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Abstract As an effective alternative for dissolved

nitrogen removal, biofilter closely associates its treat-

ment performance to structural and/or operational

conditions. In this study, a set of four different biofilters

including MAVF (mature aerated vertical flow),

NAVF (new aerated vertical flow), NVF (new non-

aerated vertical flow), and BHF (baffled non-aerated

horizontal flow)were employed to purify lowC/N ratio

(3.8) domestic wastewater. All the filters were packed

with round ceramsite operated under varying hydraulic

loading rates (HLRs) of 0.024–0.18 m/day. During the

start-up, both the physicochemical and microbial

characterizations were investigated. It was found that,

carbon and nitrogen could achieve ideal removal in

MAVF once added with further sedimentation, while

phosphorus displayed an unsatisfactory sequestration

in any of the four filters probably due to the high inflow

load and/or lack of alternate anaerobic/aerobic condi-

tions. Filter clustering based on percent removal and

removal rate constant displayed a consistent pattern,

which was similar to that based on taxa of phylum from

16S rRNA sequencing, or phylum/genus/species from

shotgun metagenomic sequencing although there were

obvious distinctions in taxa compositions among direct

comparison. Meanwhile, gene function annotation

revealed that filter clustering based on metabolic

pathways was consistent with that based on purifica-

tion performance. These consistencies might imply

that the treatment performance was mainly determined

by microbial degradation. The enrichment of specific

functional microbes responsible for the degradation of

certain pollutants, such as carbohydrates,matchedwell

with the defined purification performance.
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Introduction

Nowadays under the increasing pressure of environ-

mental protection, many of China’s wastewater
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treatment plants (WWTPs) face to supplement

advanced treatments to meet the first A standards

(GB 18,918–2002, China) (Qu et al. 2019). Among the

advanced treatments, dissolved nitrogen removal is

still the key that can mostly be achieved in biological

ways. As amature biofilm technology, biofiltration has

been widely applied for dissolved nitrogen removal

(Garcia-Ruiz et al. 2018; Jiang et al. 2018; Lin et al.

2019). The main processes involve nitrification and

denitrification completed by nitrifiers and denitrifiers,

respectively. These functional microbes are highly

susceptible to many factors, such as carbon sources

(He et al. 2018b), dissolved oxygen (DO) (Jiang et al.

2018; Rout et al. 2017), and pH (Jiang et al. 2018). To

achieve an ideal performance, it is essential to unravel

the complicated biological processes from the per-

spective of microbial characterizations.

Currently, metagenomics is a powerful approach in

deciphering microbial characterizations. It can not

only present compositional/phylogenetic characteri-

zations but also display functional profilings (Chu

et al. 2018; Ng et al. 2019; Tang et al. 2016).

According to different purposes, metagenomics can

achieve both qualitative and quantitative analyses of

specific microorganisms via targeted or untargeted

ways. In targeted ways, such as the cost-effective 16S

rRNA sequencing, a gene or a few genes are

sequenced, while in untargeted ways, such as the

high-cost shotgun metagenomic sequencing, all pre-

sent DNA is sequenced (Garrido-Cardenas et al.

2017). At present, the 16S rRNA sequencing is

frequently used for structural comparison (Garrido-

Cardenas et al. 2017), while the shotgun metagenomic

sequencing is widely applied for functional clarifica-

tion (Jadeja et al. 2014).

Recently many studies have adopted these two

approaches to decipher microbial characterizations

(Bai et al. 2017; Guan et al. 2018; Tang et al. 2016;

Zhao et al. 2019). However, due to different data

processing, both consistent and conflict results were

reported. For the examples of consistency, RiboFR-

Seq linked the annotations of 16S rRNA and metage-

nomic contigs to make a consistent classification

(Zhang et al. 2016b); Tax4Fun provided a good

approximation to functional profiles (Asshauer et al.

2015); 16S rRNA gene sequences provided results

comparable to shotgun metagenomic sequencing

(Mitra et al. 2013). However, for the instance of

conflict, 16S rRNA and shotgun metagenomic

sequencing revealed a distinct microbial community

profile (Delforno et al. 2017). The above cases indicate

that the consistency mainly focuses on the functional

classifications, while the conflict mainly focuses on

the direct comparison of microbial community. How-

ever, up to date, there is still little information on the

comparison of statistical associations of biofilter

performance with microbial characterizations, which

are unraveled by both 16S rRNA and shotgun

metagenomic sequencing.

