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Abstract  Textile industries release major fraction 
of dyestuffs in effluents leading to a major environ-
mental concern. These effluents often contain more 
than one dyestuff, which complicates dye degrada-
tion. In this study ten reactive dyes (Reactive Yellow 
145, Reactive Yellow 160, Reactive Orange 16, Reac-
tive Orange 107, Reactive Red 195, Reactive Blue 
21, Reactive Blue 198, Reactive Blue 221, Reactive 
Blue 250, and Reactive Black 5) that are used in tex-
tile industries were subjected to biodegradation by 
a bacterial consortium VITPBC6, formulated in our 
previous study. Consortium VITPBC6 caused single 
dye degradation of all the mentioned dyes except for 
Reactive Yellow 160. Further, VITPBC6 efficiently 
degraded a five-dye mixture (Reactive Red 195, Reac-
tive Orange 16, Reactive Black 5, Reactive Blue 221, 
and Reactive Blue 250). Kinetic studies revealed that 
the five-dye mixture was decolorized by VITPBC6 
following zero order reaction kinetic; Vmax and Km 
values of the enzyme catalyzed five-dye decoloriza-
tion were 128.88 mg L−1 day−1 and 1003.226 mg L−1 
respectively. VITPBC6 degraded the dye mixture into 

delta-3,4,5,6-Tetrachlorocyclohexene, sulfuric acid, 
1,2-dichloroethane, and hydroxyphenoxyethylami-
nohydroxypropanol. Phytotoxicity, cytogenotoxicity, 
microtoxicity, and biotoxicity assays conducted with 
the biodegraded metabolites revealed that VITPBC6 
lowered the toxicity of five-dye mixture significantly 
after biodegradation.

Keywords  Bacterial consortium · Biodegradation · 
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Introduction

Textile industries significantly contribute in the 
global economic development. Textile exportation is 
the highest in China trailed by the European Union, 
India, and the USA. The worldwide textile market 
was valued at USD 993.6 billion in 2021, and a com-
pound annual growth rate of 4% is expected during 
2022–2030 (Grand View Research 2022). The market 
of textile application is majorly led by fashion sector, 
followed by technical sector, and household sector 
(Ul-Islam 2017). Textile industries on one hand con-
tributed to global economic progression, however on 
the other hand it caused major hazardous impacts on 
the environment. The industry generates huge quan-
tity of pollutants during the wet processing stages of 
textile manufacturing (Uddin 2019). It majorly causes 
water pollution as well as soil and air pollution. 
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Textile industries consume huge volumes of water 
during the manufacturing process, consequently, huge 
volumes of effluent are released by these industries. 
The effluents contain at least 72 toxic chemicals and 
30 of these chemicals are difficult to treat with the 
conventional treatment processes. Textile industries 
are the largest consumer of dyes (∼ 70%). The dye 
market is predominated by reactive dyes and disperse 
dyes (44% of the market value) (Shukla et al. 2021). 
Reactive dyes are made up of azo or anthraquinone 
group as chromophores and various types of reactive 
groups (Asgher 2012). The discharge of wastewa-
ter containing dyestuffs occurs primarily due to the 
improper intake of dyes and the extent of dye fixation 
onto substrates. Dyes are noticeable in the effluents 
even in a minute quantity of 1 ppm due to its signifi-
cant tinctorial property (Singh and Arora 2011). The 
release of untreated or partially treated wastewater is 
detrimental to both the biotic and abiotic factors of an 
ecosystem. A major concern is that the conventional 
effluent treatment processes are high energy consum-
ing, time consuming, lacking a good infrastructure, 
and costing high. Moreover, in economically weaker 
countries wastewater treatment plants remain mostly 
non-functional due to reluctance and lack of profit 
gain. Diseases, such as contact dermatitis, allergic 
conjunctivitis, rhinitis, occupational asthma, and 
other allergic reactions have been documented, dur-
ing work-related exposure to reactive dyes. A clini-
cal and immunological investigation stated that 15% 
out of 400 workers subjected to reactive dye exposure 
suffered from respiratory issues (Docker et al. 1987). 
Frequent cases of colon and bladder cancer have been 
reported from reactive dye exposure (Senthil Kumar 
et al. 2020). Reactive dyes can bind to proteins found 
inside the human body, and thus pose a major health 
hazard (Al-Tohamy et al. 2022).

The biological treatment methods utilizing fila-
mentous fungi, bacteria, actinomycetes, algae, and 
yeasts for dye degradation or mineralization is an 
excellent alternative for reducing dye pollution. Bio-
logical treatment methods have exponentially grown 
over the last two decades. The pros of using this 
treatment method are: (1) cheap, (2) production of 
low amount of sludge, (3) no secondary pollution, 
(4) low water requirement, (5) environment friendly 
(Saratale et  al. 2011, 2013). Many studies have 
reported efficient dye degradation by various bacterial 
species. Dye biodegradation occurs with the help of 

oxidoreductive enzymatic system present in bacteria, 
such as azoreductase, nicotinamide adenine dinucle-
otide-2,6-dichlorophenolindophenol (NADH-DCIP) 
reductase, laccase, tyrosinase, lignin peroxidase, 
manganese peroxidase, and dye decolorizing peroxi-
dase (Mishra et al. 2022). It has been documented in 
a significant number of studies that bacterial consor-
tium is better able to degrade dyes than that of single 
bacterial species (pure culture). The metabolic diver-
sity in a bacterial consortium allows them to degrade 
dyes more efficiently than that of pure cultures (Stolz 
2001; Shade et  al. 2012). Afrin et  al. (2021) con-
structed a consortium of Pseudomonas aeruginosa 
and Enterococcus faecium that exhibited a higher rate 
of dye degradation more rapidly compared to that of 
the individual strains. Similarly, Mohanty and Kumar 
(2021) built up a consortium composed of Bacillus 
flexus, Proteus mirabilis, and P. aeruginosa. The con-
sortium showed a higher average dye decolorization 
rate, reduction in TOC and COD removal, and induc-
tion of various oxidoreductase enzymes compared to 
that of the individual strains.

Over the last decade, bioremediation studies were 
carried out majorly with single dyes. Hence, the sig-
nificance of the study relies on the use of dye mix-
tures, since real time effluents contains a mixture of 
different dyes. In the present study, consortium VIT-
PBC6, a previously constituted bacterial consortium 
in our dye decolorization study, will be used to treat 
dye mixtures (Saha et al. 2022). The end products of 
biodegradation will be determined with the help of 
analytical techniques. The reaction kinetics involved 
during dye degradation will be studied. Lastly, dif-
ferent toxicity studies will be performed to deter-
mine any toxicity that might have arisen after dye 
biodegradation.

