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Abstract In recent years, several strains capable of

degrading 1,4-dioxane have been isolated from the

genera Pseudonocardia and Rhodococcus. This study

was conducted to evaluate the 1,4-dioxane degradation

potential of phylogenetically diverse strains in these

genera. The abilities to degrade 1,4-dioxane as a sole

carbon and energy source and co-metabolically with

tetrahydrofuran (THF) were evaluated for 13Pseudono-

cardia and 12 Rhodococcus species. Pseudonocardia

dioxanivorans JCM 13855T, which is a 1,4-dioxane

degrading bacterium also known as P. dioxanivorans

CB1190, and Rhodococcus aetherivorans JCM 14343T

could degrade 1,4-dioxane as the sole carbon and energy

source. In addition to these two strains, ten Pseudono-

cardia strains could degrade THF, but no Rhodococcus

strains could degrade THF. Of the ten Pseudonocardia

strains, Pseudonocardia acacia JCM 16707T and

Pseudonocardia asaccharolytica JCM 10410T

degraded 1,4-dioxane co-metabolically with THF.

These results indicated that 1,4-dioxane degradation

potential, including degradation for growth and by co-

metabolism with THF, is possessed by selected strains

of Pseudonocardia and Rhodococcus, although THF

degradation potential appeared to be widely distributed

in Pseudonocardia. Analysis of soluble di-iron

monooxygenase (SDIMO) a-subunit genes in THF

and/or 1,4-dioxane degrading strains revealed that not

only THF and 1,4-dioxane monooxygenases but also

propane monooxygenase-like SDIMOs can be involved

in 1,4-dioxane degradation.

Keywords 1,4-dioxane degradation �
Pseudonocardia � Rhodococcus � Soluble di-iron

monooxygenase gene

Introduction

1,4-Dioxane is a cyclic ether which is an industrially

important solvent used in paints, lacquers, cosmetics,

deodorants, fumigants and detergents. It is also formed
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as a by-product during the manufacture of polyesters.

1,4-Dioxane has high water solubility, low volatility,

low adsorbability to solids, and low susceptibility to

chemical and biological reactions (Wolfe and Jeffers

2000; Agency for Toxic Substances and Disease

Registry (ATSDR) 2012; Sei et al. 2013a; Stepien

et al. 2014). Because of these properties, once 1,4-

dioxane is released into water environments, it can

persist for a long period.

1,4-Dioxane contamination has been extensively

detected in surface water, groundwater, and landfill

leachate throughout the world (Lesage et al. 1990; Abe

1999; Isaacson et al. 2006; Fujiwara et al. 2008;

Agency for Toxic Substances and Disease Registry

(ATSDR) 2012; Chiang et al. 2012; Sei et al. 2013a;

Stepien et al. 2014). The major causes of the water

contamination are illegal dumping of industrial

wastes, and incomplete treatment and leakage of

landfill leachate and industrial wastewater. Because

1,4-dioxane is a group 2B (possible) human carcino-

gen (International Agency for Research on Cancer

(IARC) 1999), appropriate cleanup of 1,4-dioxane-

contaminated water is an important public issue.

However, most of the conventional physical and

chemical remediation methods are not effective to

decontaminate 1,4-dioxane (Adams et al. 1994).

Although advanced oxidation processes (AOPs) such

as the combination of ozone and hydrogen peroxide

treatments can efficiently decompose 1,4-dioxane

(Adams et al. 1994; Kim et al. 2006; Kishimoto

et al. 2008), their application for the cleanup of a 1,4-

dioxane-contaminated environment would be unreal-

istic in light of cost- and energy-effectiveness. Con-

sequently, the development of low cost, energy

efficient and environmentally friendly alternatives is

strongly desired.