So in this study, both of the above two approaches

were employed to unravel the microbial characteriza-

tions of four different biofilters, which were used to

treat simulated domestic wastewater under different

conditions referring aeration, microbial acclimation

period, pool shape, and inflow loading. The purposes

of the study were to verify: (1) Whether there was an

obvious distinction in microbial characterizations

between 16S rRNA and shotgun metagenomic

sequencing? (2) Did the microbial structural charac-

terizations revealed by the two methods consistently

associate with treatment performance? (3) In the same

way, did the microbial functional characterizations

unraveled by shotgun metagenomic sequencing con-

sistently associate with treatment performance?

Through the above analyses, a better understanding

of the complicated links of microbial characterizations

to purification performance would be obtained, which

might be helpful for biofilter optimization or

management.

Materials and methods

System construction

For the present study, four plexiglass biofilters

including three vertical flow filters (named as MAVF,

NAVF&NVF) and one baffled horizontal flow (BHF)

were constructed. The baffled flow was achieved by

installing nine parallel baffles (39 cm

L 9 0.9 cm W 9 48 cm H for each one). The scale

of the vertical flow filter was 48 cm in length

(L) 9 48 cm in width (W) 9 60 cm in height

(H) and that of the horizontal flow was 100 cm

L 9 48 cm W 9 48 cmH. All the filters were packed

with round ceramsite with a diameter of 3–5 mm, a

porosity of 0.433, and a depth of 38 cm and 34 cm for

the vertical and horizontal flow filters, respectively. To
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ward off influent pump flushing, perforated water

distribution pipes (made of PVC, U16 mm) were

installed on the top of the vertical flow filter;

meanwhile, nanoporous aeration tubes (rubber, U15
mm) were fixed in perforated casing pipes (PVC,

U20mm) at the bottom. The nanoporous tubes were

then linked to an air compressor (power: 250 W;

blowing rate: 60 m3/h; maximum pressure: 10 kPa;

model: HG-250) forming an aeration system. Finally,

an outlet tap was set up at the bottom of each vertical

flow filter and at the upper edge of the horizontal flow

one to regulate water drainage.

Experimental design

In this study, all the filters were used to treat simulated

domestic wastewater, whose constituents are listed in

Table 1. The preparation scheme was as follows:

KH2PO4 0.0439 g/L; NH4HCO3 0.2256 g/L;

C6H12O6 0.15 g/L; wheat flour 0.3 g/L. The

scheme was referred to an effluent from the grit

chamber of a local WWTP. The wastewater was

characterized by a low C/N ratio (3.8) and was

dominated by dissolved ammonium and phosphorus.

To expand the difference among the four filters, the

MAVF and BHF constituting a combination system

had been used to treat simulated high-strength aqua-

culture wastewater for over a year (Zhang et al. 2017)

therefore possessing mature biofilm, while the NAVF

(representing new aerated vertical flow filter) and NVF

(new non-aerated vertical flow filter) were new ones.

Usually, for a mature biofilter, its performance is

strongly associated with operating conditions. How-

ever, for a new biofilter, its performance may be

determined by to what extent the biofilm has devel-

oped. No matter either operating conditions or biofilm

maturation, they mainly affect biofilter performance

via shaping different microbial communities. Up to

date, the reports of suitable start-up time for new

biofilters mostly ranged from few days to more than a

month, such as the volcanic carrier biofilter controlled

based on online pH-DO linkage control strategy (Jiang

et al. 2018), the lab-scale biofilters inoculated with

nitrifying and backwashing sludge (Cai et al. 2015),

and the bench-scale Filtralite biofilters operated under

anoxic conditions (Garcia-Ruiz et al. 2018). In this

study, due to the medium wastewater concentration

(Table 1), the suitable start-up time was assumed a

month, during which three-stage batch tests were T
a
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performed. That is the HLRs of the three vertical flow

filters were adjusted to be 0.05, 0.10, and 0.18 m/day

in three stages with each one lasting 10 days.

Accordingly, the HLRs of the BHF were 0.024,

0.048, and 0.086 m/day, respectively.

