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Abstract Mechanisms of soil organic carbon (C)

and nitrogen (N) stabilization are of great inter-

est, due to the potential for increased CO2 release

from soil organic matter (SOM) to the atmo-

sphere as a result of global warming, and because

of the critical role of soil organic N in controlling

plant productivity. Soil proteins are recognized

increasingly as playing major roles in stabilization

and destabilization of soil organic C and N. Two

categories of proteins are proposed: detrital

proteins that are released upon cell death and

functional proteins that are actively released into

the soil to fulfill specific functions. The latter

include microbial surface-active proteins (e.g.,

hydrophobins, chaplins, SC15, glomalin), many of

which have structures that promote their persis-

tence in the soil, and extracellular enzymes,

responsible for many decomposition and nutrient

cycling transformations. Here we review infor-

mation on the nature of soil proteins, particularly

those of microbial origin, and on the factors that

control protein persistence and turnover in the

soil. We discuss first the intrinsic properties of the

protein molecule that affect its stability, next

possible extrinsic stabilizing influences that arise

as the proteins interact with other soil constitu-

ents, and lastly controls on accessibility of pro-

teins at coarser spatial scales involving microbial

cells, clay particles, and soil aggregates. We

conclude that research at the interface between

soil science and microbial physiology will yield

rapid advances in our understanding of soil

proteins. We suggest as research priorities deter-

mining the relative abundance and turnover time

(age) of microbial versus plant proteins and of

functional microbial proteins, including surface-

active compounds.
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Introduction

Mechanisms of soil organic carbon (C) and

nitrogen (N) stabilization are currently of great

interest, due to the potential for increased CO2

release from soil organic matter (SOM) to the

atmosphere as a result of global warming, and the

critical role of soil organic N in controlling plant

productivity. The global pool of soil organic N is

about 1017 g versus 1023for the lithosphere and

1021 for the atmosphere (Paul and Clark 1996).

The mean residence time of N in the soil has been

calculated as 50 years versus 26 years for C

(Schlesinger 1991). Although part of this differ-

ence is almost certainly due to reprocessing of N

by soil microorganisms, the mechanisms that

stabilize N-containing organic compounds may

also differ in part from those that stabilize non-N-

containing organic compounds. More recently,

direct measurements of chirality of several amino

acids have suggested ages for soil protein in the

range of hundreds of years (Amelung et al. 2006).

Organic compounds may persist in soil as a

result of their inherent chemical recalcitrance,

inaccessibility due to physical protection, or

stabilization due to intermolecular interactions

with minerals, inorganic solutes, and other

organic compounds (e.g., Christensen 1992; Sol-

lins et al. 1996). However, the relative importance

of these mechanisms for stabilization of nitroge-

nous organics in soils is not well explored. The

majority of the identifiable soil organic N occurs

as amino (or more precisely amide) compounds

(see Table 1), based on both direct extraction

from soils (Bremner 1965; Leinweber and Schul-

ten 2000; Rillig 2004) and 15N-NMR studies

(Knicker 2000; Smernik and Baldock 2005). The

two main categories of amino-N compounds are

the intact proteins released for various extracel-

lular functions (surface-active agents, extracellular

enzymes) and detrital proteins and poly-

peptides—plant and microbial (and some animal)

constituents in various stages of transformation.

Also present in the soil are amino sugars and

compounds formed by abiotic interactions,

such as protein–tannin complexes and Maillard

reaction products, as well as various heterocy-

clic pyrolysis products (see Knicker 2006, this

volume).

Figure 1 presents a simplified conceptual mod-

el of the soil amino-N cycle. Biota, mainly plants

and microbes, release diverse protein, peptide,

and amino N substrates upon cell death and by

active exudation. Once outside the protective cell,

proteins and peptides are susceptible to break-

down via processes that can include hydrolysis by

extracellular microbial enzymes or ingestion by

soil fauna. Subsequent fates include leaching and

gaseous loss as well as uptake by plants and

microbes. One particularly important fate of

decomposed protein (inorganic N and amino

acids) is subsequent uptake and re-synthesis into

microbial protein (Miltner and Zech 1999).

A significant amount of protein, however,

enters the soil matrix relatively unaltered and is

stabilized for some time against microbial degra-

dation. Many of these now-extracellular proteins

no longer express their original function (e.g.,

photosynthetic enzymes), but some can be com-

pletely functional. The latter potentially include

surface-active proteins such as hydrophobins, as

well as those extracellular enzymes active in

decomposition. Moreover, it seems reasonable

to expect that proteins that can retain their

functionality may be especially resistant to deg-

radation (recalcitrant).

In the following sections we attempt to relate

persistence of proteins in soil first to their

intrinsic molecular properties, then to extrinsic

intermolecular interactions between proteins and

other soil constituents, and lastly to their occur-

rence within microbial cells and soil aggregates.

We then introduce several groups of specialized

microbial proteins that may perform specific

functions in the soil matrix and have seen recent

intensive scrutiny in microbial physiology/bio-

chemistry. We present hypotheses about the role

of these specialized functional proteins in soil

and finish with suggestions for future research

priorities and opportunities.

Intrinsic stabilization of proteins

Several characteristics and processes may

increase protein resistance to degradation by

altering their structure to occlude the peptide

bond (Fig. 2).
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Table 1 Peptidic-N contents as % of total soil N

Fractiona Quantificationb Samples/soils Protein contentc

(% of total N)
Reference

Hydrolyzable
HCl Ninhy Temperate muck 37% Kojima (1947)

6 Broadbalk soils 24.2–37.1% Bremner (1965)
10 eastern US soils 17.8–34.3% Keeney and Bremner (1964)
5 Danish agricultural soils 20–35% Sørensen (1975)
6 Arctic soils 33.1% Sowden et al. (1977)
82 Temperate 35.9
6 Sub-tropic 41.7
10 Tropic 40.7
Canada, Ustochrept, native

range
22–35% Dormaar et al. (1990)

Cropland abandoned 12 years 52
37 years 45
60 years 38

Adjacent native range 35
Haplic podsol (forest) AeH ,

bulk
52% Knicker et al. (2000)

