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Abstract Numerous studies have demonstrated

exceptionally high temperature sensitivity of the

beneath-snow respiratory flux in cold-winter ecosys-

tems. The most common, but still untested, explanation

for this high sensitivity is a physical one based on

the observation that water availability in soils increases

exponentially as soils warm from -3 to 0�C. Here,

we present evidence for a biological hypothesis to

explain exponential kinetics and high Q10 values as

beneath-snow soils warm from -3 to 0�C during the

early spring in a high-elevation subalpine forest. First,

we show that some of the dominant organisms of the

beneath-snow microbial community, ‘‘snow molds’’,

exhibit robust exponential growth at temperatures

from -3 to -0.3�C. Second, Q10 values based on

growth rates across the temperature range of -2 to

-0.3�C for these snow molds vary from 22 to 330.

Third, we derive an analytical equation that combines

the relative contributions of microbial growth and

microbial metabolism to the temperature sensitivity of

respiration. Finally, we use this equation to show that

with only moderate snow mold growth (several

generations), the combined sensitivities of growth

and metabolism to small changes in beneath-snow

soil temperature, create a double exponential in the

Q10 function that may explain the extremely high

(*1 9 106) Q10 values observed in past studies. Our

biological explanation for high Q10 levels is supported

by several independent studies that have demonstrated

build up of microbial biomass under the snow as

temperatures warm from -2 to 0�C.
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Introduction

The under-snow environment in late winter and early

spring is surprisingly conducive to the development of

microbial communities due to the insulating proper-

ties of snow, especially when it is more than 0.3 m

deep (Brooks et al. 1997) or more than 1 m deep in

especially cold environments (Grogan and Jonasson

2006). These conditions have long been known to

facilitate the growth of pathogenic snow molds that

parasitize a broad range of plants from grasses

(Hsiang et al. 1999) to conifers (Hartig 1888; Simms

1967). In addition, mats of snow mold are commonly

observed covering the soil and litter as snow recedes

in the spring in both coniferous and tundra ecosystems

(Schmidt et al. 2007, 2008a). These fungi have
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received almost no attention compared to their

pathogenic relatives, perhaps because they are of

little direct economic importance. However, recent

biogeochemical studies in seasonally snow-covered

environments indicate that microbial activity under

late winter snows can contribute significantly to fluxes

of greenhouse gases and to cycling of nitrogen and

carbon (Brooks et al. 1998; Larsen et al. 2007; Lipson

et al. 1999; Campbell et al. 2005; Schmidt and Lipson

2004; Monson et al. 2006a). Schmidt et al. (2008a, b)

have argued that saprotrophic snow molds are a major

component of the sub-nivean environment and play an

important and previously overlooked role in nutrient

cycling and gas fluxes in seasonally snow-covered

environments.

Snow molds are especially prominent in sub-alpine

forests of the Colorado Front Range (Rocky Moun-

tains) where they form dense mycelial mats under late

season snow packs (Fig. 1). These fungal communi-

ties are ephemeral in nature and rapidly disappear

once the snow is gone. At these same sites late winter

fluxes of beneath-snow, respired CO2 can be high,

amounting to as much as 35–48% the rate of late-

winter, whole-ecosystem respiration, and accounting

for up to 10% the annual cumulative ecosystem

respiratory CO2 loss (Monson et al. 2006b). Late

winter CO2 fluxes can increase exponentially under

the snow (Brooks et al. 1997; Mast et al. 1998;

Monson et al. 2006a, b; Sommerfeld et al. 1996),

perhaps indicating exponential growth of microbes. In

addition, when considered across the seasonal range

of sub-nivean soil temperatures, Q10 values for sub-

nivean CO2 fluxes are unexpectedly high (Monson

et al. 2006a), but it is not known if these high Q10

values are due to physical or biological phenomena.

Here, we explore the growth kinetics of snow molds

from the same sites studied by Monson et al. (2006a,

b) in order to determine if they have the potential to

account for the extremely high exponential kinetics of

beneath-snow CO2 fluxes observed in the field.

Materials and methods

Study site

The study site is at 3050 m above sea level (40�10

5800 N; 105�320 4700 W) 25 km west of Boulder,

Colorado. The forest is dominated by Pinus contorta

(lodgepole pine), Picea engelmannii (Engelmann

spruce) and Abies lasiocarpa (subalpine fir). The

soils are sandy inceptisols derived from granite

moraine covered by an organic horizon ranging from

*0 to 6 cm. More detailed descriptions of the site

can be found in past publications (Monson et al.