For a rapid start-up, the four filters were daily

inoculated with activated sludge taken from the above-

mentioned WWTP for 3 days. The physicochemical

characteristics of the inoculated activated sludge are

listed in Table 2, which showed that dissolved

nutrients were mainly incorporated into microbial

biomass that was beneficial for inoculation. After-

ward, the MAVF, NAVF, and NVF were fed with the

simulated domestic wastewater intermittently once a

day, while the BHF only received outflow of the

MAVF. Before each feeding, the three vertical flow

filters were completely drained and then fed again to

the designated water level (corresponding to each

HLR). Meanwhile, the MAVF and NAVF performed

intermittent aeration while the BHF and NVF did not.

The aeration covered a total of 6 h per day including

two sections, i.e., 09:00–12:00 a.m. and 14:30–17:30

p.m. Accordingly, the gas/water ratios corresponding

to the above three HLRs were about 1200:1, 600:1,

and 300:1, respectively. Hereby, it could be consid-

ered that, the four filters had been characterized by

different structural and/or operational conditions that

would produce a distinction in treatment performance,

which might be mainly caused by different microbial

communities.

Physicochemical analysis

Water samples for physicochemical analysis were

collected daily and the sampling sites included inflow

and outflow. The inflow was sampled instantly once

the simulated domestic wastewater had been prepared

in a feeding tank, while the outflow was sampled on

the next day during the draining process. The moni-

tored parameters included online and laboratory

indices. The online indices included temperature (T),

dissolved oxygen (DO), redox potential (ORP), alka-

linity (pH), electronic conductivity (EC), total soluble

solids (TDS) and salinity, which were measured in situ

by a multi-parameter water quality analyzer (Model:

YSI Pro Plus), while the laboratory parameters

involved chemical oxygen demand (COD), total

ammonium nitrogen (TAN), nitrate (NO3
-–N), nitrite

(NO2
-–N), total nitrogen (TN), total phosphorus (TP),

T
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and inorganic phosphorus (IP), which were measured

according to the standard methods (APHA 2005). The

COD also included total content (TCOD) and the

dissolved portion (DCOD). The TCOD was deter-

mined directly while the DCOD was measured after

the water sample had been filtered through a 0.45 lm
fiber membrane.

Microbial analysis

At the end of batch tests, the ceramsite inside each

filter was sampled, conserved and sent to LC-Bio

Technology Co., Ltd (Hangzhou, China) for microbial

analysis, which covered both 16S rRNA and shotgun

metagenomic sequencing. DNA was extracted respec-

tively from each sample using the E.Z.N.A.� Stool

DNA Kit (D4015-02, Omega, Inc., USA) according to

the manufacturer’s instructions. The reagent had been

proven effective when designed to uncover DNA from

trace amounts of sample. The total DNA was eluted in

50 lL of Elution buffer and stored at - 80 �C until

measurement. For 16S rRNA sequencing, the V3–V4

region of the prokaryotic small-subunit (16S) rRNA

gene was amplified with slightly modified versions of

primers 338F (50-ACTCCTACGGGAGGCAGCAG-
30) and 806R (50-GGACTACHVGGGTWTCTAAT-

30). PCR amplification was performed following the

methods given by Wang et al. (2019) with final

products confirmed with 2% agarose gel electrophore-

sis, purified by AMPure XT beads (Beckman Coulter

Genomics, Danvers, MA, USA), and quantified by

Qubit ( Invitrogen, USA). After then, samples were

sequenced on an Illumina MiSeq platform according

to the manufacturer’s recommendations. Subsequent

data analysis was done as the methods described by

Tao et al. (2019). Similarly, for shotgun metagenomic

sequencing, DNA library construction and subsequent

data analysis were completed according to the meth-

ods depicted by He et al. (2018a). For the present

study, gene function was annotated according to

databases of GO (gene ontology), KEGG (Kyoto

encyclopedia of genes and genomes), eggNOG (evo-

lutionary genealogy of genes: non-supervised orthol-

ogous groups) and CAZy (carbohydrate-active

enzymes). GO is a widely used bioinformatics concept

that unifies genes and their products of all species.

KEGG can identify metabolic pathways. EggNOG can

classify the potential functions of unigenes. CAZy can

classify the functions of carbohydrate-active enzymes

(Cai et al. 2018).