Medium silt 31
Fine silt 34
Clay 43

Fluvisol, plowed, Ap 28% Friedel and Scheller (2002)
Luvisol, cropped, Ap 32–37%
Histosol, reed, Ah 50
Mollic Planosol, forest, Ah 47
Podsol, forest, AhE 40
Regosol, grassland, Ah 48

MSA IC Argiudoll, forest 61% of Ntot Martens et al. (2003)
Pasture 65%
Crop 62%
10 Iowa soils 51.4–73.7% Martens and Loeffelmann

(2003)
Non-hydrolyzable Residue
DCB extr HPLC German soils 22% of DCB extr Leinweber and Schulten (2000)

Phases and extractions
Whole soil 15N-NMR Haplic podzol, AeH, Total 56–78% Knicker et al. (2000)
DON HCl, HPLC California coastal forest soils 48–74% of DON Yu et al. (2002)
‘‘Humic acid’’

(HA)
HCl, ninhydr 8 Australian soils 16–47% of HA-N Ladd and Brisbane (1967)
Phenol extr Belgium, podsol B 25% of HA-N Simonart et al. (1967)

Meadow 32.5
Forest 40

EUF HPLC 3 plowed soils 23–55% of EUF-
N

Németh et al. (1988)

2 forest soils 41–46%
Phosphate Bradford Japan, Andosol (4) 0.84–1.15% Matsumoto et al. (2000)

Cambisol (6) 0.21–2.12%
Fluvisol (2) 0.76–2.87%
Gleysol (5) 1.14–4.7%
Regosol (3) 3.05–9%

Bicarbonate Bradford Arctic, tussock, seasonal 1.9–4.3% Weintraub and Schimel (2005)
Intertussock, seasonal 0.8–2.3%
Shrub, seasonal 0.3–0.9%
Wet sedge, seasonal 0.27–1.5%
Alpine, Colorado up to 12.8

lg prot-N /g
Lipson et al. (1999)
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For example, amyloid aggregates and resultant

fibrils are two related features of protein

structure, known largely from medicine where

misfolded proteins are responsible for at least 21

major diseases (e.g., Alzheimer’s; Merlini and

Belloti 2003). Proteins are inherently subject to

some degree of misfolding, resulting in the

formation of amyloid aggregates that can form

intertwining rope-like fibrils (Dobson 1999;

Gebbink et al. 2005). The extent of amyloid

aggregate and fibril formation can be affected

by extraneous factors, including temperature,

ligands, and the nature of specific peptides.

Details of the molecular mechanisms by which

proteins misfold and aggregate to form intertwin-

ing fibrils are given by Alexandrescu (2005), Ho

Table 1 continued

Fractiona Quantificationb Samples/soils Protein contentc

(% of total N)
Reference

NaOH Bradford Alpine, Colorado 0.52–1.65 lg prot-N/g Raab et al. (1999)
Temperate, Short-grass

Steppe
0.25

GRSP
(‘‘glomalin’’)

Bradford 12 mid-Atlantic US soils 4.4–14.8 mg BRSP/g Wright and Upadhyaya
(1998)

Paleustoll, crop rotations 1.5–3.0 mg BRSP/g Wright and Anderson
(2000)

Hawaiian chronosequence BRSP 2–5% of Ntot Rillig et al. (2001)
California grassland ~5 mg BRSP/g Rillig et al. (2002)
Montana grassland ~8 mg BRSP/g Lutgen et al. (2003)
Montana floodplain 0.42–8.67 mg BRSP/g Harner et al. (2004)
Native forest (A,B,C horiz) 4.91, 2.90, 1.23 mg BRSP /

cm3
Rillig et al. (2003)

Cultivated (A,B,C horiz) 3.06, 1.90, 1.18
Afforested (A,B,C horiz) 3.41, 2.01, 1.08
Tropical old growth forest BRSP 5% of Ntot Lovelock et al. (2004)

Results have been calculated as amino acid-N as % of total soil N (bold) where possible; otherwise in units directly from a
specific reference
a Fractions: Hydrolyzable: HCl—hydrochloric acid, MSA—methane sulfonic acid; GRSP—glomalin-related soil protein
(BRSP = Bradford-reactive soil protein, measured after exhaustive autoclaving/citric acid extraction; see Wright and
Upadhyaya 1998); EUF—electro-ultrafiltration; DON—dissolved organic nitrogen; Extractions: DCB—dithionite-citrate-
bicarbonate buffer to dissolve amorphous metal oxides
b Quantification: Ninh—ninhydrin, IC—ion chromatograph, HPLC—high performance liquid chromatography, 15N-
NMR—peptide-N calculated from amide signal, Bradford—Bradford (1976) dye assay
c Protein-N content as percent of total soil N. Protein-N calculated as total hydrolyzed amino acid-N, protein x 16%, or
estimated from NMR amide signal. Where total N data was not available, protein content was expressed in available units

FatesBreakdown processesSources

Decomposed Lost
Plant proteins AA, NH4

+, NO3
-, NO2

-

Intrinsic & extrinsic 
protein properties STABILIZED

Microbial proteins control passage 
through

--------------------------------------
Functionally inert

the enzyme gauntlet
Functionally active

Hydrophobins
Glomalin-related proteins

Extracellular enzymes

Fig. 1 Depiction of a simplified soil protein cycle, relating
sources and fates of proteins. Proteins can be either
decomposed, or they can be stabilized in soils (see Fig. 2),
if only transiently. In their stabilized form they can either

be inactive or active with respect to their original cellular/
organismic function. Stabilized proteins are repeatedly
re-exposed to the environmental filter once they become
accessible to enzymes
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et al. (2005), and Merlini and Belloti (2003).

Amyloid fibrils and aggregates are very effec-

tively stabilized against chemical denaturation

and enzymatic hydrolysis. Although the occur-

rence of such fibrils and aggregates in soil is

virtually unstudied, several of the soil microbial

proteins discussed in detail below are known to

exist mostly as amyloid fibrils (e.g. hydropho-

bins).

Glycosylation, the covalent linkage of specific

oligosaccharides to specific amino acids, is an

enzymatically mediated intracellular modification

of proteins that occurs prior to secretion (Varki

1993). Glycosylation is known to increase in vitro

protein stability against proteolytic enzymes up to

ten-fold (Bernard et al. 1983; Opdenakker et al.