2006a, b; Weintraub et al. 2007).

Growth at different temperatures

The snow molds were isolated from under-snow

fungal mats (Fig. 1) and have been characterized

phylogenetically and physiologically (Schmidt et al.

2008a, b). To estimate exponential growth rates of

these isolates at different temperatures (-3, -2, -0.3,

and 3.8�C) we measured rates of increase in the area

covered by individual fungal colonies, grown in the

dark, as a function of time. Specifically, growth was

measured by marking the bottom of the plate in four

locations (in order to obtain four measures of radius at

right angles to each other) at each time interval (Kerry

1990). The mean radius obtained was used to calculate

Fig. 1 (a) Typical mat of snow mold growing on the litter

under snow at our sub-alpine forest research site. The snow

was gently removed to reveal the mats as they occur under the

late-winter snow pack. (b) Close-up of a zygomycetous snow

mold under the snow, demonstrating the ability of these fungi

to grow vertically up into the snow as well as horizontally on

the litter. They also exhibit this vertical growth ability in the

laboratory (Schmidt et al. 2008a). Metal weighing spatula is

included for scale
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the area covered by the colony at each time interval.

This approach was used because these fungi grow as

concentrically expanding mats at the interface

between the snow pack and the litter layer (Fig. 1).

All experiments were done in triplicate in low

temperature incubators (Sheldon Manufacturing, Cor-

nelius OR) outfitted with data loggers to monitor

temperature during the incubations. Temperatures in

the incubators remained quite constant with standard

deviations less than 0.28�C during the entire incuba-

tion period for all incubation temperatures. The media

used for growth experiments contained (per liter of

water): 5.0 g of inulin, 0.5 g yeast extract, 0.5 g of

KCl, 1.0 g of KH2PO4, 1.0 g of (NH4)2SO4, 2.0 g of

NaNO3, 12.3 g of MgSO4 � 7H2O, 20 g of agar,

50 mg of CaCl2, 10 mg of FeSO4, 10 mg of CuSO4,

5 mg of MnSO4, 1 mg of ZnSO4, and 1 ml of soil

extract solution (Schmidt et al. 2008a). After auto-

claving, Chlorotetracycline and Streptomycin (50 mg/

l for both antibiotics) were added to inhibit bacterial

growth.

Inoculum for the experiments was grown at 3.8�C

on the above media and uniform plugs for inoculation

of experiments were obtained using a sterile 6 mm

diameter AcuPunch Biopsy Punch (Acuderm Inc., Ft.

Lauderdale FL). All inoculum plugs were taken at the

same growth stage from the master plate to insure

that the fungi used for all temperature treatments

were at same metabolic state at the beginning of the

experiment.

Kinetic considerations

One of our goals was to compare rates of snow mold

growth at different temperatures to exponential rates

of CO2 production under the snow. It is well

established that there is a direct relationship between

the rate of primary metabolite production (e.g.,

ethanol, CH4, N2O and CO2) and the biomass of

active microorganisms (Schlegel 1992; Scow et al.

1986). This relationship has been the basis of

numerous methods to estimate microbial kinetic

parameters (including growth rates and biomass

levels) from soil respiration data (Anderson and

Domsch 1978; Brunner and Focht 1984; Colores

et al. 1996; Hess and Schmidt 1995). Here we apply

this principle to analyze and compare growth curves

of under-snow microbes to curves of CO2 flux from

snow-covered soils that exhibit exponential kinetics.

The simplest expression for analyzing exponential

growth kinetics is the integrated exponential growth

equation:

Nt ¼ Noelt ð1Þ

where Nt is the microbial biomass (lg C) at time t, l
is exponential growth rate with units of h-1 and No is

the biomass at time 0. To compare growth of a

microbial population to the rate of CO2 flux we can

use the relationship derived from basic principles by

Colores et al. (1996) to express the rate of CO2

production in terms of exponential microbial growth:

r ¼ l Poeltð Þ ð2Þ

where r is the rate of CO2 flux (dP/dt) as a function of

microbial growth, l is as defined above, and Po is the

biomass of microbes in terms of CO2 (lg C) before

exponential growth commences. An added utility of

Eq. 2 is that it can be used to estimate the biomass of

CO2-producing microbes and related back to Eq. 1,

using the relationship (Colores et al. 1996):

No ¼ PoYc= 1� Ycð Þ ð3Þ

where No and Po are as defined above and Yc (lg

biomass C/lg substrate C) is the ‘‘yield coefficient’’

or the efficiency of conversion of substrate carbon to

microbial biomass.