Statistical analysis

In this study, data were expressed as mean ± standard

deviation (SD). Total inorganic nitrogen (TIN) was

defined as the sum of TAN ? NO3
-–N ? NO2

-–N,

while organic nitrogen (Org-N) was defined as the

deduction of TN-TIN. Treatment performance was

evaluated by percent removal and first-order removal

rate constant K with the latter calculated by the

following formula (Zhang et al. 2016a):

K ¼ HLR � lnCin � lnCoutð Þ=ðhw � eÞ

where K was the first-order removal rate constant,

day-1;HLRwas the hydraulic loading rate, m/day; Cin

and Cout were the inflow and outflow concentrations,

respectively, mg/L; hw was the filling depth, m; e was
the porosity.

An independent t-test was used to detect the

differences in physicochemical parameters between

inflow and outflow as well as between aeration and

non-aeration. Similarly, covariance analysis was

selected to compare the differences in percent

removal/removal rate constant K among different

filters with inflow concentration as a covariate. This

was because the inflow of BHF was the outflow of

MAVF. Meanwhile, multiple comparisons were per-

formed with LSD for equal variances and Tamhane’s

T2 for unequal variances. Significant differences

(P\ 0.05) among the four filters were marked with

different letters.

Results and discussion

Comparison of online physicochemical parameters

Table 3 shows that the significant differences in

physicochemical parameters between inflow and out-

flow of the four different biofilters mainly focused on

temperature, DO, ORP, and pH, while only significant

difference was observed in MAVF for SC, TDS and

salinity. Besides, the mechanical aeration significantly

increased outflow DO and pH (i.e., by comparing NVF

with NAVF/MAVF with all P\ 0.05). The reason for

the increase of DO was due to that, the nitrification

process, as well as the oxidation of organics,
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consumed DO that could be supplemented via

mechanical aeration in aerated filters. However, in

non-aerated filter, the consumed DO was mainly

derived from feeding wastewater apart from the

limited atmospheric diffusion. Similarly, the reason

for the increase of pH was possibly due to that,

denitrification process produced CO2, which might be

partially blown out by the intermittent aeration in

aerated filters, while in non-aerated filter, it might

retain in the system leading to a lower pH value

(Zhang et al. 2019b). Finally, according to the

thresholds for DO classification proposed by Gao

et al. (2007), namely\ 0.3 mg/L representing for

anaerobic, 0.4–0.7 mg/L for facultative, and[ 1.0

mg/L for aerobic, the DO content in the four filters was

at facultative/aerobic level meaning the lack of

alternate anaerobic/aerobic conditions in a single

reactor.

Comparison of treatment performance

According to Table 4, mean outflow concentrations of

NO3
-–N and NO2

-–N in each filter were nomore than

0.40 mg/L and 0.02 mg/L, respectively, indicating no

obvious accumulation of nitrate or nitrite. This also

demonstrated that complete denitrification occurred

inside the four filters. Accordingly, DIN in the outflow

of each filter was mainly composed of unnitrified

TAN. Besides, TN in the outflow of MAVF/BHF was

mainly composed of Org-N while DIN accounted for a

major portion in TN in the outflow of NAVF/NVF.

This might be explained by the fact that, the MAVF/

BHF were more mature than the NAVF/NVF thus

possessing higher biofilm biomass. The relatively high

content of Org-N in the outflow of MAVF/BHF was

mainly composed of fallen biofilm. Thus, TN removal

in mature filter could be further improved by sedi-

mentation to reach the first A standard (\ 15 mg/L,

GB 18,918–2002, China). Although the NAVF was

aerated, its nitrifying capacity was much lower

compared to the MAVF indicating biofilm maturation

contributed a lot to nitrification.

From the perspective of percent removal for each

parameter, the MAVF, NAVF, and NVF all displayed

high removal efficiency on organics (mean TCOD

percent removal[ 80%), while the BHF only dis-

played positive removal on organics and Org-N

(Table 4). The positive removal of organics, Org-N

and TN as well as the negative removal of TAN,T
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b
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NO3–
-N, NO2

-–N and DIN in the BHF indicated that,

particle sequestration, ammonification and ammo-

nium/nitrite oxidation occurred simultaneously inside

the filter bed. Meanwhile, after compared the concen-

tration of each nitrogen in inflow/outflow, it was

deemed that the above nitrogen conversion intensity in

BHF was extremely weak, which might be mainly

attributed to the relatively low DO inside the filter bed

(Jiang et al. 2018; Zhang et al. 2019b). However, for

phosphorus removal, the four filters all displayed low

removal efficiency resulting in high outflow concen-

trations. This was probably due to the high inflow load

(mean inflow TP = 9.54 mg/L, Table 1) and the lack

of alternate anaerobic/aerobic conditions inside the

filter bed (He et al. 2018b).