Materials and methods

Reactive dyes and their mixtures utilized

Different reactive dyes were obtained from a tex-
tile industry in Mysuru, Karnataka. Ten commercial 
dyes were used in this study including C.I. Reac-
tive Yellow 145 (RY-145), C.I. Reactive Yellow 160 
(RY-160), C.I. Reactive Orange 16 (RO-16), C.I. 
Reactive Orange 107 (RO-107), C.I. Reactive Red 
195 (RR-195), C.I. Reactive Blue 21 (RB-21), C.I. 
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Reactive Blue 198 (RB-198), C.I. Reactive Blue 
221 (RB-221), C.I. Reactive Blue 250 (RB-250), 
and C.I. Reactive Black 5 (RB-5). Two dye mix-
tures were prepared from the above-mentioned dyes, 
including a ten-dye mixture (composed of RY-145, 
RY-160, RO-16, RO-107, RR-195, RB-21, RB-198, 
RB-221, RB-250, and RB-5) and a five-dye mixture 
(composed of RR-195, RO-16, RB-5, RB-221, and 
RB-250). Initially, dye standard solutions were pre-
pared at 20 mg L−1. Necessary dilutions were made 
from the standard solution for all the future studies. 
Maximum absorption (λmax) of each of the dyes was 
determined using UV–Vis spectrophotometer (Shi-
madzu, UV-1280) (200–700 nm). The λmax of the 
dye mixtures were determined using the colorimetric 
method as illustrated by APHA (APHA 2005).

Building up of consortium VITPBC6

Consortium VITPBC6 was built up with indus-
trial effluent-adapted bacterial isolates (textile 
industry and leather industry) in equal proportions 
(1:1:1:1:1:1), as discussed in our previous study (Saha 
et  al. 2022). Bacterial isolates were obtained from 
the effluents using an enrichment technique method. 
Decolorization assay was then performed to identify 
the most potent isolates. Finally, compatibility of the 
isolates was determined in Mueller Hinton agar. The 
isolates thus selected to build up the consortium were 
identified as Bacillus firmus VITEPB1 (NCBI acces-
sion number: MZ934656), Bacillus flexus VITEPB2 
(NCBI accession number: MZ951161), Bacillus 
aryabhattai VITEPB3 (NCBI accession number: 
MZ951124), B. flexus VITSP6 (NCBI accession 
number: MG407663), Bacillus paraflexus VITSPB7 
(NCBI accession number: MZ817967), and Bacil‑
lus megaterium VITSPB9 (NCBI accession number: 
MZ934417).

Decolorization property of consortium VITPBC6 for 
different reactive dyes and their mixtures

Decolorization assay was performed in Luria Ber-
tani (LB) broth under optimized conditions (40 
°C, pH 7.38, 0.61% arabinose, 0.55% peptone, 
2.5% Na2SO4, and 7.5% inoculum). The optimized 
conditions were determined by D-optimal design 
in response surface methodology, in our previ-
ous study (Saha et  al. 2022). All the reactive dyes 

and two dye-mixtures (ten-dye mixture and five-
dye mixture) were examined for decolorization. 
The individual dyes and dye mixtures were decol-
orized at an initial concentration of 50  and 30 mg 
L−1 respectively. Initial and final absorbance of test 
solutions were measured at λmax, and decoloriza-
tion percentage was calculated using the following 
formula:

Maximum dye mixture tolerance assay by consortium 
VITPBC6

Initial concentration of the ten- and five-dye mixture 
was changed from 0 to 180 mg L−1 and 0 to 300 mg 
L−1 respectively. Experimentation was done in LB 
broth supplemented with different dye concentrations 
under the optimized physico–chemical parameters. 
The inoculated flasks were incubated (Thermo Sci-
entific Heratherm Advanced Protocol Microbiologi-
cal Incubator) for 6 days at 37 °C until decolorization 
occurred. After incubation, decolorization percentage 
was calculated according to Eq. 1.

Reaction and enzyme kinetics of five‑dye mixture 
decolorization by consortium VITPBC6

Kinetics of the five-dye mixture decolorization pro-
cess by consortium VITPBC6 was studied in LB 
broth under optimized physico-chemical parameters. 
LB broth was supplemented with different initial 
concentrations (C0 in mg L−1) of the five-dye mix-
ture spanning from 0 to 300 mg L−1. Decolorization 
reaction was observed for 144 h. Absorbance changes 
were monitored at λmax, after every 6 h. Reaction 
orders are represented in Eqs.  2–4 (Atkins et  al. 
2006). Graphs were then plotted as residual dye con-
centration (Ct in mg L−1) vs. time (t) for the different 
reaction orders to determine the best fit. Zero, first, 
and second order graphs were plotted as Ct vs. t, ln Ct 
vs. t, and 1/Ct vs. t respectively.

Zero order:

(1)

Decolorization%

= Initial absorbance − Final absorbance
Initial absorbance

× 100%.
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First order:

Second order:

Michaelis constant (km) and maximum substrate 
consumption rate (Vmax) were determined using the 
Lineweaver–Burk double reciprocal plot. The plot has 
been represented in Eq. 5 (Berg et al. 2002). Reaction 
rate at different dye mixture initial concentration was 
calculated to plot the graph. The Km and Vmax values 
were then obtained from the plot.

Lineweaver–Burk equation:

where, V is the rate of substrate concentration (mg 
L−1 h−1), and S is substrate concentration (mg L−1).

Analysis of the five‑dye mixture decolorization 
metabolites

UV–Vis spectrometric analysis

The five-dye mixture (30 mg L−1) was subjected to 
decolorization by consortium VITPBC6 in LB broth 
under the optimized physico-chemical parameters. 
Absorbance of the culture flask was recorded before 
and after decolorization. Cells were removed from the 
culture flasks by centrifuging (REMI C-24 Plus) the 
broth at 15,000×g for 15 min. The resulting super-
natant was scanned in an UV–Vis spectrophotometer 
(200–700 nm). Dye degradation or transformation is 
indicated by a shift in the λmax.