To obtain estimates of l Eqs. 1 and 2 were fit to

fungal growth curves and curves of CO2 rate changes

over time, respectively, using the non-linear regres-

sion package of Kaliedagraph� software (Synergy

Software Co., Reading, PA, USA). Estimates of l can

also be obtained using linear regression when the

natural log of Nt or r are plotted against time; in

which case l is the slope of the semi-log plot and No

and Po are the Y-intercept for the linearized forms of

Eqs. 1 and 2, respectively.

The effects of temperature on rates of biological

processes, such as CO2 flux (r), can be evaluated

using the Q10 relationship, which can be used to

estimate the temperature dependence of the rate for

Arrhenius-like behavior of enzymes and organisms

(Hochachka and Somero 1984):

Q10 ¼ r2=r1ð Þ10= T2�T1ð Þ ð4Þ

where r1 is the measured respiration rate at temper-

ature 1 (T1) and r2 is the rate at temperature 2 (T2).

Although the Q10 relationship is often applied to
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broad ranges of temperature with the assumption that

it is a conserved property of reaction systems with

respect to temperature, the classical derivation of the

model as an Arrhenius function requires that Q10

decrease as temperature increases (see Davidson and

Janssens 2006); this is presumably due to shifts in the

Boltzmann distribution of the fraction of molecules

that have energy exceeding the required activation

energy of a reaction as temperature increases.

One of the assumptions of Eq. 4 is that the

quantity of enzyme (or biomass) is constant across

all temperatures compared. However, in many field

studies of soil respiration, rates are measured across

lengthy time scales of weeks or months. For these

studies it is therefore likely that the assumption of

constant catalyst concentration is violated because

microbial populations can vary widely across time at

any given site (Schmidt et al. 2007). This is

especially true of beneath-snow microbial popula-

tions that have been shown to build up with time

(concomitantly with temperature increases) under

late-lying snow packs (Schmidt and Lipson 2004;

Weintraub et al. 2007). Therefore, to compare rates of

CO2 flux across the snow-covered period, we devel-

oped a modified Q10 equation to take into account

both the effects of temperature and increased bio-

mass. It is well established that the rate of CO2 flux

from respiration is a function of both growth rate and

the biomass of respiring organisms (reviewed in

Simkins and Alexander 1984 and Scow et al. 1986).

Thus, r1 and r2 from Eq. 4 can be expressed as:

r ¼ Nl ð5Þ

where r is the respiration rate at a given temperature

and N and l are as described above.

We can substitute Eq. 5 into Eq. 4 to yield a Q10

equation that separates out the effects of growth rate

and biomass level:

Q10 ¼ N2l2=N1l1ð Þ10= T2�T1ð Þ ð6Þ

where N2 and N1 represent the biomass of respiring

microbes at temperatures T2 and T1, respectively, l1

is the growth rate at temperature T1 and l2 is the rate

at temperature T2. It should be noted that Eq. 6

contains a ‘double exponential’ function as the

increase in biomass between T1 and T2 can follow

exponential growth kinetics. In the present study we

used this relationship to determine how the apparent

Q10 would change as both microbial biomass and

temperature increase beneath late winter snow packs.

Several workers have pointed out that substrate

availability may limit microbial respiration rate under

the snow (Brooks et al. 2005; Lipson et al. 2000) and

others have shown that growth-rate limiting enzymes

usually show increased substrate affinity as temper-

atures increase (Davidson and Janssens 2006;

Nedwell 1999). The effects of substrate concentration

on the growth or reaction rate of a microbial

population has been derived elsewhere (Schmidt

et al. 1985; Simkins and Alexander 1984). Thus, r1

and r2 from Eq. 4 can be expressed as:

r ¼ N l=Km ð7Þ

where l and N are defined above and Km is the half-

saturation constant at the prevailing temperature.