1993; Varki 1993; West 1986). The extent to

which soil proteins are stabilized by glycosylation

remains unknown but merits attention.

Extrinsic stabilization of proteins: interactions

with other soil organic compounds

The preceding section focused on intrinsic molec-

ular properties of proteins that might contribute

to their persistence in the soil. Protein stability

can be further enhanced by interactions with

other soil molecules, specifically polyphenolics

and carbohydrates.

Polyphenolics

Probably the oldest known mechanism of protein

stabilization involves those plant polyphenols

commonly referred to as tannins. Tannin struc-

tures, reactivity, and possible roles in decompo-

sition and nutrient cycling have been extensively

reviewed (Zucker 1983; Horner et al. 1988;

Hättenschwiler and Vitousek 2000; Kraus et al.

2003a, b; Nierop et al. 2006). Proteins can react

with tannins and related polyphenols to form

soluble and insoluble products through reversible

non-covalent processes such as hydrogen bonding

and hydrophobic interactions (Loomis and Batt-

aile 1966; Oh et al. 1980; McManus et al. 1981;

Nyman 1985; Hagerman et al. 1998). The amount

and solubility of these complexes and their

resistance to enzyme hydrolysis vary extensively

with type of protein and tannin, ratio of protein to

tannin, ionic strength and pH. (Basaraba and

Starkey 1966; Benoit et al. 1968; Lewis and

Starkey 1968; Hagerman and Robbins 1987).

Covalent bonds can be formed by nucleophilic

addition between quinones and N or S nucleo-

philes (Loll and Bollag 1983; Haslam 1989).

Prim
•
•C

Molecule:
Modification/ int
• Biochemical reactions
environment (e.g. with t
“humic acids, etc.);
• Clay-protein interacti

Molecule: Microbial protein
• Molecule or assemblage as produced by t
microbial cell
• Inherent properties related to environmen
stability (e.g. glycosylation)

o-aggregate
ay/ primary particles and micro-aggregates
ore space; but provides protection

Molecular size range up
le (µm to mm)
es

Micro-aggregate (<250 µm)
• Interior protected volume
• Higher stability than macroaggregate

eraction
 in the
annins,

ons

he

tal

Soil macr
Containing cl
Has internal p

Biomass and biofilm/ micro-colony
• Proteins contained in microbial biomass (e.g.
hyphal wall) and biofilms are protected;
• Proteins contribute to biofilm extracellular material

Hundreds of µm up to cm

A few to tens of µm

to nm
ary partic

Exterior surfac
lays

Fig. 2 Conceptual
overview of structures
and scales involved in
microbial protein
stabilization in soils. The
various processes
occurring at different
scales in this hierarchical
framework are discussed
in detail in the text. The
listed size ranges may
overlap between different
structures and are only
intended to serve as
general guides
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Virtually all of our understanding of tannin–

protein interactions comes from laboratory

experiments. In vitro, tannins are known to slow

protein degradation in artificial systems using soil

or soil inoculum. Basaraba and Starkey (1966)

reported decomposition of tannin–gelatin mix-

tures was inhibited 20%, 69% and 52% by

tannin:protein mixtures of 1:4, 1:1 and 2:1,

respectively. Inhibition of ammonification of gel-

atin-litter extract precipitates by a soil inoculum

ranged from 14% to 85% across litter from 14

tree species (Howard and Howard 1993). Inhibi-

tion of protein decomposition varied from 18% to

70% for combinations of two tannins and four

proteins (Lewis and Starkey 1968). Field-based

evidence that tannins stabilize soil proteins

remains largely circumstantial at this time, but a

stabilizing role is implied by relations between

litter chemistry and rates of N mineralization

(Northup et al. 1995, 1998; Fierer et al. 2001;

Kraus et al. 2003a and references therein).

In contrast with numerous reports of tannins in

green leaves and litter (see Kraus et al. 2003a, b),

there are relatively few values for tannins in soil

horizons (Table 2). While these data are of little

overall comparative value because of differences

in extraction and analysis methods, a few gener-

alizations are possible. Amounts of condensed

tannins in organic horizons vary with plant species

(Kuiters and Denneman 1987; Northup et al.

1995; Smolander et al. 2005), stand age (Lorenz

et al. 2000), and successional stage (Gallet and

Lebreton 1995; Northup et al. 1995). Finding

tannins in the more decomposed organic horizons

is not always successful: Fierer et al. (2001) found

no condensed tannins (CT) in the Oe horizons of

Populus or Alnus stands that contained 106.4 and

0.9 mg CT g–1 , respectively, in the Oi layers. The

only successful extractions of tannic acid from

mineral soils have shown complex patterns with

depth, vegetation and successional stage (Blum

and Rice 1969; Rice and Pancholy 1973).

Experimental addition of tannins to soil has

yielded little to no recovery. Bradley et al. (2000)

recovered 0.32% and 1.16% respectively of Abies

and Kalmia tannins added to a black spruce

organic horizon (3% wt/wt) and concluded that

much of ‘‘the tannins may have become tightly

bound to organic matter, including protein’’.

Schofield et al. (1998) tried several extraction

and detection methods but were unable to detect

Salix-derived condensed tannins that had been

added to mineral soil; they suggested that

attachment to soil particles had made the tannins

unrecoverable. Despite abundant evidence for

protein in soil (Table 1), and limited evidence for

tannins in soil organic and mineral horizons

(Table 2), we found no direct evidence for the

existence of protein-tannin complexes in soil.

Another common plant phenolic that can

interact with protein is lignin. Waksman and Iver

(1932) found that alkali lignin could remove up to

33% of casein-N from solution. Using a mixture

of soil microorganisms, ammonification of casein

was reduced 25% in 11 days by mechanical

mixing with lignin and by over 95% after disso-

lution and reprecipitation with lignin. This led to

a model of SOM in which a major portion consists

of ligno-protein condensation products (Waksman

1938). This model was later replaced by a more

encompassing ‘‘polyphenol’’ model (Stevenson

1994) in which quinones can covalently bond to

protein N. This model is now being replaced in

turn by the concept of the supra-molecular

assemblage dominated by amphipathics (Piccolo

2001; Sutton and Sposito 2005; Kleber et al. 2006,

this volume). Formation of covalent and other

bonds between proteins and lignin residues could

occur by the same mechanisms suggested above

for tannin–protein interactions. The importance

of these mechanisms may have been largely

overlooked because lignin becomes less distin-

guishable and more soluble with progressive

decomposition.