Extraction of five‑dye mixture decolorization 
metabolites

Decolorization of the five-dye mixture was con-
ducted in large volumes of 1.5 L. The experiment 
was conducted in LB broth supplemented with the 
five-dye mixture (120 mg L−1) under the optimized 
physico–chemical parameters. The flasks were 

(2)C
t
= C0 − k0t

(3)ln
(

C
t

)

= −k1t + ln
(

C0

)

(4)
(

1

C
t

)

=

(

1

C0

)

+ k2t

(5)
1

V
=

K
m

Vmax [S]
+

1

Vmax

incubated till complete decolorization occurred 
(37 °C  for 6 days). Then, completely decolorized 
broths were centrifuged at 12,000×g for 15 min to 
remove cellular debris. The supernatant was passed 
through 0.22 μm CA filter and collected. Decolori-
zation metabolites present in the supernatant were 
collected using the liquid-liquid extraction method. 
Acetonitrile was used as the solvent of choice for 
metabolite extraction. The feed solution and ace-
tonitrile were poured in equal volumes in a sepa-
rating funnel. Separation was carried out for 30 
min. The acetonitrile extracts were collected and 
dried over anhydrous Na2SO4. The organic extract 
was completely dehydrated in powder form using a 
rotary evaporator (BUCHI, Rotavapor R-300) and 
utilized for further analysis (Dawkar et al. 2008).

Fourier transform infrared spectroscopic (FTIR) 
analysis

The five-dye mixture and its corresponding 
degraded metabolite samples were analyzed through 
FTIR (Thermo Nicolet AVATAR 330) to determine 
any variations of molecular structure between the 
two samples. The analysis was conducted using the 
KBr disc method. Alterations in transmittance per-
centage at different wavenumbers (400–4000 cm−1) 
were recorded (scan speed 16).

Ultra‑high performance liquid chromatography 
(UHPLC) analysis

The five-dye mixture and its corresponding 
degraded metabolite samples were separated using 
reverse phase UHPLC (Waters, ACQUITY H class) 
analysis. The mobile phase was a blend of HPLC 
grade carbinol and water (1:1). A C18 reverse col-
umn was used for achieving sample separation, 
and the corresponding separated compounds were 
detected by a photo diode array (PDA) detector. 
Sample flow was 0.8 mL min−1. Spectra were devel-
oped within the wavelength range of 200–700 nm. 
The separation was conducted for 20 min. The chro-
matograms of dyes and its corresponding degraded 
dye metabolite were compared.
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Liquid chromatography high resolution mass 
spectrometry–quadrupole time‑of‑flight (LCHRMS–
QTOF)

The five-dye mixture degraded metabolite sample 
was analyzed through LCHRMS–QTOF (Agilent 
technologies, 1290 Infinity UHPLC System, TOF 
6500 series) to identify the compounds present in 
the sample. Samples were separated in a HYPER-
SIL Gold C18 column (100 × 2.1 mm, 3 μm). Sam-
ples were prepared by dissolving these in deionized 
water (1 µg µL−1). Water was used as the mobile 
phase, which was flown at 0.2 mL min−1 for 30 
min. Electrospray ionization (ESI) was operated in 
both positive and negative mode to record the mass 
spectra under nitrogen (N2) gas flow (1 mL min−1). 
Fragment voltage was maintained at 175 V.

Toxicity analysis

The toxic nature of the five-dye mixture and its 
degraded metabolites were studied on different bio-
logical organisms, such as plants, microorganisms, 
and animals.

Phytotoxicity assay

The seeds of Vigna radiata and Cicer arietinum and 
the roots of the bulbs of Allium cepa were chosen 
for analysis.

The seeds were used for germination assay. 
These were grouped according to the treatment 
they received. The treatments included untreated 
five-dye mixture solution, treated dye degraded 
metabolites solution, and control (distilled water). 
The treatments were used in two concentrations 
(500 and 1500 ppm). The seeds were germinated 
in sterilized Petri plates covered with filter paper. 
Ten seeds were placed in each Petri plate. The 
treatment volume used for the seeds was 10 mL 
on the first day and 5 mL for the rest of the days. 
The seeds were treated for 7 days. V. radiata seeds 
were grown at 35 °C  and C. arietinum seeds were 
grown at 15 °C  (Rao and Prasad 2014; Mondal 
and Debnath 2022). Seed growth was documented 
every day. Relative seed germination (RSG) (Eq. 6), 

germination index (GI) (Eq.  7), and seedling char-
acteristics were calculated at the end of the treat-
ment period.

where, Ms represents the number of germinated seeds 
under treatment, Ds represents the number of germi-
nated seeds under control treatment, Rs represents 
the average root length of the seeds under treatment, 
and Rc represents the average root length of the seeds 
under control treatment.

Allium cepa bulbs were used for root growth assay. 
The bulbs were grown under hydroponic conditions. 
Like the germination assay, the bulbs were distributed 
into groups based on the treatments (untreated five-
dye mixture solution, treated dye degraded metabo-
lites solution, and control (distilled water) that they 
received. Treatments were used in two concentrations 
(500 and 1500 ppm). The bulbs were incubated for 7 
days at 23 °C (Haq et al. 2016; Alaguprathana et al. 
2022). Root growth was documented regularly. At the 
end of the incubation period, the number of roots and 
mean root length of the five longest roots in each of 
the bulbs were recorded.

Cytogenotoxicity assay

Onion root bulbs grown during the phytotoxicity 
assay were further examined for cytotoxic and geno-
toxic effects. The roots received four different treat-
ments, including untreated five-dye mixture, treated 
dye degraded metabolites, distilled water (negative 
control), and H2O2 (positive control). The root-tips 
(2–2.5 cm) were cut off and stained by acetocarmine 
using the root-tip squash technique (Saha and Rao 
2020). Meristematic root cells were then observed 
under light microscope (Magnus microscopes, model 
MLX). Mitotic index was calculated per 1000 cells 
scored (Eq. 8) and aberration index was also recorded 
(Eq. 9).

(6)RSG(%) =
M

s

D
s

× 100,

(7)GI(%) = RSG ×
R
s

R
c

,

(8)MI(%) = d∕c × 100
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Where, MI is mitotic index, d is total dividing cells, c 
is total analyzed cells, AI is aberration index, and a is 
total chromosomal aberrations identified

Microtoxicity assay

The growth curves of Escherichia coli, Pseudomonas 
aeruginosa, and Bacillus cereus were used to reveal 
the toxicity of the untreated five-dye mixture and its 
corresponding degraded dye metabolite. The bacteria 
received three different treatments, including the five-
dye mixture, degraded dye mixture metabolites, and 
without any treatment (control). The bacteria were 
inoculated (2%, v/v) in nutrient broth (NB). The treat-
ments (200 ppm) were added in NB. The incubation 
of E. coli and P. aeruginosa was done at 37 ℃ and B. 
cereus at 30 ℃ for 8 h. The optical density (OD) of 
the bacterial culture broths (five-dye mixture treated 
broth at 560 nm, degraded dye metabolites treated 
broth, and control broth at 600 nm) were measured in 
a colorimeter (Systronics digital colorimeter 112) at 
an interval of 1 h (Assess et al. 2018).