Similarly, from the perspective of removal rate

constantK for each parameter, theMAVF, NAVF, and

NVF all presented relatively high K for nitrate

(Table 4) implying complete denitrification occurred

inside these systems. It was probably because denitri-

fication was easy to happen once guaranteed with

sufficient endogenous carbon sources derived from the

fallen biofilm and/or inflow load (TCOD/TN = 3.8,

Table 1), and the denitrification had not been inhibited

by the intermittent aeration. On the contrary, the

various K of each nitrogen were almost negative

(except TN and Org-N) in BHF implying nitrification

and denitrification were both greatly restrained. This

was probably attributed to the anoxic (or even

anaerobic) environment inside the filter bed (Zhang

et al. 2019b) that was adverse to nitrification and thus

could not supply additional nitrate/nitrite for denitri-

fication. Besides, the inflow of BHF (namely MAVF

outflow) contained an extremely low level of carbon

source (mean DCOD = 12 mg/L, Table 4) and nitrate/

nitrite (mean NO2
-–N = 0.01 mg/L, mean NO3

-–

N = 0.1 mg/L) that was also detrimental to denitrifi-

cation (He et al. 2018b; Zhang et al. 2018). Covariance

analysis showed that there were significant differences

in K of each parameter among the four filters. The

overall rank of purification efficiency among the four

filters was MAVF[NAVF[NVF[BHF. Finally,

filter clustering based on percent removal and removal

rate constant K showed a consistent pattern over the

four filters. That is the NAVF and NVF showed the

closest distance followed by MAVF, while the BHF

was the farthest from the others (Fig. 1).
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Comparison of microbial composition

After database alignment through characteristic

sequences, the taxa richness at the phylum/genus/

species level annotated from shotgun metagenomic

sequencing was extremely higher than that annotated

from 16S rRNA sequencing (Table 5). Unlike the 16S

rRNA sequencing, the shotgun metagenomic sequenc-

ing could annotate most of the dominant taxa to

specific names at the species level. Because listing all

taxa names to analyze microbial community was

unrealistic due to their huge richness (Table 5), and

dominant taxa could generally reflect the main char-

acterizations of microbial community (Wang et al.

2018). Therefore, the top 20 taxa with the highest

abundance were picked out, and the rest was merged to

others to express relative abundance, which was used

for subsequent heatmap analysis. For the present

study, the heatmaps were constructed at three levels,

i.e., phylum, genus, and species (Fig. 2), because most

of them were frequently depicted in similar studies for

microbial comparison (Du et al. 2017; Gu et al. 2019;

He et al. 2018b).

According to 16S rRNA sequencing, there were

obvious distinctions in dominant taxa compositions at

any level of phylum/genus/species. Taking the phylum

for example, the NAVF and NVF, compared toMAVF

and BHF, had a relatively higher abundance of

Verrucomicrobia and Actinobacteria, while got a

lower abundance of Acidobacteria, Chlorobi and

Candidatus Saccharibacteria, etc. These distinctions

resulted in a clustering of NAVF and NVF being the

closest, while BHF being the farthest from the

remaining filters (Fig. 2a). The clustering pattern

was consistent with purification performance as shown

in Fig. 1. Nevertheless, at the genus or species level, a

different clustering pattern was observed compared to

treatment performance (Fig. 2c, e). Besides, most of

these taxa had not been identified to species level and

just been named at the genus level. Since most of the

dominant taxa shared the common name at both genus

and species levels, filter clustering displayed a similar

pattern at the two levels.

Similarly, according to shotgun metagenomic

sequencing, there were also obvious distinctions in

dominant taxa compositions at any level of phy-

lum/genus/species over the four filters. Taking the

phylum for example, Firmicutes was the most abun-

dant taxa in BHF, followed by NVF, MAVF, and

NAVF in a descending order (Fig. 2b). Nevertheless,

filter clustering based on the three levels of phylum,

genus, and species all displayed a similar pattern

(Fig. 2b, d, f), which was consistent with treatment

performance as shown in Fig. 1. This demonstrated

Fig. 1 Heatmap comparison of treatment performance a based

on percent removal and b based on removal rate constant

K among the four different biofilters. The blue and red colors

denote low and high values, respectively. Euclidean distance is

computed to evaluate the similarity between filters, and

clustering is conducted using complete linkage method. The

same for the following. (Color figure online)
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that the dominant taxa annotated from shotgun