Bioremediation is a promising remediation tech-

nique because of its cost effectiveness, inherent eco-

friendly properties, and the potential for complete

decomposition of harmful compounds. Although 1,4-

dioxane had been recognized as a recalcitrant to

biodegradation, bacterial strains capable of degrading

1,4-dioxane as the sole carbon and energy source or

co-metabolically with tetrahydrofuran (THF),

methane, propane, and toluene have been isolated

and characterized during the last two decades

(Table S1 in Online Resource 1). Furthermore, several

recent studies have confirmed the intrinsic 1,4-dioxane

biodegradation potential of contaminated

environments by microcosm studies (Li et al. 2010;

Sei et al. 2010; Li et al. 2014; 2015) or field surveys

(Chiang et al. 2012). These findings suggested the

feasibility of in situ bioremediation for 1,4-dioxane

contaminated environments. However, little is known

concerning 1,4-dioxane degrading microorganisms

compared with what is known about strains that can

degrade petroleum hydrocarbons like benzene,

toluene, ethylbenzene, and xylene (Alvarez and Vogel

1991; Cao et al. 2009; Weelink et al. 2010; Sun and

Cupples 2012), and chlorinated solvents like trichlor-

oethylene (Damborský 1999; Shukla et al. 2014) for

which in situ bioremediation technologies have been

well established. To establish effective bioremediation

strategies for 1,4-dioxane contamination, further

knowledge of 1,4-dioxane degrading microorganisms

is necessary.

Although recent research revealed that a relatively

wide range of bacterial species possess the ability to

degrade 1,4-dioxane, the majority are nocardioform

actinomycetes, belonging to genera such as Pseudono-

cardia (Parales et al. 1994; Kohlweyer et al. 2000;

Kämpfer and Kroppenstedt 2004; Prabahar et al. 2004;

Vainberg et al. 2006; Sei et al. 2013a; Matsui et al.

2016) and Rhodococcus (Bernhardt and Diekmann

1991; Deeb and Alvarez-Cohen 1999; Sei et al. 2013b)

(Table S1 in Online Resource 1). Thus, an under-

standing of the 1,4-dioxane degrading potential and

properties of bacterial species of these genera is

important for developing bioremediation technologies

for 1,4-dioxane contamination. Therefore, this study

was conducted to evaluate the 1,4-dioxane degrada-

tion potential of phylogenetically diverse members of

Pseudonocardia and Rhodococcus. The ability of the

test strains to degrade 1,4-dioxane as the sole carbon

and energy source and co-metabolically degrade 1,4-

dioxane in the presence of THF was evaluated. The

genes encoding soluble di-iron monooxygenase

(SDIMO), which is known to be associated with the

initial oxidation of 1,4-dioxane (Li et al. 2013), in the

test strains were also analyzed.

Materials and methods

Test strains

A total of 13 and 12 phylogenetically diverse species

of Pseudonocardia and Rhodococcus, respectively,
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were selected to evaluate their 1,4-dioxane degrada-

tion potential (Figs. S1 and S2 in Online Resource 1).

Type strains for the 25 species (Table 1) were

provided by the RIKEN BRC through the National

Bio-Resource Project of the Ministry of Education,

Culture, Sports, Science and Technology (MEXT),

Japan, and were used as test strains in this study.

Pseudonocardia dioxanivorans JCM 13855T, which is

known as P. dioxanivorans CB1190 (Parales et al.

1994), was used as the positive control as it was

capable of degrading 1,4-dioxane as a sole carbon and

energy source.

Culture media

MGY medium (malt extract 10 g/L, D(?)-glucose

4 g/L, yeast extract 4 g/L, pH 7.3) and ISP medium 2

(Becton, Dickinson and Company, Sparks, MD, USA)

were used as liquid and solid media, respectively, for

routine cultivation of test strains. Basal salt medium

(BSM) (Parales et al. 1994) adjusted to pH 7.0 was

used for 1,4-dioxane degradation experiments.