Biotoxicity assay

Lethality assay was executed with Artemia salina 
(Rima et al. 2022). At first, Artemia cysts (4 g) were 
hatched in 1 L of sea water at 25 ℃ under continu-
ous illumination and aeration conditions for 84 h. 
The nauplii were grown till they reached the instar 
II and III stages. Approximately 500 shrimps were 
transferred in 50 mL of sea water contained in a glass 
beaker (100 mL). The shrimps received four different 
treatments, including the untreated five-dye mixture, 
degraded dye mixture metabolites, K2Cr2O7 (posi-
tive control), and no treatment (negative control). The 
treatments were used at 0.125% and 0.5% concentra-
tion. All the treated brine shrimps were kept at 25 ℃ 
under continuous illumination and aeration for 24 h. 
Finally, the number of surviving shrimps under each 
treatment were counted to calculate survival percent-
age  (Eq.  10). They were also observed under light 
microscope to spot any physiological alteration that 
might have occurred as a response to toxicity.

(9)AI(%) = a∕c × 100

(10)S(%) =
s

t
× 100%,

where, S indicates survival percentage, s indicates the 
number of survivors, and t indicates the total number 
of shrimps.

Statistical analysis

All the experiments were conducted in tripli-
cates. Data in this research has been expressed as 
mean ± standard deviation, as per requirement. The 
statistical significance of the experimental data has 
been established by one way analysis of variance 
(ANOVA), two-way ANOVA, and coefficient of 
determination (R2) as per experimental requisite. The 
significances were determined based on probability 
(P-value). Analysis results with P-value less than or 
equal to 0.05 were considered significant.

Results and discussion

Details of reactive dyes and their mixtures

Table  S1  contains the chemical structure and wave-
length of maximum absorption (λmax) of the reactive 
dyes utilized for this study. The λmax of the ten-dye 
and five-dye mixtures were found to be 540 and 560 
nm respectively.

Decolorization property of consortium VITPBC6 for 
different reactive dyes and their mixtures

Consortium VITPBC6 efficiently decolorized RO-16 
(89.29%), RB-5 (76.8%), RB-250 (76.32%), and 
RB-221 (76.01%). Moderate decolorization occurred 
with dyes RR-195 (63.01%) and RB-21 (44.9%). On 
the other hand, low decolorization occurred with dyes 
RY-145, RO-107, and RB-198; whereas no decolori-
zation occurred with RY-160. Several factors play a 
role in determining dye degradation. High molecular 
weight and structural complexity hinder dye deg-
radation. Other factors, such as substituent groups, 
azo bond number, electron withdrawing and releas-
ing groups, and interaction of hydrogen between 
azo and hydroxyl group significantly affect dye deg-
radation (Zhuang et  al. 2020; Shi et  al. 2021). Fur-
ther, consortium VITPBC6 could decolorize dye-
mixtures. Consortium VITPBC6 decolorized the 
five-dye mixture (72.98%) more effectively than the 
ten-dye mixture (48.85%) (Fig. 1). Five dye mixture 
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was developed and used in the study since these five 
dyes (RR-195, RO-16, RB-5, RB-221, and RB-250) 
showed maximum decolorization potential among 
the other ten dyes that were decolorized individu-
ally. Several researchers have tried to use bacterial 
consortium for the decolorization of different dyes. 
Lade et  al. (2015) reported a bacterial consortium 
composed of Providencia rettgeri and Pseudomonas 
sp. that efficiently decolorized RB 5, RO 16, Disperse 
Red 78, and Direct Red 81 (DR 81). Similarly, Guo 
et al. (2019) constructed a bacterial consortium com-
posed of Pseudomonas, Lysinibacillus, Lactococcus, 
and Dysgonomonas that degraded multiple azo dyes, 
such as metanil yellow, direct fast black G, and acid 
brilliant scarlet GR. Another bacterial consortium 
composed of Proteus mirabilis, Morganella morganii, 
and Enterobacter cloacae decolorized four dyes Yel-
low EXF, Red EXF, Blue EXF, Black WNN, a mix-
ture of these dyes, and a real textile industry effluent 
(Madhushika et  al. 2019). Textile effluents contain 
a myriad of chemicals including a mixture of dyes. 
Hence, it is crucial to formulate a treatment capable 
of degrading dye mixtures. In the present study, VIT-
PBC6 was able to decolorize as many as nine dyes 
and their mixtures as well. The decolorization poten-
tial of consortium VITPBC6 was thus higher than 
that of several previous reports.

Maximum dye‑mixture tolerance assay by 
Consortium VITPBC6

The influence of dye mixture initial concentration 
on the decolorization potential of consortium VIT-
PBC6 was investigated (Fig.  2). Decolorization of 
the ten-dye mixture was more hindered than the 
five-dye mixture by consortium VITPBC6. The 
highest decolorization (88.46%) of the five-dye 
mixture was observed at 120 mg L−1 and moderate 
decolorization was observed till 150 mg L−1. How-
ever, at the highest concentration of 300 mg L−1, 
decolorization dropped to 30.17%. On the other 
hand, the ten-dye mixture decolorization occurred 
maximally (61.44%) at 90 mg L−1. The decoloriza-
tion was drastically reduced to 19.71% at the high-
est concentration of 180 mg L−1. The composition 
of textile industry effluent includes a concoction 
of dyes, metals, and other pollutants (Yaseen and 
Scholz 2019). However, the early dye degradation 
studies majorly concentrated on the study of single 
dyes (He et al. 2004; Asad et al. 2007; Ayed et al. 
2010; Prasad and Rao 2013). Currently, several 
researchers have thus focused their studies on dye 
mixture remediation. The extent of dye decolori-
zation by different consortia are as follows: 96.3% 
(100 mg L−1 of five dye mixture), 83% (50 mg L−1 
of four dye mixture), 82% (1200 mg L−1 of three 
dye mixture), 75.2% (1000 mg L−1 of three dye 
mixture), 75% (100 mg L−1 of five dye mixture 
(Karim et  al. 2018; Madhushika et  al. 2019; Afrin 

Fig. 1   Decolorization 
potential of bacterial 
consortium VITPBC6 for 
different reactive dyes at 
an initial concentration of 
50 mg L−1 under opti-
mized physico–chemical 
conditions (40 °C, pH 7.38, 
0.61% arabinose, 0.55% 
peptone, 2.5% Na2SO4, and 
7.5% inoculum)

0
10
20
30
40
50
60
70
80
90

100

%
 D

ec
ol

or
iz

at
io

n

Reactive dyes



180	 Biodegradation (2024) 35:173–193

1 3
Vol:. (1234567890)

et  al. 2021; Khan et  al. 2021; Thiruppathi et  al. 
2021; Biju et  al. 2022). In this study, consortium 
VITPBC6 showed higher dye decolorization poten-
tial for the five-dye mixture at a high concentration 
compared to that of the previous studies. Dye tox-
icity is known to escalate on increasing azo bond 
number, substitutions of the aromatic rings, and dye 
concentration. This could be the probable reason for 
decreased decolorization of the ten-dye mixture.