We can substitute Eq. 7 into Eq. 4 and rearrange

to yield a Q10 equation that separates out the effects

of substrate concentration, growth rate, and biomass

level:

Q10 ¼ N2l2Km1=N1l1Km2ð Þ10= T2�T1ð Þ ð8Þ

where N2, N1, l1 and l2 are as defined above and Km1

and Km2 are the half-saturation constants at temper-

atures T1 and T2, respectively. We present Eq. 8 to

show that the net effect of a temperature increase

would be to increase the apparent Q10, because Km1

would be greater (lower affinity) than Km2 in Eq. 8.

Likewise a temperature decrease over time would

result in a lower apparent Q10.

Results

A series of experiments was conducted to ascertain if

snow molds from our research sites (Fig. 1) could

grow exponentially at under-snow temperatures com-

monly observed in the late winter and early spring.

These fungi have been phylogenetically identified

from our cultures and environmental clone libraries

as members of the Mortierellales (Isolate 317) and

Mucorales (Isolates 316 and 319) subdivisions of the

Zygomycota (Schmidt et al. 2008a, b). Soil temper-

atures normally range between -2 and 0�C during

this period (Monson et al. 2006a, b). All isolates

could grow at the lowest temperature tested (-3�C)

and full growth curves were obtained at temperatures

16 Biogeochemistry (2009) 95:13–21
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of -3, -2, -0.3 and 3.8�C for two of our isolates.

The curves for growth at -3 and -2�C for these

isolates are shown in Fig. 2. The isolates all showed

robust exponential growth for the first 15 days of

incubation at -2�C (Fig. 2) and for the entire

incubation period at -3�C. At -3�C growth was

much slower and isolate 317 seemed to be near its

lower temperature limit for growth, whereas isolate

316 was still growing well (Fig. 2). To estimate

growth rate (l) at each temperature, Eq. 1 was fit to

the exponential data in Fig. 2 and to the exponentially

increasing portions of the curves for each isolate at

-0.3 and 3.8�C. Estimates of l and R2 values for

each fitted curve are shown in Table 1.

Under-snow exponential increases in field CO2

and N2O fluxes have been noted in a number of

studies at and near our sites (Brooks et al. 1997;

Schmidt et al. 2001; Monson et al. 2006a, b). In the

present study we analyzed the exponentially increas-

ing portion of the data from Monson et al. (2006b).

The curves of CO2 flux at our sites between February

20 and April 10, 2004 are shown in Fig. 3. During

this period soil temperatures were fairly constant at

the open (between tree) site ranging from -0.6�C to

0�C, whereas at the near-tree soil temperatures were

lower (range -1.9 to about 0�C). To estimate growth

rate (l) at each site, Eq. 2 was fit to the data in Fig. 3.

Estimates of l were 0.0013 and 0.0016 h-1 for the

open and near-tree sites, respectively.

Next we explored the most probable explanations

for the marked increase in the rate of CO2 flux from

snow-covered soils (Fig. 3) across a range of rela-

tively small increase in soil temperature. These

striking increases in rate versus temperatures resulted

in high apparent Q10 values for soil respiration as

pointed out by Monson et al. (2006a). For example

Fig. 2 Exponential growth of isolates 316 and 317 at

temperatures of -3 and -2�C. Each curve is the mean of

three replicates and error bars are one standard deviation of the

mean. Curves are non-linear regression fits of Eq. 1 to the data

with R2-values of greater than 0.98 for all curve fits

Table 1 Estimates of exponential growth rate l (units of h-1)

for the three isolates from fits of Eq. 1 to three replicate growth

experiments for each isolate at each temperature

Temperature

-2�C -0.3�C 3.8�C

Isolate 316 0.0106

(0.0007)

0.0180

(0.0007)

0.0338

(0.0017)

Isolate 317 0.0069

(0.0008)

0.0185

(0.0008)

0.0175

(0.0001)

Isolate 319 0.0078

(0.0007)

0.0203

(0.0012)

0.0268

(0.0003)

Standard deviations of the mean of the replicates at each

temperature for each isolate are shown in parentheses

Fig. 3 Rates of CO2 flux through the snow pack at sites next

to trees (open circles) or sites in the open (closed circles) from

2/20/2004 to 4/10/2004 (Julian day 51 through 101). Curves

are non-linear regression fits of Eq. 2 to the data with R2-values

of 0.90 and 0.79 for the open and near-tree data, respectively.