Fungal melanins are polyphenolic pigments

that are synthesized by certain fungi either as

constituents of the cell wall or as exudates

(Coelho et al. 1985; Butler and Day 1998) and

that can then interact act with proteins in much

the same way as plant tannins. Kuo and Alexan-

der (1967) found that protease hydrolysis of a

casein-melanin mixture over two hours was

44.3% of casein alone. Although melanized

hyphae, as well as fungal resting structures

(sclerotia), are found universally in soils, their

mass and persistence remain unknown. Possible

stabilization within fungal biomass is discussed

below.
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Carbohydrates

In addition to the intrinsic protein stabilization

through glycosylation, proteins may also be sta-

bilized through extrinsic interactions with soil

carbohydrates. Glycation, or the Maillard reac-

tion, is the non-enzymatic covalent bonding of a

sugar aldehyde to an amino group, especially the

side-chain amino groups of lysine and arginine

(Ikan 1996). Glycation has been shown to signif-

icantly increase the stability of proteins and

peptides in laboratory studies. Gil et al. (1991)

reported that glycation could inhibit enzymatic

breakdown of proteins. Jakas and Horvat (2004)

found enzymatic decomposition half-life of a

glycated pentapeptide to be over 50 times greater

Table 2 Examples of reported tannin contents from humus and mineral soil

HORIZ/Type Loca Vegetation Site detailsb Tannin contentc Fractd References

Humus
Protein

precipitating
fraction

NE Betula 0.041 mg TAE g–1 (41%) sol Kuiters and
Denneman
(1987)

Fagu 0.067 (74%)
Quercus 0.034 (22%)
Picea 0.073 (60%)
Pinus 0.010 (36%)

FR Picea abies 1,630 m elev 5–9 mg TAE g–1 sol Gallet and
Lebreton
(1995)

1,860 m 3-11
Vaccinium myrtillus 1,630 m 9–16

1,860 m 9–16
FI Betula pendula 0.131 mg TAE g–1 (32%) sol Suominen et al.

(2003)Picea abies 0.171 (48%)
Pinus syvestris 0.223 (61%

Condensed US Coastal prairie
(California coastal
succession)

14 mg CAT g–1 extr Northup et al.
(1995)

Bishop Pine 26
Pygmy forest 34

CA Black spruce 385 mg PA g–1 extr Bradley et al.
(2000)

CA Western Hemlock Granodiorite
bedrock

1.26 mg PA g–1 Kranabetter and
Banner (2000)

Gneiss diorite 0.88
Schist 0.72
Limestone 1.29

CA Black spruce 50 y, 0.2 C MAT 28 7 mg PA g–1 sum Lorenz and
Preston (2002)100 y, 0.2 C 37.6

DE Norway spruce 50 y, 4.5 C 3.5
100 y, 6.3 C 5.0

Mineral soil
Hydrolyzable US Rhus copallina prairie 0–5 cm 0.6–0.8 mg TAE g–1 extr Blum and Rice

(1969)
Tall grass prairie

mid to climax
0–15 cm 0.017–0.02 mg TAE g–1 extr Rice and

Pancholy (1973)Total 139–127 kg TAE ha–1

Oak mid to climax 0–15 cm 0.008–0.027 mg TAE g–1

Total 114–225 kg TAE ha–1

Oak-Pine mid to
climax

0–15 cm 0.023–0.93 mg TAE g–1

Total 140–262 kg TAE ha–1

a Location: countries: CA—Canada, DE—Germany, FI—Finland, NE—Netherlands
b Site details: elev—elevation, y—stand age in years, MAT—mean annual temperature
c Tannin content: TAE—tannic acid equivalent, PA—Proanthocyanidin, CAT—catechin equivalent. Values in parenthesis
are tannin fraction of total polyphenols
d Fraction: sol—water-soluble, extr—methanol or aqueous acetone extract, sum—extr + residual
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than that of the non-glycated form. While the

Maillard reaction is well known in medicine and

nutrition (Ikan 1996), the extent to which it can

stabilize or protect proteins in soils has not been

studied. Previously considered to require too

extreme a temperature to occur extensively in

soils (Arfaioli et al. 1999; Bosetto et al. 2002),

recent in vitro work has shown that, at least for

free amino acids, the Maillard reaction can be

catalyzed by clays (Arfaioli et al. 1999; Bosotto

et al., 2002), common minerals (Jokic et al. 2001)

and polyphenols (Jokic et al. 2004). Maillard

products occur extensively in soil char, however

(review by Knicker (2006, this volume).

Phytates, another group of potential protein-

complexing carbohydrates, consist of a sugar core

(inositol) in which each hydroxyl is phosphory-

lated. Unlike the strong covalent bonding found

in glycation and glycosylation, phytate–protein

complexes are formed through weaker electro-

static bonds between the negatively charged

phosphates and positively charged basic amino

acids, as well as possibly through cation-bridging

of phosphates to carboxylates (Cosgrove 1966;

Anderson 1985). Widely studied in nutrition,

phytate-protein complexes resist proteolysis

(Cheryan 1980; Ravindran et al. 1995). For exam-

ple, phytates inhibited digestion of casein by

trypsin by 45% (Singh and Krikorian 1982).

Although phytates are the most abundant form

of organic phosphorus in soils (Dalal 1977), the

extent of their interaction with soil protein has

not been studied.