Reaction and enzyme kinetics of five‑dye mixture 
decolorization by consortium VITPBC6

The initial five-dye mixture concentration effect on 
the decolorization potential of consortium VITPBC6 
has been tabulated (Table S2). The table consists of 
the Ct values recorded at different time gaps for the 
experimental C0 values. The five-dye mixture batch 
decolorization exhibited somewhat linear and gradual 
decline in the Ct values during 144 h for the given 
C0 values. The corresponding reaction order graphs 
derived from the batch decolorization test data has 

been presented in Fig. 3. The graphs of zero and first 
order model developed a more linear relationship than 
that of the second order kinetic model. Further, the 
reaction rate constants of all the three kinetic mod-
els at the specified C0 values and the corresponding 
R2 values were calculated (Table S3). The zero order 
model had R2 values in the range of 0.9314–9857 and 
was closer to unity than that of the first and second 
order models. Thus, it can be concluded that the con-
sortium decolorized the five-dye mixture following 
zero order reaction kinetics. Zero order reaction was 
mostly followed during anaerobic dye decoloriza-
tion or when substrate concentration was increased. 
Mordant Yellow 10 reduction by anaerobic granu-
lar sludge followed zero order kinetics (Field and 
Brady 2003; dos Santos et  al. 2004). Sarioglu et  al. 
(2007) investigated Basic Red 46 decolorization by 
an anaerobic mixed culture. The dye decolorization 
obeyed first order kinetics at the concentration range 
of 50–250 mg L−1, whereas zero order kinetics was 
followed at the concentration range of 500–1000 mg 
L−1. Zahran et  al. (2019) conducted a study with 
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Fig. 2   Dye mixture (Ten-dye mixture composition: C.I. Reac-
tive Yellow, C.I. Reactive Yellow 160, C.I. Reactive Orange 
16, C.I. Reactive Orange 107, C.I. Reactive Red 195, C.I. 
Reactive Blue 21, C.I. Reactive Blue 198, C.I. Reactive Blue 
221, C.I. Reactive Blue 250, and C.I. Reactive Black 5; Five-
dye mixture composition: C.I. Reactive Red 195, C.I. Reactive 

Orange 16, C.I. Reactive Black 5, C.I. Reactive Blue 221, C.I. 
Reactive Blue 250) tolerance assay with bacterial consortium 
VITPBC6 under optimized physico–chemical conditions (40 
°C, pH 7.38, 0.61% arabinose, 0.55% peptone, 2.5% Na2SO4, 
and 7.5% inoculum)
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azoreductase producing microbes from the gut micro-
biota to reduce food colorants. Azoreductase activ-
ity of Escherichia coli (brilliant black, sunset yellow, 
and tartrazine), Enterococcus faecalis (amaranth, 
brilliant black, and tartrazine), Enterococcus avium 
(amaranth, brilliant black, sunset yellow, and tartra-
zine), and Bacillus cereus (amaranth and brilliant 
black) followed zero order reaction kinetics for dye 

decolorization. However, interestingly azoreductase 
activity from B. cereus followed first order kinetics at 
low dye concentration (10 μm), but zero order kinet-
ics at high dye concentration (20 and 30 μm) during 
the decolorization of sunset yellow and tartrazine. 
Similarly, in our previous study RO-16 decolorization 
by consortium VITPBC6 exhibited a zero order reac-
tion (Saha et  al. 2022). The results of this study are 

Fig. 3   Reaction order 
kinetic models of five-dye 
mixture (C.I. Reactive Red 
195, C.I. Reactive Orange 
16, C.I. Reactive Black 5, 
C.I. Reactive Blue 221, C.I. 
Reactive Blue 250) decol-
orization at different initial 
dye concentrations a Zero 
order reaction was plotted 
as residual dye concentra-
tion (Ct) vs. t b First order 
reaction was plotted as ln 
Ct vs. t c Second order reac-
tion was plotted as 1/Ct vs. t
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concomitant with the above-mentioned reports. The 
zero order reaction of the dye mixture decolorization 
might have stemmed from the high substrate (dye) 
concentration chosen for this study.

The decolorization rate with respect to different 
initial dye concentrations has been calculated and 
presented in Table S4. The corresponding data was 
then applied to the Lineweaver–Burk equation. A 
graph (1/V vs. 1/S) was plotted to verify the appli-
cability of the equation. The double reciprocal plot 
for the five-dye mixture decolorization has been 
presented in Fig.  4. The Lineweaver–Burk model 
equation was a good fit (R2 value of 0.9765) for the 
obtained experimental data of the five-dye mixture 
decolorization. The interception (1/Vmax) and slope 
(Km/Vmax) of the graph was used to obtain Vmax 
(128.88 mg L−1 day−1) and Km values (1003.226 mg 
L−1) of the enzymatic reaction involved in the five-
dye mixture decolorization. Enzyme kinetic studies 
have been majorly conducted with purified enzymes 
for single dye degradation (Wanyonyi et  al. 2017; 
Iark et  al. 2019; Edoamodu et  al. 2021; Zhao 
et  al. 2021). To the best of our understanding, the 
enzyme kinetic studies for dye-mixture decoloriza-
tion by bacterial consortium have not been reported 

so far. Both the Vmax and Km values were high in 
this study. A high Km value points to a low enzyme 
affinity towards its substrate. The high Km value 
might be linked to the very high initial substrate 
concentrations coupled to lower volume of enzymes 
produced by VITPBC6 that were used in this study.