Error bars are standard error of the mean (n = 4 for near-tree

sites and n = 7 for open sites)
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Monson et al. (2006a) estimated under-snow Q10

values of from 105 to 1.3 9 106 for the near-tree and

open spaces soils, respectively. Various physical

explanations have been put forth to explain high

apparent Q10 values (see discussion in Monson et al.

2006a).

However, our working hypothesis is that these

unprecedented increases in respiration rate can be

explained biologically. First, we can see that our

snow molds show high Q10 values (Table 2) when the

growth rates (from Table 1) are substituted into Eq. 4

(the standard Q10 equation). We only show the Q10-

values for the temperature interval of -2 to -0.3�C

in Table 2 because this interval best matches the

temperatures (-1.9 to 0�C) observed during the

period of exponential CO2 flux in the field (Fig. 3).

To evaluate the effects of changes in biomass

concentration (simultaneous with a temperature

increase in the field) on apparent Q10 values, we

substituted the rates from Table 1 into Eq. 6 and then

assumed that biomass would double once, twice or

three times during the period of exponential CO2 flux

i.e. N2 is 2, 4 or 8 times higher than N1, respectively

in Eq. 6. At least a doubling of biomass during this

period has been independently documented for total

microbial biomass at and near our sites (Fig. 1a in

Schmidt et al. 2007, and Fig. 2 in Weintraub et al.

2007).

Discussion

We know very little about the kinetic behavior of the

growth and metabolism of fungi that grow during the

final months of snow cover in seasonally snow-

covered environments. These fungi may contribute

substantially to regional CO2 fluxes and understand-

ing their physiological attributes could lend important

insight into how global CO2 dynamics will change as

global warming affects both the duration and depth of

snow packs in high-latitude and high-altitude ecosys-

tems. The fungi used in this study were isolated from

hyphal fragments taken from mats of snow mold at the

same high-elevation sites as those studied by Monson

et al. (2006a, b); related fungi have been isolated from

cold Arctic and Antarctic soils (Bergero et al. 1999;

Pugh and Allsop 1982; Wynn-Williams 1985) and

have also been identified from clone libraries of snow-

covered high-elevation tundra (above treeline) soils,

but not from libraries of summer soils (Schadt et al.

2003; Schmidt et al. 2008a, b).

This study represents the first analysis to conclude

that the exponential increases in CO2 flux through the

snow pack at both our alpine and subalpine sites

(Brooks et al. 1997; Schmidt et al. 2001; Monson

et al. 2006a, b) could be attributable to the combined

effects of exponential growth of snow molds and the

exponential response of their respiration rate to small

changes in temperature beneath the snow. In this

case, the modeled temperature response would reflect

a double-exponential function; such a function is

capable of pushing temperature sensitivity coeffi-

cients, such as the Q10, to extremely high values. Our

isolates exhibited exponential growth at -3, -2 and

-0.3�C, with l values that were much higher than

observed CO2 fluxes during the final months of snow

cover (Monson et al. 2006a, b; Schmidt et al. 2001).

Schmidt et al. (2001) estimated an exponential rate of

increase in CO2 flux through the snow pack of

0.0017 h-1, which is similar to the exponential rates

of 0.0013 and 0.0016 h-1 extrapolated from field

observations at our subalpine site in the present study

(Fig. 3). In comparison, our fungal isolates from

these same subalpine soils exhibited exponential

growth rates (l) ranging from a low of 0.0024 at

-3�C to 0.011 h-1 at -2�C. The fact that our isolates

have potential (lab-based) growth rates that are

higher than field-measured exponential rates of gas

flux is to be expected because microbes rarely grow

Table 2 Q10 values for temperature intervals from -2 to

-0.3�C calculated using exponential growth rates and Eq. 4

and apparent Q10 values calculated using Eq. 6 and assuming

either 1, 2 or 3 doublings (generations) of the population size

during the incubation period

Temp. interval Number of generations

0 (Eq. 4) 1 (Eq. 6) 2 (Eq. 6) 3 (Eq. 6)

Isolate 316

-2 to -0.3 22.5 1.3 9 103 7.8 9 104 4.6 9 106

-0.3 to 3.8 4.7

Isolate 317

-2 to -0.3 330 1.9 9 104 1.1 9 106 6.8 9 107

-0.3 to 3.8 1.2

Isolate 319

-2 to -0.3 277 1.6 9 104 9.6 9 105 5.7 9 107

-0.3 to 3.8 2.0

These calculations underline the extreme sensitivity of

apparent Q10 values to changes in microbial biomass levels
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at their maximal potential rates in nature (Lipson and

Schmidt 2002).