‘‘Humic’’–protein interactions

‘‘Humic’’ substances are an operationally defined

soil fraction. The nature of these materials is

undergoing a major redefinition from a complex

poly-condensed macromolecular structure (Schulten

and Schnitzer 1993) to a less strongly bonded

dynamic complex of smaller distinct molecules

that include mainly plant and microbial constit-

uents and their partial decomposition products

held together by H-bonding, hydrophobic inter-

actions and covalent bonds (Burdon 2001; Piccolo

2001; Sutton and Sposito 2005; Kleber et al. 2006,

this volume;). The presence of protein in humic

extracts has been implied by release of amino

acids by acid hydrolysis (Bremner 1965) and

proteolytic enzymes (Ladd and Brisbane 1967;

Jahnel and Frimmel 1995). Knicker and Hatcher

(1997) and Zang et al. (2000) have suggested that

proteins might be provided long-term protection

by their incorporation into hydrophobic domains

of soil organic matter. For example, by measuring

mineralization of 14C-labeled protein, Verma

et al. (1975) found that mixtures of protein and

‘‘model’’ humic polymers decomposed at 37%

the rate of protein alone. Covalently bonding of

protein with ‘‘model’’ polymers decreased

decomposition by phenoloxidase by 88% over

12 weeks. A similar experiment in soil showed

that mixing of labeled protein and model humic

polymers reduced protein decomposition by up to

76% over 12 weeks (Martin et al. 1978). Recent

NMR-based evidence for the in vitro covalent

coupling of peptides to phenolic components of

SOM (Hu and Hatcher 2003) suggests a way to

find covalent phenolic-protein condensation

products in nature.

Protein interactions with mineral surfaces

Peptidic compounds in general sorb strongly to a

wide variety of clays (see Theng 1979), with

strength of bonding varying over several orders of

magnitude depending on the protein. This process

is used in the wine industry to remove protein

(fining) and in a variety of other commercial

applications. The mechanisms of such sorption

have long been thought to be primarily electro-

static in nature, but current research is suggesting

that ligand exchange and physisorption may be

equally important. This important mechanism of

protein stabilization is reviewed extensively in

a companion paper (Kleber et al., 2006, this

volume).

Physical protection of proteins (changes
in accessibility)

Although there is little specific research on

mechanisms of physical protection of proteins in

soil, we provide here a brief overview of the

general mechanisms that operate on all SOM and
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thus can be expected to promote protein stabil-

ization.

Microbial biomass and biofilms

The presence of proteins within the cytoplasm of

microbial biomass inherently imparts some

degree of protection which can vary with the

nature of the microorganism. Nakas and Klein

(1979) found that bacterial cells decomposed

faster than fungal hyphae in a grassland soil.

Among the fungi, non-pigmented (hyaline) cells

decompose faster than dark-pigmented (melan-

ized) cells (Kuo and Alexander 1967; Lockwood

1960). Proteins are also significant internal com-

ponents of fungal hyphal walls (see section

Hydrophobins), where, in melanized fungi, they

can be further protected from proteolytic

enzymes (Butler and Day 1998). While these

proteins may not be afforded long-term protec-

tion, owing to the turnover of microbial biomass,

they are nevertheless not immediately released

into the soil solution. Instead, upon cell death

they may be deposited into soil micropores as

covalently linked components within the hyphal

(or bacterial) wall (Driver et al. 2005).

Biofilms, a topic for research across many fields

(Parsek and Fuqua 2004), have been observed in

soils (Grossman and Lynn 1967; Harris 1972).

However, only recently are we appreciating their

ecological roles, for example in terms of forma-

tion of consortia of bacteria associating with

mycorrhizal fungal hyphae and roots (Sen 2003).

Biofilms contain not only living cells (represent-

ing mixed populations of microbes) but also a

non-living matrix consisting of what has been

termed extracellular polymeric substances, which

can also contain significant protein (Omoike and

Chorover 2004; Sternberger and Holden 2004).

Soil biofilms also represent a special case of

sorption to mineral surfaces in that the first stage

in biofilm formation involves attachment of

specialized extracellular proteins (Bashan and

Levanony 1988). The extent to which occlusion

within biofilms can protect and stabilize protein N

in soils is unknown, although circumstantial

evidence comes from the requirements for enzy-

matic, chemical and mechanical treatments to

disrupt biofilms (Brisou 1995; Böckelmann et al.

2003).

Soil aggregation and soil physical structure

Proteins, like any other organic compounds, can

only be degraded if they are accessible to microbes

or extracellular enzymes (Fig. 2). Accessibility, in

turn, depends on physical location within the soil

fabric, and all of the above-mentioned processes

occur within the context of this framework. The

strength of this fabric is not uniform, and when the

soil is subject to any physical disruption it

fractures along planes of weakness (Dı́az-Zorita

et al. 2002). These planes define aggregates,

assemblages of mineral particles, organic debris,

and amorphous materials that can vary in size

from submicron to several centimeters (Fig. 2).

Permanent binding agents are responsible for the

stabilization of small microaggregates (<30 lm),

whereas macroaggregates (>250 lm) are bound

predominantly by transient binding agents origi-

nating from roots and hyphae (Tisdall and Oades

1982; Oades 1984; Six et al. 2004). Aggregates

exist in what can be conceptualized as a hierar-

chical order, with microaggregates (<250 lm)

bound and often formed within macroaggregates

(Oades 1984; Angers et al. 1997). Microaggre-

gates turn over much more slowly than macroag-

gregates and thus provide longer-term

stabilization (Six et al. 1998). Six et al. (2002)

compared organic C and N mineralization from

crushed versus intact aggregates and concluded

that, in both tropical and temperate soils, organic

N (which would include an unknown proportion

of protein) and C was more strongly protected

within microaggregates.

Access to substrates requires movement of

organisms through pores or of enzymes through

water films (Elliott and Coleman 1988; Chenu and

Stotzky 2002). Pores exist even in the smallest

microaggregates (indeed, even in otherwise solid

mineral particles) and even a single small pore

neck can greatly impede access through an

otherwise quite large and continuous pore. Addi-

tionally, physiochemical characteristics such as

oxygen concentration can differ drastically

between the interior and exterior of aggregates

(Sexstone et al. 1985). Such gradients provide an
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additional mechanism for stabilization by dictat-

ing the nature and size of the microbial popula-

tions at each location (Mummey et al. 2006;

Blackwood et al. 2006) and what metabolic

processes are possible.

Aggregates are dynamic. They form and re-

form over time thereby making the organic

material occluded within them accessible to

degradative enzymes (Six et al. 1998; Plante and

McGill 2002; Plante et al. 2002; DeGryze et al.

2005). Tillage increases this turnover rate, which

is generally faster for small aggregates than for

large (Six et al. 1998, 2004).

Proteins, like any other organic substrate in

soil, can occur anywhere in the soil fabric, thus

may be subject to any degree of accessibility.

