mobilization. Water Air Soil Pollut 3:91–104
- Jacobson ME (1994) Chemical and biological mobilization of Fe(III) in marsh sediments. Biogeochemistry 25:41–60
- Jenne EA (1968) Controls of Mn, Fe, Co, Ni, Cu, and Zn concentration in soils and water: significant role of hydrous Mn and Fe oxides. Adv Chem Ser 73:337–387
- Jiménez-Cárceles FJ, Alvarez-Rogel J, Conesa Alcazar HM (2008) Trace elements concentrations in saltmarsh soils strongly affected by wastes from metal sulphide mining areas. Water Air Soil Pollut 188:283–295
- Khalid RA (1980) Chemical mobility of cadmium in sedimentwater systems. In: Nriagu JO (ed) Cadmium in the environment. Part I. Wiley, New York, pp 258–304
- Khalid RA, Patrick WH Jr, Gambrell RP (1978) Effect of dissolved oxygen on chemical transformations of heavy metals, phosphorus, and nitrogen in an estuarine sediment. Estuar Coast Mar Sci 6:21–35
- Koretsky CM, Cuellar A, Haveman M, Beuving L, Shattuck T, Wagner M (2008) Influence of Spartina and Juncus on saltmarsh sediments. II. Trace element geochemistry. Chem Geol 255:100–113
- Kosolapov DB, Kuschk P, Vainshtein MB, Vatsourina AV, Wiessner A, Kästner M, Müller RA (2004) Microbial processes of heavy metal removal from carbon-deficient effluents in constructed wetlands. Eng Life Sci 4:403–411
- Krauskopf KB (1956) Separation of manganese from iron in sedimentary processes. Geochim Cosmochim Acta 12: 61–84
- Kröpfelová L, Vymazal J, Švehla J, Štíchová J (2009) Removal of trace elements in three horizontal sub-surface flow constructed wetlands in the Czech Republic. Environ Pollut 157:1186–1194
- Laanbroek HJ (1990) Bacterial cycling of minerals that affect plant growth in waterlogged soils: a review. Aquat Bot 38:109–125
- Laanbroek HJ, Veldkamp H (1982) Microbial interactions in sediment communities. Philos Trans R Soc Lond B 297:533–550
- Lan C, Chen G, Li L, Wong MH (1990) Purification of wastewater from a Pb/Zn mine using hydrophytes. In: Cooper PF, Findlater BC (eds) Constructed wetlands in water pollution control. Pergamon Press, Oxford, pp 419–427
- Lesage E (2006) Behaviour of heavy metals in constructed treatment wetlands. Dissertation, Ghent University, Ghent, Belgium
- Lesage E, Rousseau DPL, Meers E, Van de Moortel AMK, Du Laing G, Tack FMG, De Pauw N, Verloo MG (2007a) Accumulation of metals in the sediment and reed biomass of a combined constructed wetland treating domestic wastewater. Water Air Soil Pollut 183:253–264
- Lesage E, Rousseau DPL, Meers E, Tack FMG, De Pauw N (2007b) Accumulation of metals in a horizontal subsurface flow constructed wetland treating domestic wastewater in Flanders, Belgium. Sci Tot Environ 380:102–115
- Li QS, Wu ZF, Chu B, Zhang N, Cai SS, Fang JH (2007) Heavy metals in coastal wetland sediments of the Pearl River Estuary, China. Environ Pollut 149:158–164
- Liang Y, Wong MH (2003) Spatial and temporal organic and heavy metal pollution at Mai Po Marshes Nature Reserve, Hong Kong. Chemosphere 52:1647–1658
- Lin LY (1995) Wastewater treatment for inorganics. In: Encyclopedia of environmental biology, vol 3. Academic Press, San Diego, pp 479–484
- Lindau CW, Hossner LR (1982) Sediment fractionation of Cu, NI, Zn, Cr, Mn, and Fe in one experimental and three natural marshes. J Environ Qual 11:540–545
- Lovley DR (1995) Microbial reduction of iron, manganese, and other metals. Adv Agron 54:175–231
- Lwanga MS, Kansiime F, Denny P, Scullion J (2003) Heavy metals in Lake George, Uganda, with relation to metal concentrations in tissues of common fish species. Hydrobiologia 499:83–93
- Madejón P, Murillo JM, Maraňón T, Espinar JL, Cabrera F (2006) Accumulation of As, Cd and selected trace elements in tubers of Scirpus maritimus L. from Daňana marshes (South Spain). Chemosphere 64:742–748
- Mandernack KW, Lynch L, Krouse HR, Morgan MD (2000) Sulfur cycling in wetland peat of the New Jersey Pinelands and its effect on stream water chemistry. Geochim Cosmochim Acta 64:3949–3964