Using observed exponential growth rates for snow

molds, combined with the traditional exponential

model (Eq. 4) to explain the temperature dependence

of metabolism, we can explain the extremely high

Q10 values for beneath-snow soil respiration that we

previously observed (Monson et al. 2006a). Our

isolates demonstrated very high growth-rate sensitiv-

ity to temperatures between -2 and -0.3�C,

exhibiting Q10 values between 23 and 330 (Table 2)

across this temperature range. These values bracket

the field observed apparent Q10 value of 105 observed

for beneath-snow CO2 flux for near-tree sites by

Monson et al. (2006b). If we assume that net growth

of snow molds is occurring under the snowpack as

temperature is increasing through the late-winter and

spring, then beneath-snow CO2 flux rates would be

proportional to both temperature and to the biomass

of respiring organisms as modeled in Eq. 6. Using

Eq. 6 we obtained apparent Q10 values of between

1.3 9 103 and 6.8 9 107 (Table 2), depending on

assumptions about the number of snow-mold gener-

ations per season. These values bracket the field

observed apparent Q10 value of 1.25 9 106 observed

for CO2 fluxes from the open (between tree) sites by

Monson et al. (2006). Furthermore, we can estimate

the number of doublings that it would take to produce

the field curves in Fig. 3 by converting l to doubling

time (G) using the relationship G = ln 2/l. Using this

approach, we obtained a G value of 516 hours for the

open (between tree) soil resulting in 2.3 doublings in

biomass during the 1200 hours of data depicted in

Fig. 3. Using this estimated biomass increase in Eq. 6

results in apparent Q10 values of 3.7 9 105,

5.4 9 106 and 4.5 9 106 for isolates 316, 317 and

319, respectively. Thus, all of the isolates could

produce apparent Q10 values for combined growth

and metabolism in the range of the apparent Q10

value for beneath-snow CO2 flux of 1.25 9 106

(Monson et al. 2006a), even if they only went through

2.3 generations.

In contrast to our work, the most often stated

explanation for exponential changes in rates as

temperatures increase between -2 and 0�C is that

water availability (and therefore nutrient availability)

increases exponentially as soils thaw (Ley et al. 2004;

Mikan et al. 2002; Romanovsky and Osterkamp

2000). This physical phenomenon could explain

exponential rate changes in soils in which thaw rate

changes slowly enough to be reflected in respiration

rate measurements. However, in the work of Monson

et al. (2006b) the exponential increase in soil

moisture occurs over a period of days, whereas the

respiration data increase exponentially over almost

two months time (Fig. 3), with most of that increase

occurring after the increase in soil water content.

Indeed the data in Fig. 3 were collected from 2/20/

2004 to 4/10/2004, whereas the exponential increase

in soil water occurred between 3/18/2004 and 3/23/

2004 (Monson et al. 2006b). Thus it is fairly clear

that, at least in the present study, the long-term

exponential increase in respiration rate and Q10

values are more likely due to exponential increases

in microbial biomass levels than to physical phe-

nomena. Obviously, more work is needed to parse out

the relative contributions of biological and physical

controls of exponential kinetics under the snow, but

our data and modeling approach present a compelling

argument for strong links between microbial popula-

tion dynamics and under-snow CO2 fluxes.

In summary, our snow-mold isolates have the

potential to produce the exponential kinetics of CO2

flux that we have observed in past studies at our

alpine and subalpine research sites. The biomass of

these fungi increases to such an extent under the late-

winter snow pack, that they are visible to the naked

eye (Fig. 1) and exhibit remarkably robust exponen-

tial growth kinetics at sub-zero temperatures (Fig. 2).

In addition, their intrinsically high metabolic Q10

values combined with their exponential growth at low

temperatures provides the best biological explanation

to date for the high temperature-sensitivity of

beneath-snow respiration rate that we have observed

in our past studies. Further work is under-way to

characterize the growth of our isolates in microcosms

that more closely resemble the beneath-snow envi-

ronment and to obtain critical estimates of yield

coefficients and other kinetic parameters (Lipson

et al. 2008) to allow us to better link fungal growth

kinetics to beneath-snow trace gas fluxes.
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