Analysis of the five‑dye mixture decolorization 
metabolites

UV–Vis spectrometric analysis

The five-dye mixture and its biodegraded metabo-
lite spectra are illustrated in Fig. 5. The spectrum of 
the five-dye mixture exhibited a broad peak due to 
the presence of multiple chromophores with a maxi-
mum absorbance at 560 nm. However, the maximum 
absorbance peak in the spectrum of degraded dye 
mixture metabolite occurred at 285 nm. Additionally, 
the peak intensity in the degraded metabolite spec-
trum was also reduced significantly. Therefore, it can 
be presumed that the five-dye mixture decolorization 
by consortium VITPBC6 might have arisen from a 
cleavage or transformation of the chromophores i.e., 
biodegradation.

FTIR analysis

The FT-IR spectra of the five-dye mixture and its cor-
responding degraded metabolite have been illustrated 
in Fig.  6. A broad peak at 3417.86 cm−1 represents 
–OH group. The signature –N=N– group peaked at 
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1589.34 cm−1. Two peaks of primary –NH bend and 
tertiary –NH bend were noted at 1492.90 and 1176.58 
cm−1 respectively. SO3 group appeared at 1128.36 
cm−1. In the fingerprint region, aromatic –CH out of 
bend was noted at 896.90 cm−1 and 731.02 cm−1. On 
the other hand, the FTIR spectrum of the degraded 
five-dye mixture metabolite revealed fewer peaks 
compared to that of the dye mixture spectrum. The 
spectrum exhibited –OH group at 3305.99 cm−1, 
C–H deformation vibration in halogenated com-
pound at 1398.39 cm−1, and –SO4 stretching vibra-
tion at 1093.64 cm−1. In the fingerprint region, skel-
etal vibration in alkene was observed at 609.51 cm−1. 
The spectrum represented the presence of functional 
groups corresponding to aliphatic compounds, and 
the absence of the functional group corresponding to 

the dye chromophore. Hence, it can be presumed that 
the dye mixture underwent biodegradation.

UHPLC analysis

The UHPLC elution profiles of the five-dye mix-
ture and its corresponding degraded metabolite 
have been depicted in Fig.  7. The five-dye mix-
ture chromatogram exhibited the presence of six 
sharp peaks at retention times 1.2 min, 1.3 min, 
1.8 min, 4.9 min, 5.5 min, and 6.3 min respec-
tively. The multiple peaks occurred owing to the 
presence of multiple dyes in the mixture. On the 
other hand, the degraded dye mixture metabolite 
chromatogram exhibited the appearance of three 
new peaks at 1.096 min, 1.225 min, and 2.254 
min respectively. The occurrence of new peaks in 
the degraded dye metabolite chromatogram points 

Fig. 6   Fourier transform 
infrared spectra analysis 
a five-dye mixture (C.I. 
Reactive Red 195, C.I. 
Reactive Orange 16, C.I. 
Reactive Black 5, C.I. Reac-
tive Blue 221, C.I. Reactive 
Blue 250) b degraded five-
dye mixture metabolite by 
consortium VITPBC6
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towards the presence of compounds different from 
the untreated dye mixture compounds. Addition-
ally, fewer number of peaks formed in the degraded 
dye mixture metabolite chromatogram than that of 

the dye chromatogram might suggest that the dye 
mixture was degraded into simple compounds.

Fig. 7   Ultra high performance liquid chromatogram a five-dye mixture (C.I. Reactive Red 195, C.I. Reactive Orange 16, C.I. Reac-
tive Black 5, C.I. Reactive Blue 221, C.I. Reactive Blue 250) b degraded metabolite of five-dye mixture by consortium VITPBC6
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Fig. 8   Liquid chromatography-mass spectrophotometry analy-
sis of biodegradation products of five-dye mixture (C.I. Reac-
tive Red 195, C.I. Reactive Orange 16, C.I. Reactive Black 5, 
C.I. Reactive Blue 221, C.I. Reactive Blue 250) by consortium 
VITPBC6 a  chromatogram (Electrospray ionization operated 

in negative mode) b  chromatogram (Electrospray ionization 
operated in positive mode) c  mass spectrum of delta-3,4,5,6-
Tetrachlorocyclohexene, d  mass spectrum of sulfuric acid, 
e  Mass spectrum of 1,2- dichloroethane, f  mass spectrum of 
hydroxyphenoxyethylaminohydroxypropanol
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LCHRMS–QTOF

The chromatograms and mass spectra of the five-
dye mixture degradation by consortium VITPBC6 
have been illustrated in Fig.  8a–f. The chromato-
gram obtained, when ESI was operated in negative 
mode has been presented in Fig.  8a, and the chro-
matogram obtained when ESI was operated in posi-
tive mode has been presented in Fig. 8b . The mass 
spectra revealed that the dye mixture was degraded 
into simple compounds, viz., delta-3,4,5,6-Tetrachlo-
rocyclohexene (mass 217.919), sulfuric acid (mass 
97.9682), 1,2-dichloroethane (mass 97.9682), and 
hydroxyphenoxyethylaminohydroxypropanol (mass 
227.1153). End-products delta-3,4,5,6-Tetrachloro-
cyclohexene, sulfuric acid, and 1,2-dichloroethane 
were obtained when ESI was operated in negative 
mode. delta-3,4,5,6-Tetrachlorocyclohexene appeared 
at a retention time of 1.163 min with ion peak at 
m/z 2116.9118 (Fig.  8c). Sulfuric acid appeared at 
a retention time of 1.167 min with ion peak at m/z 

96.9609 (Fig.  8d). 1,2-dichloroethane appeared at 
a retention time of 1.514 min with ion peak at m/z 
96.9609 (Fig.  8e). End-product hydroxyphenoxyeth-
ylaminohydroxypropanol was obtained when ESI was 
operated in positive mode. It had a retention time of 
4.176 min and ion peak at m/z 210.1121 (Fig. 8f). It 
is notable that the complex dye mixture was biode-
graded by consortium VITPBC6, which makes it a 
highly potential agent for reactive dye biodegradation.