metagenomic sequencing were more closely related

to treatment performance compared to those annotated

from 16S rRNA sequencing. The reason was probably

due to that most of the dominant taxa annotated from

shotgun metagenomic sequencing had the function of

nutrient removal. Taking the genus for example, some

of the genera, such as Bacillus (Du et al. 2018),

Pseudomonas (Wang et al. 2018), Brevundimonas (Du

et al. 2017), Flavobacterium (Chen et al. 2018),

Dechloromonas (Lin et al. 2019), Arthrobacter (He

et al. 2017), and Bradyrhizobium (Zou et al. 2018), had

been frequently reported as facultative nitrifiers and/or

denitrifiers.

Comparison of gene function annotated

by different databases

Gene function annotated by GO

GO is a database established by the Federation of Gene

Ontology, aiming at establishing a standard applicable

to all species. GO provides three kinds of systematic

definitions for describing the functions of gene

products, i.e., GO function, GO ID, and GO term. In

the present study, the first two definitions were

analyzed.

According to GO function, the molecular function

genes showed the highest abundance, followed by the

biological process genes. The cellular component

genes showed the lowest abundance. Besides, a

considerable quantity of genes was not annotated

(i.e., NA in Fig. 3a, the same for the following).

Similarly, according to GO ID, the total of other low

abundant genes was the highest, followed by the non-

annotated genes. GO:0,005,575, GO:0,003,674, and

GO:0,008,150 showed a higher abundance than the

rest (Fig. 3b). Filter clustering based on GO ID

showed a different pattern compared to that based on

GO function. Nevertheless, both clustering patterns

were different from that based on purification perfor-

mance (Fig. 1).

Gene function annotated by KEGG

KEGG is a database that links genome molecular level

information with high-level biological system func-

tion information. KEGG can be divided into 17 main

databases, among which the KEGG pathway is widely

used for annotation of genome and high-throughput

data. In the present study, the KEGG pathway was

adopted to describe the functions of gene products

from four systematic definitions, i.e., KEGG level 1,

level 2, pathway entry, and KO entry.

According to KEGG pathway classification, the

most abundant genes were belonged to metabolism,

followed by environmental information processing,

and genetic information processing. Genes belonged

to organismal systems and human diseases showed the

least abundance. Among the metabolism, the most

abundant genes were belonged to carbohydrate

metabolism, followed by overview, amino acid

metabolism, metabolism of cofactors and vitamins,

and energy metabolism (Fig. 4a). This was because

the organics in the raw wastewater were only

composed of wheat flour and glucose, both of which

are belonged to carbohydrates. The degradation of

these carbohydrates was also related to amino acid and

energy metabolism via microbial processing (Cerrone

et al. 2011). This had also been demonstrated by the

coexisting genes of glycan biosynthesis and metabo-

lism (Fig. 4a). Besides, a considerable quantity of

genes, which were belonged to biosynthesis of other

secondary metabolites, as well as to xenobiotics

biodegradation and metabolism, were annotated sug-

gesting that pollutant degradation produced secondary

Table 5 Statistics of valid

bases and total taxa

annotated by the two

different methods

Filter 16S rRNA Shotgun

Valid bases Phylum Genus Species Valid bases Phylum Genus Species

MAVF 5.22M 22 212 254 8.04G 73 2092 8461

NAVF 18.21M 15 200 261 7.91G 69 1994 7687

NVF 3.12M 16 161 206 7.44G 70 2035 7942

BHF 3.53M 36 257 287 7.04G 72 1994 7758
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soluble microbial products, which could be used for

potential denitrification as endogenous carbon sources

(He et al. 2018b; Lin et al. 2019).

Among the environmental information processing,

genes belonged to signal transduction showed the

highest abundance, followed by membrane transport.

This might be due to the activity of glycan biosynthe-

sis and metabolism (Miao et al. 2019) when using

glucose as part of the original carbon sources (Miao

et al. 2016). Among the cellular processes, cell

motility showed the highest abundance. This was

probably attributed to the considerable portion of

mobile Chloroflexi detected in the reactors (Fig. 2a).