1,4-Dioxane degradation experiments

Prior to the 1,4-dioxane degradation experiments, test

strains were precultivated in MGY medium at 28 �C,

except for Pseudonocardia acaciae JCM 16707T and

Pseudonocardia thermophila JCM 3095T, which were

precultivated at 37 �C. The cells of the precultivated

strains were harvested by centrifugation (85009g,

4 �C, 5 min) and washed twice with sterilized 0.85 %

(w/v) NaCl. Then, the washed cells were inoculated in

50-ml glass vials containing 20 ml of BSM to give a

final cell density (determined by optical density at

600 nm (OD600)) of 1.0. 1,4-Dioxane was added to

BSM at 20 mg/L as the sole carbon and energy source

for 1,4-dioxane utilization experiments. 1,4-Dioxane

and THF were added at 20 and 50 mg/L, respectively,

for the 1,4-dioxane co-metabolic degradation exper-

iments. Control systems without bacterial inoculation

were also prepared for each experiment. The cultures

were incubated at 28 �C with rotary shaking at

150 rpm, while P. acaciae JCM 16707T and P.

thermophila JCM 3095T were incubated at 37 �C,

excepting for the screening experiments to select THF

degrading strains in the 1,4-dioxane co-metabolic

degradation experiments. 1,4-Dioxane utilization

experiments were conducted for 14 days. For the

1,4-dioxane co-metabolic degradation experiments,

first, screening experiments to select the THF degrad-

ing strains were conducted for 7 days, and then

experiments to examine the co-metabolic degradation

of 1,4-dioxane with THF were carried out for 14 days

on the selected strains. Aliquots (0.5 ml) were peri-

odically collected, centrifuged (20,0009g, 4 �C,

5 min), filtered through a cellulose acetate filter (pore

size 0.45 lm, Advantec, Tokyo, Japan), and sub-

jected to 1,4-dioxane and THF quantification. All of

the degradation experiments were conducted in dupli-

cate. Statistical significance for THF and 1,4-dioxane

degradation by test strains was determined by Stu-

dent’s t test with p\ 0.05 using the Prism 6J for

Windows program (GraphPad Software, La Jolla, CA,

USA).

Chemical analysis

Bacterial cell density (OD600) was determined with

a PD-3000UV spectrophotometer (Apel, Saitama,

Japan) or a UVmini-1240 spectrophotometer (Shi-

madzu, Kyoto, Japan). The concentrations of 1,4-

dioxane and THF were determined using a gas

chromatograph GC2014 (Shimadzu) equipped with a

flame-ionization detector (FID) and a 2.1-m (3.2-

mm i.d.) glass column packed with Gaskuropack

54 (GL Science, Tokyo, Japan). Nitrogen gas was

applied as the carrier gas at a flow rate of 55 ml/min.

The injector and column oven temperature was set at

200 �C, while the detector temperature was at

230 �C. The injection volume of the filtered samples

was 5 ll, and the detection limit of 1,4-dioxane and

THF was 1 mg/L.

Analysis of soluble di-iron monooxygenase genes

1,4-Dioxane degradation enzymes are included in the

large SDIMO family, which includes multicomponent

enzymes that catalyze the initial oxidation of a variety

of hydrocarbons (Coleman et al. 2006; Li et al. 2013).

The presence of SDIMO genes in test strains was

examined by PCR using the NVC57 and NVC66

primer sets, which was specifically designed to detect

the conserved region in the SDIMO a-subunit genes

(Coleman et al. 2006). Pseudonocardia sp. D17 [a 1,4-

dioxane utilizing bacterium (Sei et al. 2013a)] and

Rhodococcus ruber T1 and T5 [THF degrading

bacteria capable of co-metabolically degrading 1,4-
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dioxane (Sei et al. 2013b)] were also analyzed for their