Brewer (1964) published the first comprehensive

system for describing soil fabric. Although his

work has given rise to a large body of literature

on soil fabric in relation to mineralogy and

management practices, we know of no papers

relating this to organic N turnover in soils.

Likewise, there is an extensive and rapidly grow-

ing literature on the nature of and controls on soil

aggregate formation (e.g., Jastrow 1996, Six et al.

2002, 2004, Rillig and Mummey 2006), and on the

effects of aggregation and aggregate stability on C

turnover (Six et al. 1998). The literature on

effects on organic N turnover is sparser and we

know of no papers directly relating aggregation

specifically to protein persistence.

Specific microbial proteins

Having discussed general mechanisms of protein

stabilization, we next review relevant intrinsic

properties of specific microbial proteins, and

present hypotheses as to their abundance and

persistence in soils. In our discussion we include

hydrophobins, SC15, repellents, and glomalin(s),

which are examples of fungal proteins, as well as

chaplins, examples of bacterial structural proteins.

Hydrophobins

Hydrophobins are secreted by ascomycetes and

the basidiomycetes (Wösten 2001). Many fungi

belonging to these two phyla of the eumycotan

kingdom contain multiple hydrophobin genes,

and the encoded proteins fulfill a wide spectrum

of functions (Wösten 2001). For instance, they

enable fungi to escape the aqueous environment

to grow into the air, confer hydrophobicity to

fungal aerial structures such as fruiting bodies and

spores, and mediate attachment of fungi to

hydrophobic solids.

Hydrophobins are about 100 amino acids in

length (Wösten 2001) and can make up ten

percent of the total cellular protein (Wessels

et al. 1991a, b). They are not highly similar but

share eight conserved cysteine residues. Based on

solubility characteristics and hydropathy patterns,

Wessels (1994) discriminated between class I and

class II hydrophobins. The latter hydrophobins,

which are only produced by the ascomycetes, may

have evolved independently from the class I

hydrophobins (Whiteford and Spanu 2002). Both

class I and class II hydrophobins organize them-

selves into an amphipathic two-dimensional pro-

tein film at hydrophobic–hydrophilic interfaces

such as those between water and air, water and

oil, or water and a hydrophobic solid like Teflon

(Wösten and de Vocht 2000). The protein film of

the class II hydrophobins has been suggested to

be composed of packed tetramers, at least in case

of HFBII of Trichoderma reesei (Torkkeli et al.

2002). The film is not very stable. It dissociates

upon applying pressure or adding ethanol or

diluted detergent (Carpenter et al. 1992; Russo

et al. 1982; Takai and Richards 1978; SA Askolin

& HAB Wösten, unpublished). Similarly, class II

hydrophobins detach from a hydrophobic solid

upon treatment with hot detergent or even

washing with water (Linder et al. 2002; SA

Askolin & HAB Wösten, unpublished).

In contrast to the films of class II hydropho-

bins, those of class I are highly insoluble. They

only dissociate into the water-soluble form upon

treatment with formic acid (Wessels et al. 1991a,

b) or trifluoroacetic acid (de Vries et al. 1993).

This class I hydrophobin film consists of a mosaic

of aligned 10 nm wide fibrils. These hydrophobin

fibrils are called rodlets (Wösten et al. 1993) and

have an amyloid-like nature (Wösten and de

Vocht 2000; Butko et al. 2001). The hydrophobin

rodlets interact and form a physically strong

membrane that can span a gap of a few millime-
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ters in diameter (de Vocht et al. 2002) or prevent

a water droplet from being sucked into a Pasteur

pipette (Lugones et al. 2004).

Membranes formed by class I hydrophobins

have remarkable properties. They are not only

highly insoluble (Wessels et al. 1991a, b), semi

permeable (Wang et al. 2005), and protease

resistant (MI Janssen and HAB Wösten, unpub-

lished results), they are also among the most

surface-active aggregates in nature. In fact, with a

maximal lowering of the water surface tension

from 72 to 24 mJ m–2, the SC3 hydrophobin is the

most surface active protein known (Wösten et al.

1999). Moreover, the amphipathic membranes of

class I hydrophobins can turn hydrophilic surfaces

hydrophobic and vice versa (Wösten et al. 1993,

1994, 1995; Lugones et al. 1996, 1998, 1999).

These changes in the physico-chemical properties

are stable since assembled class I hydrophobin

strongly adheres to hydrophobic solids and to

some hydrophilic surfaces as well (Wösten and de

Vocht 2000). The hydrophobic side of class I

hydrophobin membranes (exposed after assembly

at a hydrophilic surface) is invariable strongly

water repellent. With a water contact angle of

about 110� it is as hydrophobic as Teflon. In

contrast, the hydrophilic side of class I hydropho-

bin membranes (exposed after assembly at a

hydrophobic solid) is variable in wettability.

Water contact angles range between 36� and 63�
depending on the hydrophobin used.

We do not yet have any information on the

occurrence or behavior of hydrophobins in soil.

However, class I hydrophobins are more likely to

contribute to soil C and N stabilization than class

II hydrophobins, since the former assemble in a

highly stable film. Class I hydrophobins are

secreted into the aqueous environment and

assemble at the hyphal surface when exposed to

air or a hydrophobic solid. In the latter case,

hydrophobins attach the hypha to the solid, thus

potentially contributing to stabilization of aggre-

gates. Hydrophobins secreted into the moist

environment could also assemble at hydrophobic

soil particles. These surfaces would become

hydrophilic, thus changing the physico-chemical

properties of the particles. As a result, adherence

of soil bacteria and fungi may be stimulated or

decreased. For example, growth and adherence of

fibroblasts to Teflon could be improved by coat-

ing a hydrophobic solid with hydrophobins

(Scholtmeijer et al. 2002; Janssen et al. 2002,

2004). Enzymes secreted by microorganisms

may also be stabilized by the hydrophobin film.

It was recently shown that loss of enzyme activity

could be prevented by adsorbing enzymes to a

hydrophobin-coated hydrophobic solid instead of

a bare hydrophobic surface (Corvis et al. 2005).

The hydrophobin coating probably prevents

denaturation at the surface of the solid.

Apart from coating hydrophobic particles,

hydrophobins could also assemble at hydrophilic

particle surfaces, thus making them hydrophobic.