Toxicity assays

Phytotoxicity assay

Seed germination is a period when seeds are sensi-
tive and highly susceptible to toxicity. Hence, after 
treating the seeds with distilled water, dyes, and 
degraded dye metabolites RSG, GI, root length, and 
shoot length were noted down (Table 1a, b). In case 
of V. mungo, the five-dye mixture treated seeds had 
lower RSG, GI, root and shoot length compared 

Fig. 8   (continued)
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to that of the corresponding degraded dye mixture 
metabolite treated seeds. The root and shoot length 
of the degraded dye mixture metabolite treated seeds 
and control seeds were comparable. Statistical analy-
sis indicated that the effect of treatment variation on 
the seeds were significantly different from each other 
(P-value 0.001 < 0.05, Fstatistics > Fcritical). However, 
concentration variation had insignificant effect on 
the seeds (P-value 0.322 > 0.05, Fstatistics < Fcritical) 
(Table 1a). In case of C. arietinum, RSG, GI, radicle 
and plumule length were lower in the seeds treated 
with the five-dye mixture than the seeds treated with 
the corresponding degraded dye metabolite. There-
fore, it might be presumed that the degraded dye 
metabolite had significantly lower toxicity than that 
of the dye mixture. The data obtained with treat-
ment variation on the seeds were statistically signifi-
cant with P-value 0.01 < 0.05 and Fstatistical > Fcritical. 
However, like that observed in the P.  mungo seeds, 
the concentration variation had insignificant effect on 
the C. arietinum seeds (P-value 0.196 > 0.05, Fstatistical 
< Fcritical) (Table 1b). Plant bioassays have been pre-
dominantly used by researchers to evaluate different 
environmental contaminants. Various plant seeds 
utilized for analyzing the toxic effect of dye degrada-
tion, include Vigna radiata, Vigna aconitifolia, Vigna 
mungo, Oryza sativa, Zea mays, Sorghum vulgare, 

Solanum leucopersicum, and Triticum aestivum 
(Pathak et al. 2014; Kumar et al. 2019; Thanavel et al. 
2019; Singh and Dwivedi 2020). 

Root growth is likely to be hampered under the 
influence of toxic compounds because of inhibited 
cell division. Hence, root growth analysis is a simple, 
rapid, and cost-inexpensive assay to identify toxic-
ity (Saha end Rao 2020). Root numbers and lengths 
from the A cepa bulbs that underwent the various 
treatments have been tabulated in Table 2a. The high-
est number of roots developed from the bulbs under 
the control treatment followed by the bulbs under 
the degraded dye mixture metabolite treatment. The 
lowest root number and growth was observed from 
the bulbs treated with the untreated dye mixture. 
Statistical analysis revealed that the various treat-
ments caused significant changes on the root number 
and length (P-value 0.04 < 0.05, Fstatistical > Fcritical). 
However, the concentration variations did not have 
any significant effect on the root growth of the bulbs 
(P-value 0.37 > 0.05, Fstatistical < Fcritical). Majority of 
phytotoxicity studies utilizing root growth as an indi-
cator of toxicity have analyzed A. cepa bulbs (Kalyani 
et  al. 2012; Ghosh et  al. 2020; Yadav et  al. 2021). 
Few studies have utilized other plants, such as Lac‑
tuca sativa, V. radiata, and Sinapis alba (Malachova 

Table 1   Seed germination 
analysis

Values are expressed as 
mean ± standard deviation

Treatments Relative seed germination (%) Germination 
index (GI)

Root/radicle 
length (cm)

Shoot/plu-
mule length 
(cm)

(a) Phaseolus mungo
 Distilled water 100 ± 0 − 9.43 ± 4.7 17.14 ± 1.59
 Five-dye mix
  500 ppm 53.33 ± 15.27 28.6 5.06 ± 2.99 11.62 ± 2.82
  1500 ppm 13.33 ± 5.77 3.58 3.21 ± 1.14 9.35 ± 3.32

 Degraded five-dye mix 
  500 ppm 83.33 ± 5.77 55.18 6.25 ± 1.21 15.44 ± 5.04
  1500 ppm 80 ± 20 26.12 3.9 ± 1.96 13.6 ± 2.05

(b) Cicer arietinum
 Distilled water 96.66 ± 5.77 – 1.44 ± 0.39 1.25 ± 0.5
 Five-dye mix
  500 ppm 22.22 ± 4.35117E-15 18.46 1.2 ± 0.28 0
  1500 ppm 14.81 ± 6.41 10.25 1 ± 0.28 0

 Degraded five-dye mix
  500 ppm 84.07 ± 6.41 109.4 2.13 ± 1.34 1.86 ± 0.11
  1500 ppm 81.48 ± 6.41 75.75 1.34 ± 0.89 1 ± 0
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et al. 2013; Almeida and Corso 2014; Pandiyan et al. 
2022).

Cytogenotoxicity assay

An increase or decrease in MI denotes cytotoxic-
ity and is used during environmental biomonitoring 
(Carita and Marin-Morales 2008). Aberrant cells con-
sist of altered chromosomal number or morphology 
that occurred spontaneously in response to a toxic 
agent (Obe et al. 2002). The cytogenotoxic effects of 
the various treatments upon root tips have been tabu-
lated (Table 2b). Roots treated with the degraded dye 
mixture metabolite solution documented the highest 
MI followed by the roots treated with the negative 
control solution. However, roots treated with the posi-
tive control solution documented the lowest MI fol-
lowed by roots treated with the five-dye mixture solu-
tion. On the other hand, AI was highest in the positive 
control root cells followed by the five-dye mixture 
treated root cells. No aberrant cells were observed 
in the negative control cells, however the degraded 
five-dye mixture metabolite treated root-tip cells 
exhibited a low aberrant index. Therefore, it can be 
pointed out that toxicity substantially decreased after 
the dye mixture degradation resulting in less aberrant 

cells in the degraded dye metabolite treated roots. 
Statistical analysis revealed that the various treat-
ments significantly affected the mitotic onion root-tip 
cells (P-values of MI (0.016266) and AI (0.000121) 
were < 0.05; Fstatistical >  Fcritical in both cases). How-
ever, the various concentrations did not produce any 
significant changes in the root-tip cells (P-values of 
MI (0.56953379) and AI (0.0873) > 0.05, Fstatistical 
<  Fcritical in both cases). Many previous studies have 
conducted cytogenotoxicity assay with A. cepa for 
identifying toxicity associated with dye degradation 
(Yadav et  al. 2021; Patil and Jadhav 2013; Gurav 
et al. 2021).