SDIMO genes. PCR was conducted using the follow-

ing thermal profile: initial denaturation at 94 �C for

5 min, 35 cycles of denaturation at 94 �C for 30 s,

annealing at 57 �C for 30 s and extension at 72 �C for

1 min, and final extension at 72 �C for 5 min. This

protocol gives PCR products of approximately

420 bp. The PCR products were analyzed by elec-

trophoresis on a 1.5 % (w/v) agarose gel stained with

SYBR Green I (Takara Bio, Shiga, Japan), after which

they were purified with NucleoSpin Gel and PCR

Clean-up (Macherey–Nagel, Düren, Germany) and

sequenced on an Applied Biosystems 3730XL DNA

analyzer (Applied Biosystems, Foster City, CA, USA)

with primers NVC57 and NVC66 at Macrogen Janan

(Tokyo, Japan). The nucleotide sequences obtained

from the sequencing with both primers were combined

to yield single sequences. The nucleotide sequences

determined for the test strains were compared with

those in the NCBI database using the BLAST search

program (http://www.ncbi.nlm.nih.gov/blast/). Then,

the nucleotide sequences of the test strains in this study

and reference strains in the NCBI database were

aligned using CLUSTAL W (Eddy 1995), and a phy-

logenetic tree was produced using TreeView X (Page

1996).

Table 1 Results from the 1,4-dioxane degradation experiments

Genus Test strain 1,4-Dioxane utilization

experiment

1,4-Dioxane co-metabolic

degradation experiment

1,4-Dioxane degradation THF

degradation

1,4-Dioxane

co-metabolic

degradation

Pseudonocardia P. acaciae JCM 16707T - ? ?

P. ammonioxydans JCM 12462T - - -

P. asaccharolytica JCM 10410T - ? ?

P. autotrophica JCM 4348T - ? -

P. carboxydivorans JCM 14827T - ? -

P. chloroethenivorans JCM 12679T - - -

P. dioxanivorans JCM 13855T ? ? ?

P. halophobica JCM 9421T - ? -

P. hydrocarbonoxydans JCM 3392T - ? -

P. petroleophila JCM 3378T - ? -

P. sulfidoxydans JCM 10411T - ? -

P. thermophila JCM 3095T - ? -

P. yunnanensis JCM 9330T - ? -

Rhodococcus R. aetherivorans JCM 14343T ? ? ?

R. chlorophenolicus JCM 7439T - - -

R. corallinus JCM 3199T - - -

R. corynebacterioides JCM 3376T - - -

R. equi JCM 1311T - - -

R. erythropolis JCM 3201T - - -

R. gordoniae JCM 12658T - - -

R. opacus JCM 9703T - - -

R. pyridinivorans JCM 10940T - - -

R. rhodochrous JCM 3202T - - -

R. ruber JCM 3205T - - -

R. zopfii JCM 9919T - - -

? Capable of degrading 1,4-dioxane/THF within experimental periods; - cannot degrade 1,4-dioxane/THF within experimental

periods
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Nucleotide sequence accession numbers

The partial sequences of the SDIMO a-subunit genes

determined in this study were deposited in the DDBJ/

EMBL/GenBank databases under accession numbers

LC114132 to LC114146.

Results

1,4-Dioxane utilization ability

In the 1,4-dioxane utilization experiments, where 1,4-

dioxane was added as the sole carbon and energy

source, 1,4-dioxane was significantly degraded by P.

dioxanivorans JCM 13855T and Rhodococcus

aetherivorans JCM 14343T (p\ 0.05), while 1,4-

dioxane was not significantly degraded by the other 23

test strains within 14 days (Table 1). P. dioxanivorans

JCM 13855T completely degraded 20 mg/L of 1,4-

dioxane within 4 days after a 2 days lag period

(Fig. 1a), which agreed with the previous finding that

this strain has inducible 1,4-dioxane degradation

enzymes (Kelly et al. 2001). R. aetherivorans JCM

14343T degraded 20 mg/L of 1,4-dioxane completely

within 1 day after a 9 h lag period (Fig. 1b).