Assembly at hydrophilic surfaces may occur when

soils dry out and an interface is created between

the soil particles and the air. The extremely

hydrophobic nature of the exposed side of the

hydrophobin membrane may stabilize air chan-

nels in soil aggregates by preventing capillary

transport of water.

Can hydrophobins contribute significantly to

soil surface area? The wood-rotting fungus

Schizophyllum commune secretes up to 60 mg

of SC3 hydrophobin per liter of minimal

medium. This amount would be sufficient to

coat 40 m2of surface (Wösten et al. 1994). Given

the very large surface area of soil, it remains to

be seen if the resident soil fungal biomass can

produce enough of this compound to coat a

significant percentage of surfaces in this envi-

ronment. It also remains to be established

whether this amount of hydrophobin is even

secreted under natural conditions, but we do

know that SC3 is produced (de Jong 2006). Since

S. commune has at least four hydrophobin genes

(Wessels et al. 1995), other hydrophobins may

be produced under these conditions as well.

Many of these properties suggest roles in C, N

and aggregate stabilization especially at the mic-

roaggregate scale. Additionally, however, since

hydrophobins will likely be acting in concert with

fungal hyphae, they would also be expected to

make direct contributions to macroaggregates.

SC15 and repellents

As mentioned, hydrophobins have so far only

been identified in ascomycetes and basidiomyce-
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tes. There is no evidence that they are produced

by Glomeromycota (arbuscular mycorrhizal fun-

gi, AMF) or Zygomycota. Possibly, these fungi

have evolved other proteins with properties

similar to those of hydrophobins (see below). Such

proteins have been identified in basidiomycetes. The

17 kDa SC15 protein of the basidiomycete S. com-

mune can partly substitute for the SC3 hydropho-

bin by reducing the water surface tension and by

making aerial hyphae hydrophobic (Lugones

et al. 2004). But there are no indications that

SC15, which has a hydrophilic N-terminal half

and a hydrophobic C-terminal half, self-assembles

in a protein film and that it has affinity for

hydrophobic solids. The same holds for the

repellents of the heterobasidiomycete Ustilago

maydis. Repellents are cell-wall located peptides

of 35–53 amino acids that result from cleavage of

the precursor protein Rep1 in the endoplasmic

reticulum (Wösten et al. 1996). Deletion of

rep1affected formation of aerial hyphae, surface

hydrophobicity, and attachment to hydrophobic

surfaces. In contrast, deleting either or both

hydrophobin genes of U. maydis only affected

aerial hyphae formation (HJ Deelstra, WR Teert-

stra, HAB Wösten, unpublished). From these

results it is concluded that hydrophobins of

U. maydis have been functionally replaced, at

least partially, by repellents and possibly other

molecules as well. How these proteins mediate

surface hydrophobicity and attachment is not

known, and it is also presently unknown if they

occur in soils.

Glomalin(s)

The path of research for hydrophobins and

glomalin has been exactly opposite (Rillig 2005).

While there is a wealth of data available for

hydrophobins from a molecular biology and

biochemical perspective, there is little environ-

mental data. Conversely, for glomalin, and glo-

malin-related soil proteins (Rillig 2004), the

origin of research has been in soil science, and

only recently has the molecular biology of the

protein begun to be revealed.

Glomalin is produced by AMF, and is currently

quantified from soil following an operational

definition (Wright and Upadhyaya 1996) as glo-

malin-related soil protein (GRSP; Rillig 2004).

The main detection tool is a monoclonal antibody

(MAb32B11), raised originally against crushed

spores of an AMF (Wright and Upadhyaya 1996).

It has recently become apparent through spiking

experiments that at least the Bradford-reactive

soil protein fraction of GRSP likely includes

proteins of non-AMF origin, contrary to previous

assumptions (Rosier et al. 2006). Keeping these

limitations in mind, GRSP often amounts to

several (generally <5%) percent of soil C (e.g.,

Rillig et al. 2001), and it appears to persist in a

variety of soil (years to decades; Rillig et al. 2003;

Steinberg and Rillig 2003; Harner et al. 2004).

Possibly partly as a consequence of its environ-

mental persistence, and partly due to its pur-

ported role in stabilizing aggregates (Rillig and

Mummey 2006), GRSP concentrations in soils are

highly positively correlated with soil aggregate

water stability (Wright and Upadhyaya 1998;

Harner et al. 2004; Rillig 2004). As a consequence

of this correlation, much research has been

dedicated to defining environmental factors to

which GRSP concentrations react sensitively,

including management factors (reviewed in Rillig

2004) and factors of global change (e.g., Rillig

et al. 1999). As opposed to the hypothesized role

in soil ecology, a function of glomalin in the life

history of AMF has been less clear. Driver et al.

(2005) showed that glomalin was contained pri-

marily (~80% of the total) in the fungal myce-

lium, rather than secreted into the culture

medium. This suggested that there is in fact a

primary role for the protein in the living fungus,

including a possible structural role. Indeed,

recently, the putative gene for glomalin from

the AMF Glomus intraradices has been isolated,

sequenced and expressed, and it shows high

amino acid similarity to heat shock protein 60

(Gadkar and Rillig 2006). However, it cannot yet

be discounted that the Glomeromycota-produced

glomalin functions also similarly to hydrophobins

in other fungal groups.

In summary, unlike many of the other proteins

discussed here (hydrophobins, SC15, repellents,

etc.), it seems evident that glomalin is produced

under sterile laboratory in vitro culture (Driver

et al. 2005), as well as in the soil. Until recently
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research to determine how glomalin interacts

with different soil constituents has been impeded

by lack of the purified protein. Successful expres-

sion of the glomalin gene will make these studies

possible in the near future.

Chaplins—bacterial structural protein

Like fungi, streptomycetes are abundant in soil.

These Gram-positive bacteria have a life-cycle

similar to that of fungi. After a feeding mycelium

has been established, spore forming structures

develop in the air. Chaplins of streptomycetes

fulfill functions similar to those of the fungal

hydrophobins. They mediate attachment of

hyphae to hydrophobic surfaces (Claessen 2004),

allow hyphae to escape the aqueous environment

to grow into the air (Claessen et al. 2003) and

make surfaces of aerial hyphae and spores

hydrophobic (Claessen et al. 2003, 2004).