- Mansfeldt T (2004) Redox potential of bulk soil and soil solution concentration of nitrate, manganese, iron, and sulfate in two Gleysols. J Plant Nutr Soil Sci 167:7–16
- Marcussen H, Joergensen K, Holm PE, Brocca D, Simmons RW, Dalsgaard A (2008) Element contents and food safety of water spinach (Ipomea aquatica Forssk.) cultivated with wastewater in Hanoi, Vietnam. Environ Monit Assess 139:77–91
- Masscheleyn PH, Pardue JH, DeLaune RD, Patrick WH Jr (1992) Chromium redox chemistry in lower Mississippi Valley Bottomland Hardwood wetland. Environ Sci Technol 26:1217–1227
- Mattiuzzo E, Favero L, Zennaro F, Franco D (2007) Heavy metal behavior in an experimental free water surface wetland in the Venice Lagoon watershed. Water Air Soil Pollut 183:143–151
- Mazej Z, Germ M (2009) Trace element accumulation and distribution in four aquatic macrophytes. Chemosphere 74:642–647
- McDonald DD, Ingersoll CG, Berger TA (2000) Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch Environ Contam Tocixol 39:20–31
- Megonikal JP, Hines ME, Visscher PT (2004) Anaerobic metabolism: linkage to trace gases and aerobic processes. In: Schlesinger WH (ed) Biogeochemistry. Elsevier-Pergamon, Oxford, pp 317–424
- Mishra VK, Upadhyay AR, Pandey SK, Tripathi BD (2008) Concentrations of heavy metals and aquatic macrophytes of Govind Ballabh Pant Sagar an anthropogenic lake affected by coal mining effluent. Environ Monit Assess 141:49–58
- Moore JW, Sutherland DJ (1981) Distribution of heavy metals and radionuclides in sediments, water, and fish in an area of Great Bear Lake contaminated with mine waters. Arch Environ Contam Toxicol 10:329–338
- Morel FMM, Hering JG (1993) Principles and applications of aquatic chemistry. Wiley, New York
- Morse JW, Luther GW (1999) Chemical influences on trace metal–sulfide interaction in anoxic sediments. Geochim Cosmochim Acta 63:3373–3378
- Mungur AS, Shutes RBE, Revitt DM, House MA (1994) An assessment of highway runoff treatment by natural wetlands. In: Proceedings of 4th international conference on wetland systems for water pollution control. ICWS Secretariat, Guangzhou, P. R. China, pp 669–676
- Murdoch A, Capobianco J (1978) Study of selected metals in marshes on Lake St. Clair, Ontario. Arch Hydrobiol 84:87–108
- National Standard of PR China (1995) Soil Environmental Quality (GB 15618–1995). Standards Press of China, Beijing
- Obarska-Pempkowiak H (2001) Retention of selected heavy metals: Cd, Cu, Pb in a hybrid wetland system. Watere Sci Technol 44(11–12):463–468
- Obarska-Pempkowiak H, Klimkowska K (1999) Distribution of nutrients and heavy metals in a constructed wetland system. Chemosphere 39:303–312
- Ojo OE, Mashauri DA (1996) Uptake of heavy metals in the root-zone of Msimbazi reeds. In: Proceedings of 5th international conference on wetland systems for water pollution control. Universität für Bodenkultur, Vienna, Austria
- Oke BH, Juwarkar AS (1996) Removal of heavy metals from domestic wastewater using constructed wetland system. In: Proceedings of 5th international conference on wetland systems for water pollution control. Universität für Bodenkultur, Vienna, Austria
- Orru H, Orru M (2006) Sources and distribution of trace elements in Estonian peat. Glob Planet Change 53:249–258
- Otero XL, Macias F (2002) Variation with depth and season in metal sulfides in salt marsh soils. Biogeochemistry 61:247–268
- Otte ML, Kearns CC, Doyle MO (1995) Accumulation of arsenic and zinc in the rhizosphere of wetland plants. Bull Environ Contam Toxicol 55:154–161
- PAS (1994) Protection of Agricultural Soils. Czech Law 13/ 1994 (in Czech)
- Peng K, Luo C, Lou L, Li X, Shen Z (2008) Bioaccumulation of heavy metals by the aquatic plants Potamogeton pectinatus L. and Potamogeton malaianus Miq. And their potential use for contamination indicators and in wastewater treatment. Sci Tot Environ 392:22–29