Chloroflexi had been frequently reported as a domi-

nant taxa in many similar studies, such as in activated

sludge of municipal wastewater treatment plant

(Zhang et al. 2019a), in expanded granular sludge

bed (EGSB) treating starch-containing wastewater

(Qin et al. 2019), and in deep municipal tail wastew-

ater treatment system (Chen et al. 2019). Finally,

among the human diseases, genes belonged to drug

resistance showed the most abundant. This was

probably due to that, many of the taxa, such as

Massilia (Wang et al. 2016), Acinetobacter (Yang

et al. 2015), Sphingobacterium (Jin et al. 2013),

Sphingobium (Zhao et al. 2017), and Leclercia (Sarma

et al. 2010), also had the function of aromatics

degradation since numerous drugs themselves were

belonged to aromatics. These aromatic-degrading

microorganisms might be introduced into the reactor

with the original sludge inoculation.

Filter clustering based on the four different defini-

tions of the KEGG pathway displayed two distinct

patterns: i.e., KEGG level 1 and level 2 displayed a

similar pattern (Fig. 4b, c), while the remaining two

definitions shared another (Fig. 4d, e). The former

pattern was the same as that shown in Fig. 3b, while

the latter pattern was the same as purification perfor-

mance shown in Fig. 1. According to the above

descriptions, KEGG level 1 and level 2 denote

classification of functional categories, while pathway

entry and KO entry denote specific metabolic path-

ways based on protein ID being obtained in two

different manners. Therefore, filter clustering based on

gene metabolic pathway was more close to purifica-

tion performance clustering compared to gene func-

tional classification. This was because the defined

purification performance was mainly assessed by

pollutant degradation, which was closely related to

specific metabolic pathways of certain pollutants, such

as carbohydrates (He et al. 2018b).

bFig. 2 Heatmap comparison of top 20 taxa at phylum, genus or

species level annotated from 16S rRNA or shotgun metage-

nomic sequencing among the four different biofilters (a–f)

Fig. 3 Heatmap comparison of all functional genes annotated by GO a based on GO function and b based on GO ID among the four

different biofilters. Only top 20 GO ID were listed in heatmap with the rest merged to others. The same for the following
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Fig. 4 Statistics of all functional genes annotated by KEGG pathway (a) and corresponding heatmap comparison (b) based on KEGG
level 1, (c) based on level 2, (d) based on pathway entry and (e) based on KO entry among the four different biofilters
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Gene function annotated by eggNOG

EggNOG is a database of genomic homologous

proteins and their functional annotations constructed

by the European Molecular Biology Laboratory.

EggNOG can be divided into four levels. The first

level includes (1) information storage and processing,

(2) cellular processes and signaling, (3) metabolism,

and (4) poorly characterized. The second level is

further subdivided into 25 categories, each of which

can be represented by a single letter. The third level is

the consensus functional description. The fourth level

is specific homologous proteins. For the present study,

the latter three levels were used for functional

description and clustering.

According to the statistics of all functional gene

categories, S denoting function unknown showed the

most abundant, followed by E, L, C, P, T, K, M, J, G,

etc. (Fig. 5a), in a descending order. The dominant

categories of E (representing amino acid transport and

metabolism), L (replication, recombination, and

repair), C (energy production and conversion), P

(inorganic ion transport and metabolism), T (signal

transduction mechanisms), J (translation, ribosomal

structure, and biogenesis), and G (carbohydrate trans-

port and metabolism) showed similar functions to

those annotated by KEGG shown in Fig. 4c. These

functions were mainly characterized by substance

transport and metabolism accompanied by energy

production and conversion. Besides, there were some

other categories, such as F (nucleotide transport and

metabolism), I (lipid transport and metabolism), N

(cell motility), and Q (secondary metabolites biosyn-

thesis, transport, and catabolism), displaying similar

functions to those annotated by KEGG (Fig. 4c), too.

While the category of A (RNA processing and

modification), B (chromatin structure and dynamics),

W (extracellular structures), Y (nuclear structure), and

Z (cytoskeleton) showed the least abundance that had

not been annotated by KEGG. Hereby, it could be

considered that the two different annotation methods

shared almost similar functions.

Similarly, filter clustering based on functional

categories, functional description, and homologous

proteins also displayed two distinct patterns: i.e.,

functional description and homologous proteins

shared a similar pattern, which was different from

the one clustered by functional categories (Fig. 5b–d).