1,4-Dioxane co-metabolic degradation ability

with THF

Prior to the evaluation of the ability of the test strains to

degrade 1,4-dioxane co-metabolically with THF, we

first screened their THF degradation potential. Among

the 13 Pseudonocardia strains, 11 strains except for

Pseudonocardia ammonioxydans JCM 12462T and

Pseudonocardia chloroethenivorans JCM 12679T

were capable of significantly degrading THF within 7

days (Table 1). Among the 12 Rhodococcus strains,

THF was significantly degraded within 7 days by R.

aetherivorans JCM 14343T, while THF degradation

did not occur within 7 days by the other 11 test strains.

The 12 THF degrading strains were then examined

for their 1,4-dioxane co-metabolic degradation ability

with THF for 14 days. In addition to P. dioxanivorans

JCM 13855T and R. aetherivorans 14343T, both of

which were capable of utilizing 1,4-dioxane for their

growth, P. acaciae JCM 16707T and Pseudonocardia

asaccharolytica JCM 10410T could significantly

degrade 1,4-dioxane subsequent to THF degradation

(Table 1). P. acaciae JCM 16707T completely

degraded THF within 12 days without a lag period,

and also completely degraded 1,4-dioxane within 14

days after a lag period of 10 days (Fig. 2a). P.

asaccharolytica JCM 10410T degraded nearly 80 %

of the initial THF within 14 days without a lag period

(Fig. 2b). 1,4-Dioxane degradation by this strain was

initiated after a lag period of 12 days, and nearly 45 %

of the initial 1,4-dioxane was degraded after 14 days.

Co-metabolic degradation of 1,4-dioxane with THF

did not occur within 14 days by the other eight strains

(Table 1; Fig. 2c, d, and Fig. S3 in Online Resource 1).

Possession of SDIMO genes

The presence of SDIMO genes in the 12 strains

capable of degrading THF and/or 1,4-dioxane, and
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three recently isolated 1,4-dioxane degrading strains

(Pseudonocardia sp. D17, R. ruber T1 and R. ruber

T5) were examined by a PCR assay specific to the

SDIMO a-subunit genes. PCR products with antici-

pated size were obtained from all of the strains. The

phylogenetic tree constructed based on the nucleotide

sequences of the PCR products from the 15 strains

determined in this study and those of known SDIMO

a-subunit genes is shown in Fig. 3. From the

nucleotide sequence of the SDIMO a-subunit gene

of the control strain P. dioxanivorans JCM 13855T (P.

dioxanivorans CB1190), the presence of a putative

1,4-dioxane monooxygenase a-subunit gene (dxmA

gene) was confirmed. The nucleotide sequences of the

SDIMO a-subunit genes of Pseudonocardia sp. D17,

R. ruber T1, and R. ruber T5 were 100 % identical to

that of the THF monooxygenase a-subunit gene

(thmA) of Rhodococcus sp. YYL.

The nucleotide sequences of the SDIMO a-subunit

genes of the other 11 strains (i.e., R. aetherivorans

JCM 14343T and 10 Pseudonocardia strains with THF

degradation ability) were closely related to the

sequences of putative propane monooxygenase

hydroxylase large subunit genes (prmA-like genes)

of previously characterized strains (Fig. 3). The

SDIMO a-subunit gene of R. aetherivorans JCM

14343T was identical to the prmA gene of Rhodococ-

cus sp. RR1, and allocated into a prmA gene subcluster

for Rhodococcus strains. It was highly different from

the SDIMO a-subunit genes classified into the thm/

dxm gene cluster (similarity: 58.4–58.6 %). The

SDIMO a-subunit genes of the 10 Pseudonocardia
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Examples of THF degradation without co-metabolic
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strains had 89.2–95.6 % similarity to each other. Of

these, that of P. acaciae JCM 16707T had the highest

similarity (91.0 %) to the prm1A gene of Pseudono-

cardia sp. TY-7, while those of the other nine strains

had the highest similarity of 92.0–95.9 % to the prmA-

like gene located on the chromosome of P. dioxanivo-

rans CB1190.