- Pokorný J, Pechar L, Radová J, Bastl J, Drbal K, Švehla J (1999) Heavy metals in ecosystems of Luznice River and Nadeje fishpond system (Trebon Biosphere Reserve. In: Vymazal J (ed) Nutrient cycling and retention in natural and constructed wetlands. Backhuys Publishers, Leiden, pp 144–155
- Ramos L, Hernandez LM, Gonzales MJ (1994) Sequential fraction of copper, lead, cadmium and zinc in soils from or near Donana National Park. J Environ Qual 23:50–57
- Remacle J, Muguruza L, Fransolet M (1992) Cadmium removal by a strain Alcaligenes denitrificans isolated from a metal-polluted pond. Water Res 26:923–926
- Samecka-Cymerman A, Kempers AJ (2001) Concentration of heavy metals and plant nutrients in water sediments and aquatic macrophytes of anthropogenic lakes (former open

cut brown coal mines) differing in stage of acidification. Sci Tot Environ 281:87–98

- Samecka-Cymerman A, Kempers AJ (2004) Toxic metals in aquatic plants surviving in surface water polluted by copper mining industry. Ecotoxicol Environ Saf 59:64–69
- Samecka-Cymerman A, Stepien D, Kempers AJ (2004) Efficiency in removing pollutants by constructed wetland purification systems in Poland. J Toxicol Environ Health A 67:265–275
- Santos-Oliveira J, Fernandes JA, Alves C, Morais J, Urbano P (1999) Metals in sediment and water of free reed (Phragmites australis (Cav.) Trin ex Steudel) stands. Hydrobiologia 415:41–45
- Schierup H-H, Larsen VJ (1981) Macrophyte cycling of zinc, copper, lead and cadmium in the littoral zone of a polluted and a non-polluted lakes I. Availability, uptake and translocation of heavy metals in Phragmites australis (Cav.) Trin. Aquat Bot 11:197–210
- Scholes L, Shutes RBE, Revitt DM, Forshaw M, Purchase D (1998) The treatment of metals in urban runoff by constructed wetlands. Sci Tot Environ 214:211–219
- Sheoran AS, Sheoran V (2006) Heavy metal removal mechanism of acid mine drainage in wetlands: a critical review. Miner Eng 19:105–116
- Shomar BH, Müller G, Yahya A (2005) Seasonal variations of chemical composition of water and bottom sediments in the wetland of Wadi Gaza, Gaza Strip. Wetl Ecol Manag 13:419–431
- Shutes RB, Ellis JB, Revitt DM, Zhang TT (1993) The use of Typha latifolia for heavy metal pollution control in urban wetlands. In: Moshiri GA (ed) Constructed wetlands for water quality improvement. CRC Press/Lewis Publishers, Boca Raton, pp 407–414
- Simpson RL, Good RE, Walker R, Frasco BR (1983) The role of Delaware River freshwater tidal wetlands in the retention of nutrients and heavy metals. J Environ Qual 12:41–48
- Singer PC, Stumm W (1970) Acid mine drainage—the rate limiting step. Science 167:1121–1123
- Sobolewski A (1996) Metal species indicate the potential of constructed wetlands for long-term treatment of mine drainage. J Ecol Eng 6:259–271
- Sobolewski A (1999) A review of processes responsible for metal removal in wetlands treating contaminated mine drainage. Int J Phytoremed 1:19–51
- Stumm W, Morgan JJ (1981) Aquatic chemistry. An introduction emphasizing chemical equilibria in natural waters, 2nd edn. Wiley-Interscience, New York
- Sundby B, Caetano M, Vale C, Gobeil C, Luther GW, Nuzzio DB (2005) Metal-rich concretions on the roots of salt marsh sediments. Environ Sci Technol 39:2080–2086
- Švehla J, Chrastný V, Bastl J, Mikuláš R (2002) Content of some hazardous heavy metals in sediments of selected fishponds in South Bohemia. In: Papáček M (ed) Biodiversity and nature of Novohradské mountains. South Bohemian University and Institute of Entomology, Ceské Budějovice, Czech Republic, pp 53–57
- Szymanowska A, Samecka-Cymerman A, Kempers AJ (1999) Heavy metals in three lakes in west Poland. Ecotoxicol Environ Saf 43:21–29
- Taylor GJ, Crowder AA (1983) Uptake and accumulation of heavy metals by Typha latifolia in wetlands of the Sudbury, Ontario region. Can J Bot 61:63–73
- Teuchies J, de Deckere E, Bervoets L, Meynendonckx J, van Regenmortel S, Blust R, Meire P (2008) Influence of tidal regime on the distribution of trace metals in a contaminated tidal freshwater marsh soil colonized with common reed (Phragmites australis). Environ Pollut 155:20–30