The former pattern was consistent with purification

performance clustered shown in Fig. 1, while the latter

was similar to that shown in Figs. 3b and 4b, c. Similar

to KEGG annotation, the functional description and

homologous proteins represented specific metabolic

pathways, while the functional categories only

denoted their classification. Therefore, it could also

be considered that filter clustering was more closely

associated with metabolic pathways than with func-

tional classification.

Gene function annotated by CAZy

CAZy is a special database dedicated to the analysis of

genome, structure, and biochemical information of

carbohydrate-activated enzymes. CAZy database cor-

responding to level 1 mainly covers six functional

categories: glycoside hydrolases (GHs), glycosyl-

transferases (GTs), polysaccharide lyases (PLs), car-

bohydrate esterases (CEs), auxiliary activities (AAs),

and carbohydrate-binding modules (CBMs) (Yang

et al. 2018). The six functional categories can be

further divided into functional sub-categories corre-

sponding to level 2.

According to the statistics of all functional genes,

GTs showed the most abundant, followed GHs,

CBMs, CEs, etc. (Fig. 6a). The AAs and PLs showed

the least abundance. The most abundant genes

belonged to GTs, GHs and CBMs were probably

associated with glycan biosynthesis and metabolism

(as shown in Fig. 4c), which was usually accompanied

by energy production and conversion (Fig. 5a) (Miao

et al. 2016). Before the present study, the four filters

had been inoculated with activated sludge taken from a

local WWTP for rapid start-up, so they certainly

contained glycogen accumulating organisms (GAOs)

as demonstrated in Fig. 2. Since the raw wastewater

only contained wheat flour and glucose as carbon

sources, these carbohydrates could be quickly utilized

by GAOs once introduced into the reactors (Miao et al.

2016). The metabolism of GAOs not only related to

energy production and conversion but also produced

secondary metabolites (as shown in Figs. 4a, 5a),

which could be utilized by denitrifiers as endogenous

carbon sources (He et al. 2018b; Lin et al. 2019). The

relatively low abundance of AAs hinted that, the

metabolism of wheat flour and glucose had scarcely

related to oxidation or reduction process. Similarly,

the least abundant genes of PLs was attributable to
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that, wheat flour degradation mainly involved hydro-

lases, rather than lyases.

Filter clustering based on the above-mentioned

level 1 and level 2 of functional categories, i.e., the

two different annotation ways, shared a similar pattern

(Fig. 6b, c), which was consistent with purification

performance shown in Fig. 1. This probably high-

lighted the importance of carbohydrate metabolism to

purification performance in the present filters. It was

because the defined purification performance mainly

focused on the removal of carbon, nitrogen, and

phosphorus. According to the constituents of the raw

influent, carbon removal was directly determined by

carbohydrate metabolism, while the removal of nitro-

gen and phosphorus also strongly depended on the

sufficiency of carbon sources, such as the process of

denitrifying phosphorus removal with organic carbon

as electron donors (Lin et al. 2019; Xie et al. 2016).

The metabolism of carbohydrates that was closely

associated with treatment performance might be

ascribed to the low C/N ratio (3.8, Table 1). This also

hinted that, carbon shortage was still one of the main

factors explaining the low purification performance.

Fig. 5 Statistics of all functional genes annotated by eggNOG (a) and corresponding heatmap comparison (b) based on COG functional

category, (c) based on NOG description and (d) based on NOG among the four different biofilters
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Conclusions

This study tried to decipher the significant differences

in purification performance of four different biofilters

treating simulating domestic wastewater during start-

up from the perspective of microbial characterizations

revealed by both 16S rRNA and shotgun metagenomic

sequencing. It was found that, filter clustering based

on treatment performance, microbial compositions,

and metabolic pathways displayed a consistent pat-

tern, suggesting the biological sequestration rather

than physical/chemical adsorption was still the main

path for pollutant degradation during start-up although

the four filters included two new ones. Meanwhile, the

mature aerated filter performed the nitrification best.

For a typical low C/N ratio domestic wastewater,

carbon shortage could be a potent limit for perfor-

mance improvement. Finally, both structural and

functional profilings from shotgun metagenomic

sequencing presented a more close association to

treatment performance compared to those from 16S

rRNA sequencing, suggesting the shotgun metage-

nomic sequencing might be a better choice in

deciphering microbial characterizations.
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