Microtoxicity assay

The bacterial growth curves of E. coli, P. aeruginosa, 
and B. subtilis cultured with the five-dye mixture and 
degraded five-dye mixture supplementation as well 
as the control cultures without any supplementation 
were plotted (Fig.  9). After completion of the incu-
bation period, the bacterial cell density was very low 
in cultures with the dye mixture supplementation and 
resulted in a flat curve. Thus, the dye treatment evi-
dently inhibited bacterial cell growth. On the other 
hand, the bacterial cell density gradually increased 

Table 2   Toxicity analysis of Allium cepa bulbs

Data are expressed mean ± standard deviation

(a) Root growth analysis

Treatments Number of roots Root length (cm)

 Distilled water 79.33 ± 2.08 8.9 ± 0.26
 Five-dye mix
  500 ppm 21.33 ± 1.52 2.8 ± 1.15
  1500 ppm 15.33 ± 1.52 2.44 ± 1.02

 Degraded five-dye mix
  500 ppm 35 ± 5 7.32 ± 0.66
  1500 ppm 29.33 ± 4.04 6.42 ± 1.28

(b) Cytogenotoxicity analysis of root tips

Treatments Mitotic Index Aberration Index

 Distilled water (negative control) 7.73 ± 1.39 0
 H2O2 (positive control) 3.87 ± 0.57 81.02 ± 35.74
 Five-dye mixture 500 ppm 4.48 ± 1.49 45.05 ± 5
 Five-dye mixture 1500 ppm 5 ± 1.28 50.02 ± 11.6
 Degraded Five-dye mixture 500 ppm 10.98 ± 1.94 2.89 ± 1.75
 Degraded Five-dye mixture 1500 ppm 11.35 ± 1.81 6.52 ± 3.04
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in cultures with the degraded dye mixture metabolite 
supplement. The cellular growth density of E. coli, 
P. aeruginosa, and B. subtilis after the incubation 
period were 0.345, 0.325, and 0.36 respectively in the 
control cultures; and 0.385, 0.21, and 0.355 respec-
tively in the degraded dye mixture metabolite treated 
cultures. The growth curves of the cultures with the 
different treatment supplementation significantly 
differed from each other (P-values were 1.75568E-
07 < 0.05 (E. coli), 1.03E-07 < 0.05 (P. aerugi‑
nosa), and 1.97639E-07 < 0.05 (B. subtilis); Fstatistical 
> Fcritical). The results of this analysis implied that the 
degraded dye mixture metabolites did not stimulate 
any toxic effect on the test organisms. Other micro-
organisms used as an indicator of toxicity include soil 
microbial flora (Rhizobium radiobacter, Acinetobac‑
ter sp. Pseudomonas desmolyticum, Cellulomonas 
biazotea, isolated Escherichia coli DH5a, Micrococ‑
cus glutamicus and Proteus vulgaris), Azotobacter 
vinelandii, Rhizobium leguminosoma, Sinorhizobium 
meliloti, and Staphylococcus aureus (Kalyani et  al. 

2009; Saratale et  al. 2010; Al-Tohamy et  al. 2020; 
Yuan et al. 2020).

Fig. 9   Growth curves of 
bacteria Bacillus subtilis, 
Pseudomonas aeruginosa, 
and Escherichia coli treated 
with five-dye mixture (C.I. 
Reactive Red 195, C.I. 
Reactive Orange 16, C.I. 
Reactive Black 5, C.I. Reac-
tive Blue 221, C.I. Reactive 
Blue 250) (Dye mix) and 
degraded five-dye mixture 
(Ddye mix)
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Fig. 10   Biotoxicity assay of Artemia salina treated with five-
dye mixture (C.I. Reactive Red 195, C.I. Reactive Orange 16, 
C.I. Reactive Black 5, C.I. Reactive Blue 221, C.I. Reactive 
Blue 250) (Dye mix) and degraded five-dye mixture metabolite 
(Degraded dye mix), K2Cr2O7 (positive control), and without 
any treatment (negative control)
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Biotoxicity assay

A. salina is a potential bioindicator for toxic com-
pounds. The assay is simple, cost-inexpensive, gives 
rapid results, and able to generate results with less 
amount of test compounds (Sreedharan et  al. 2021). 
The survival percentage of shrimps under the dye 
mixture and degraded dye mixture treatment has 
been presented in Fig.  10. The highest survival per-
centage was observed in the negative control treat-
ment (100%) trailed by the degraded dye mixture 
metabolite treatment (87.15%), while the lowest sur-
vival percentage was observed in the positive control 
treatment (0.13%) followed by the dye mixture treat-
ment (22.52%). The various treatments significantly 
differed from each other (P-value 0.001277 < 0.05, 
Fstatistical >  Fcritical), however the concentration vari-
ation did not significantly affect the shrimp survival 
(P-value 0.297027 > 0.05, Fstatistical < Fcritical). Further, 
microscopic observation revealed visible dye build-
up in the midgut of the dye mixture treated shrimps, 
while there was no dye buildup in the midgut of the 
positive control and degraded dye mixture metabolite 
treated shrimps (Fig. S1). Therefore, the results imply 
that significantly lower toxicity was induced on the 
shrimps by the degraded dye mixture metabolite than 
the untreated dye mixture. A. salina has been proven 
to be an excellent bioindicator for dye toxicity by sev-
eral researchers (Priyaragini et  al. 2014; Bilal et  al. 
2017; Ayed et  al. 2019). Other animals and inverte-
brates that have been used for assessing dye toxicity 
include Daphnia magma, Rattus norvegicus (Swiss 
albino rats), Danio rerio (zebra fish), Xenopus lae‑
vis (frog) embryo, and Pheretima phosthuma (earth-
worm) (Birhanli and Ozmen 2005; Sharma et  al. 
2007; Kolekar et al. 2012; Barathi et al. 2020). 

Conclusion

Bacterial consortium VITPBC6 composed of Bacillus 
firmus VITEPB1, Bacillus flexus VITEPB2, Bacil‑
lus aryabhattai VITEPB3, B. flexus VITSP6, Bacil‑
lus paraflexus VITSPB7, and Bacillus megaterium 
VITSPB9 decolorized nine reactive dyes and two dye 
mixtures. Consortium VITPBC6 was most efficient in 
decolorizing the five-dye mixture. The dye mixture 
was maximally decolorized till a concentration of 150 
mg L−1. Reaction and enzyme kinetic studies helped 

to shed an insight on the five-dye degradation pro-
cess. The five-dye mixture was degraded following 
zero reaction order. Both Vmax and Km values were 
high for the degradation. Further, the five-dye mix-
ture was successfully biodegraded by VITPBC6 into 
simple organic and inorganic compounds. The tox-
icity of the five-dye mixture was drastically reduced 
after biodegradation, and hence it can be considered 
safe for practical application. Therefore, consortium 
VITPBC6 is an excellent alternative for remediating 
dye pollution persistent in textile industries. Future 
scope of this study includes chalking out the path-
way involved in the five-dye mixture biodegradation 
and studying the interaction of other pollutants, such 
as salt and heavy metals, with dyestuff present in the 
textile effluents.
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