- Tonkin JW, Balistrieri LS, Murray JW (2004) Modeling sorption of divalent metal cations on hydrous manganese oxide using the diffuse double layer model. Appl Geochem 19:29–53
- U.S. EPA (1994) Determination of trace elements in waters and wastes by inductively coupled plasma-mass spectrometry, Method 200.8. US Environmental Protection Agency
- U.S. EPA (1995) Microwave assisted acid digestion of siliceous and organically based matrices including ash, biological tissue, oil, oil contaminated soil, sediment, sludge, and soil, Method 3052. US Environmental Protection Agency
- Verloo M, Cottenie A (1972) Stability and behavior of complexes of Cu, Fe, Mn, and Pb with humic substances in soil. Pedologie 22:174–184
- VLAREBO (1996) Decision of the Flemish Government of 05/ 03/96 concerning Flemish regulations with regard to soil remediation. Belgian Government Gazette 05/03/96 (in Dutch)
- Von der Heyden CJ, New MG (2004) Sedimentary chemistry: a history of mine contaminant remediation and an assessment of processes and pollution potential. J Geochem Explor 82:35–57
- Vymazal J (1995) Constructed wetlands for wastewater treatment in the Czech Republic-state of the art. Water Sci Technol 32(2):357–364
- Vymazal J (1996) The use of subsurface-flow constructed wetlands for wastewater treatment in the Czech Republic. Ecol Eng 7:1–14
- Vymazal J (2001) Types of constructed wetlands for wastewater treatment: their potential for nutrient removal. In: Vymazal J (ed) Transformations of nutrients in natural and constructed wetlands. Backhuys Publishers, Leiden, pp 1–93
- Vymazal J (2002) The use of sub-surface constructed wetlands for wastewater treatment in the Czech Republic: 10 years experience. Ecol Eng 18:633–646
- Vymazal J (2003) Distribution of iron, cadmium, nickel and lead in a constructed wetland receiving municipal sewage. In: Vymazal J (ed) Wetlands—nutrients, metals and mass cycling. Backhuys Publishers, Leiden, pp 341–363
- Vymazal J (2009) Horizontal sub-surface flow constructed wetlands Ondřejov and Spálené Poříčí in the Czech Republic— 15 years of operation. Desalination 246:226–237
- Vymazal J, Krása P (2003) Distribution of Mn, Al, Cu and Zn in a constructed wetland receiving municipal sewage. Water Sci Technol 48(5):299–305
- Vymazal J, Kröpfelová L (2005) Growth of Phragmites australis and Phalaris arundinacea in constructed wetlands for wastewater treatment in the Czech Republic. Ecol Eng 25:606–621
- Wieder RK (1989) A survey of constructed wetlands for acid coal mine drainage treatment in the eastern United States. Wetlands 9:299–315
- Wong CSC, Wu SC, Duzgoren-Aydin NS, Aydin A, Wong MH (2007) Trace metal contamination of sediments in an ewaste processing village in China. Environ Pollut 145:434–442
- Woulds C, Ngwenya BT (2004) Geochemical processes governing the performance of a constructed wetland treating acid mine drainage, Central Scotland. Appl Geochem 19:1773–1783
- Yang Z, Li B, Li G, Wang W (2007) Nutrient elements and heavy metals in the sediment of Baiyangdian and Taihu Lakes: a comparative analysis of pollution trends. Front Agric China 1:203–209
- Yao Z, Gao P (2007) Heavy metal research in lacustrine sediment: a review. Chin J Ocean Limnol 25:444–454
- Ye ZH, Baker AJM, Wong M-H, Willis AJ (1997) Zinc, lead and cadmium tolerance, uptake and accumulation by Typha latifolia. New Phytol 136:469–480
- Ye Z, Baker AJM, Wong M-H, Willis AJ (1998) Zinc, lead and cadmium accumulation and tolerance in Typha latifolia as affected by iron plaque on the root surface. Aquat Bot 61:55–67
- Zhulidov AV, Headley JV, Robarts RD, Nikanorov AM, Ischenko AA, Champ MA (1997) Concentrations of Cd, Pb, Zn and Cu in contaminated wetlands of the Russian Arctic. Mar Pollut Bull 35:252–259
- Zuidervaart I (1996) Heavy metals in constructed wetlands. Institute of Botany, Třeboň