Discussion

Several strains of the genus Pseudonocardia are

capable of degrading 1,4-dioxane for growth (Parales

et al. 1994; Kämpfer and Kroppenstedt 2004; Sei et al.

2013a; Matsui et al. 2016), or co-metabolically

(Kohlweyer et al. 2000; Vainberg et al. 2006). In this

study, although 1,4-dioxane degradation as the sole

carbon and energy source by P. dioxanivorans JCM

13855T (also known as P. dioxanivorans CB1190

(Parales et al. 1994)) was confirmed, none of the other

12 Pseudonocardia strains could degrade 1,4-dioxane

as the sole carbon and energy source (Table 1). It was

surprising that Pseudonocardia carboxydivorans JCM

14827T was not capable of degrading 1,4-dioxane for

its growth or by co-metabolism with THF, although its

16S rRNA gene was 100 % homologous to Pseudono-

cardia sp. RM-31, a strain that was very recently

isolated as a novel 1,4-dioxane assimilating bacterium

(Matsui et al. 2016). Different 1,4-dioxane degrada-

tion abilities in the two P. carboxydivorans strains

suggest that their 1,4-dioxane assimilation ability is

strain-specific rather than species-specific. By con-

trast, 10 of the 12 Pseudonocardia strains other than P.

dioxanivorans JCM 13855T were capable of degrading

THF, and two of them (P. acaciae JCM 16707T and P.

asaccharolytica JCM 10410T) enabled co-metabolic

1,4-dioxane degradation with THF. To our knowl-

edge, this is the first study to report the THF

degradation and co-metabolic 1,4-dioxane degrada-

tion potential of these Pseudonocardia strains. Taken

together, the results of this study indicated that limited

Pseudonocardia strains possess the ability to degrade

1,4-dioxane degradation as the sole carbon and energy

source. Additionally, our results indicated that
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Fig. 3 Phylogenetic tree constructed based on the nucleotide

sequences of soluble di-iron monooxygenase a-subunit genes of

the test strains and the ones previously reported for cultured

strains. Sequences for the strains indicated in boldface were

determined in this study. Numbers adjacent to the branches

indicate the bootstrap values based on 1000 replicates. Bar

indicates 0.1 substitutions per sequence position
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phylogenetically diverse Pseudonocardia species/

strains commonly possess the potential to degrade

THF for growth and some can co-metabolically

degrade 1,4-dioxane with THF.

Within the genus Rhodococcus, 1,4-dioxane degra-

dation as the sole carbon and energy source was first

reported for R. ruber 219 (Bernhardt and Diekmann

1991). It was recently reported that R. ruber T1 and T5

can co-metabolically degrade 1,4-dioxane with THF

(Sei et al. 2013b). However, R. ruber JCM 3205T

examined in this study could not degrade either 1,4-

dioxane or THF. This suggested that 1,4-dioxane and

THF degradation ability is a strain-specific property in

R. ruber. By contrast, this study found that R.

aetherivorans JCM 14343T could degrade 1,4-dioxane

as the sole carbon and energy source. Also, we have

confirmed in another study that the strain can utilize

1,4-dioxane for its growth, with the cell yield of

0.031 mg-protein/mg-1,4-dioxane (unpublished data).

R. aetherivorans JCM 14343T (originally named strain

10bc312T) was isolated from an enrichment obtained

from the petrochemical biotreater sludge of a chemical

effluent treatment plant as a methyl tert-butyl ether

degrading strain (Goodfellow et al. 2004), but its

degradation ability for cyclic ethers has not been

reported. Although another strain of R. aetherivorans

was reported to degrade THF (Tajima et al. 2012),

toluene (Hori et al. 2009), and a spectrum of petroleum

compounds (Auffret et al. 2009), this is the first study

to clarify that a R. aetherivorans strain can degrade

1,4-dioxane as the sole carbon and energy source.