S. coelicolor contains eight chaplins. The mature

forms of five of these chaplins (ChpD-H) are about

55 amino acids in length, while ChpA-C consist of

approximately 225 amino acids (Claessen et al.

2003; Elliot et al. 2003). The latter chaplins contain

two chaplin domains (i.e. sequences similar to

those of mature ChpD-H) and are probably cova-

lently linked to the cell wall via a cell wall

anchoring domain. The small chaplins were found

in the medium and at the surface of aerial hyphae

and spores. Like hydrophobins, these chaplins self-

assemble at the water-air or cell wall-air interface

into a surface active rigid two-dimensional protein

film that consists of amyloid-like fibrils (Claessen

et al. 2003). These fibrils are also very stable and

only dissolve in trifluoroacetic acid (TFA). In

contrast to hydrophobins, chaplins assemble in

solution when a seed of the assembled form of the

protein is added. Thus, self-assembly of chaplins

becomes independent of a hydrophilic–hydropho-

bic interface once a nucleus of amyloid has been

formed.

Water-soluble chaplins do not spontaneously

assemble at a hydrophobic solid (Claessen 2004).

Instead, they seem to be arrested in an interme-

diate state of the assembly process. Heating in

diluted detergent induces the protein to proceed

to the amyloid form. Possibly, streptomycetes

secrete molecules that induce the intermediate

form of chaplins adsorbed to a hydrophobic solid

to adopt the stable amyloid form.

Clearly, the properties of chaplins indicate that

they could function like hydrophobins in soils.

However, perhaps this would primarily occur at

smaller aggregate scales (microaggregates), owing

to the smaller spatial scales at which streptomy-

cetes operate compared to fungi.

Microbial extracellular enzymes

Another group of microbial proteins that could

be expected to have adapted for persistence in

the soil matrix are those epi- and extracellular

enzymes necessary for the processing of macro-

molecules into assimilable subunits. Soil enzymes

have been extensively studied (Burns 1978; Burns

and Dick 2002) and are without question the

most researched of all functional soil proteins. Of

the various sources of extracellular soil enzymes,

active secretion by microbial decomposers is

probably most important, as this is directly

related to substrate availability and to the nutri-

tional needs of the microbial community

(Caldwell 2005). The persistence of enzymatic

function once released from the cell is well-

known, where the very mechanisms cited above

to stabilize soil proteins, can facilitate the contin-

uing enzymatic functions. Active humic–enzyme

associations have been isolated from soils (e.g.,

Busto and Perez-Mateos 1995) and can be more

resistant to proteolysis than the free enzyme (e.g.,

Sarkar and Burns 1984).

Conclusions, caveats and future research needs

Much of our discussion has centered on soil

proteins in general, but it is obvious that more

significant progress can be made by developing

and applying tools that can discern sources and

fates of specific proteins. The differential persis-

tence of proteins of different origins and function

is a source of much speculation; for example, it is

often assumed that microbial proteins persist

longer than plant- or animal-derived proteins.

This is a testable hypothesis, and we suggest one

that should be given high priority in the context of

soil C and N storage. One possible approach to
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this is the recently emerging field of soil proteo-

mics (Schulze 2005; Schulze et al. 2005) in which

proteins recovered from environmental samples

can be identified.

We have pointed out numerous gaps in our

knowledge on the role of proteins in C and N

stabilization. One of the most fundamental of

these is our ability to quantify soil protein or

peptidic N. Martens and Loeffelmann (2003)

have shown that the long relied-upon HCl

hydrolysis may not hydrolyze all peptidic N.

Leinweber and Schulten (2000) found that

peptidic N can be occluded in amorphous metal

oxides and thus resist acid hydrolysis. While

protein estimation by the Bradford dye reaction

(Bradford 1976) is popular in various extraction

schemes, the assay has a very wide response to

different proteins and to different size proteins

and peptides. For example, the Bradford assay

responds very poorly to low molecular-weight

peptides (Friedenauer and Berlet 1989), which

marine research field has shown to represent

the vast majority (up to 90%) of peptidic N

(Sommerville and Preston 2001). Martens and

Loeffelmann (2003) also suggested that the soil

materials hydrolyzed with methane sulfonic acid

could be of substantially smaller size than plant

proteins.

While most studies have sought to determine

the total amount of protein in soil by maximizing

recovery (e.g., Martens and Loeffelmann 2003), it

is critical to our future understanding and ulti-

mate ability to model soil protein dynamics to

distinguish soil protein fractions of differing

labilities. We have reviewed a number of intrinsic

and extrinsic mechanisms by which proteins can

be stabilized. However, virtually all of this work is

based on laboratory or microcosm studies, which

are markedly affected by reactant concentrations

and reaction conditions. Determining which reac-

tions actually occur in situ and their relative

contributions to soil protein persistence will be an

ambitious undertaking. The notable exception to

this is the growing work done with extractible

glomalin-related soil protein.

Peptidic compounds in general are probably

much more persistent and play a larger role in C

stabilization than previously thought, due in large

part to their ability to interact with a wide range of

both organic and mineral surfaces (see Kleber

et al. 2006, this volume). Yet none of the controls

on protein persistence have been researched very

extensively, and turnover rates may change with

disturbance and anthropogenic influences (such as

warming). One priority in this context would be

better assessment of the relative importance of

the various groups of mechanisms we have

discussed. For example, it is possible that intrinsic

properties (such as those of hydrophobins and

hydrophobin-like proteins) play such a paramount

role that all other mechanisms become secondary.

Such a finding would certainly shift foci in soil

organic N research. Moreover, a new tool that has

become available, amino acid chirality analysis

(Amelung et al. 2006), could be utilized to infer

protein age and thus turnover rates.

It may be valuable to use laboratory-based

physiological and biochemical information on

proteins to identify targets for the study of soil

N stabilization. Hydrophobins and hydrophobin-

like proteins (SC15, repellents, chaplins) are

structural proteins with very specific functions at

interface that clearly merit further study. Gloma-

lin(s) and hydrophobin-like proteins, with a

strong potential role in soil aggregate formation

and stabilization, also deserve attention. Other

potentially important protein groups include any

that are highly hydrophobic or toxic, and or even

microbial cell-wall proteins. Clearly an increased

dialogue between microbial physiologists, protein

biochemists and soil scientists would speed

progress.
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