Additionally, the evidence from previous studies and

this study indicates that R. aetherivorans may be a

specific species in Rhodococcus that is capable of

degrading both cyclic and non-cyclic recalcitrant ether

compounds. It is likely that 1,4-dioxane degradation

ability, including both utilization for growth and co-

metabolic degradation with THF, is not distributed

widely among the genus Rhodococcus, but is pos-

sessed by specific strains in limited species of the

genus. Based on the phylogenetic composition of

Rhodococcus (Fig. S2 in Online Resource 1), its 1,4-

dioxane degradation ability is likely a specific function

of some strains in a subcluster consisting of R.

aetherivorans and R. ruber.

SDIMOs are multicomponent enzymes that cat-

alyze the initial oxidation of a variety of hydrocarbons

such as chlorinated solvents, aromatic hydrocarbons,

alkanes and alkenes in phylogenetically and

physiologically diverse bacteria (Coleman et al.

2006; Li et al. 2013). Previous studies have reported

that THF and 1,4-dioxane monooxygenases (THM and

DXM, respectively) are involved in 1,4-dioxane

degradation for growth or by co-metabolism, and

some propane monooxygenases (PMOs) can also co-

metabolize 1,4-dioxane (Mahendra and Alvarez-Co-

hen 2006; Li et al. 2013). Nevertheless, our SDIMO

gene analysis revealed that the SDIMO genes pos-

sessed by R. aetherivorans JCM 14343T, P. acaciae

JCM 16707T and P. asaccharolytica JCM 10410T,

whose 1,4-dioxane degrading abilities were revealed

in this study for the first time, were closely related to

prm genes, and clearly separated from thm/dxm genes.

This is the first study to identify the presence of PMO-

like SDIMOs that are possibly involved in 1,4-dioxane

degradation as the sole carbon and energy source (i.e.,

SDIMO of R. aetherivorans JCM 14343T). PMO-like

SDIMOs are diverse in light of their 1,4-dioxane

degradation abilities; some enable 1,4-dioxane degra-

dation for the growth of host strains or by co-

metabolism with primary substrates such as THF and

propane, while the others cannot catalyze 1,4-dioxane

degradation even by co-metabolism. This indicates the

importance of not only THM/DXM-possessing

microorganisms but also PMO-possessing microor-

ganisms in the implementation of 1,4-dioxane biore-

mediation. Further genetic and enzymatic studies are

needed to obtain a deeper understanding of the 1,4-

dioxane degradation abilities of SDIMOs including

THM/DXM and PMOs.

In conclusion, the 1,4-dioxane degradation poten-

tial of strains of Pseudonocardia and Rhodococcus

was evaluated in this study. Our results revealed that

1,4-dioxane can be degraded by selected strains of

Pseudonocardia and Rhodococcus, indicating that the

1,4-dioxane degradation potential by natural attenua-

tion or biostimulation cannot by evaluated by the

occurrence of those genera in 1,4-dioxane-contami-

nated sites. Another novel finding that PMO-like

SDIMOs are possibly capable of degrading 1,4-

dioxane not only by co-metabolism but also for

growth suggests that the molecular tool previously

developed based on THM/DXM genes (Li et al. 2014)

would underestimate the 1,4-dioxane degradation

potential of microbial communities in contaminated

sites. Thus, a comprehensive molecular tool that can

detect all of the SDIMO genes that enable 1,4-dioxane

degradation is needed for adequate evaluation of the

284 Biodegradation (2016) 27:277–286
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1,4-dioxane degradation potential of microbial com-

munities. Nevertheless, the evidence for the presence

of phylogenetically diverse 1,4-dioxane degrading

strains reported in previous studies (Table S1 in

Online Resource 1) and this study would suggest that

in situ bioremediation of 1,4-dioxane-contaminated

water environments such as groundwater may be

possible by dominance and/or selective activation of

indigenous degraders through injecting appropriate

growth and/or primary substrates even though the

degraders may be minor constituents in the

environment.
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