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Abstract

Assessments of the performance of protected-area (PA) networks for aquatic biodiversity
conservation are rare yet essential for successful conservation of species. This is especially
crucial in highly biodiverse, developing tropical countries where biodiversity loss is most
pronounced. We assessed a PA network in the central Andes of Peru that encompasses
parts of the geographical distribution of two endangered, endemic, high-elevation Telma-
tobius frogs. Sites within and beyond PA boundaries were classified into three different PA
types: (a) strict-use (prohibits use by local inhabitants), (b) multi-use (allows some use by
local inhabitants), and (c) unprotected (no restrictions). We conducted spatial analysis of
species distributions, quantified species abundances and population trends, and measured
potential threats and ecological integrity in each PA type. Spatial analysis indicated range
contractions of 57.7% (T. macrostomus) and 69.0% (T. brachydactylus). Defaunation rates
and species abundances in PAs were similar to those outside PAs. Poaching, livestock,
and solid waste were the predominant threats. Analysis of ecological integrity indicated
that strict-use sites had greater biotic index and habitat assessment scores compared to
multi-use sites. These results suggest that despite benefits of greater ecological integrity
in strict-use PAs, protection type has little effect on the conservation of aquatic species
by itself. Protected areas are unlikely to be effective without better management of the
trade-offs between cultural activities and biodiversity conservation. For PA networks to be
of better conservation value for aquatic biodiversity in the developing world, they should
be community-oriented and connect high-quality habitats, with their borders defined by
catchments.

Keywords Amphibians - Aquatic biodiversity conservation - Endangered species -
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Resumen
Las evaluaciones del desempefio de las redes de areas protegidas (AP) para la conserva-
cion de la biodiversidad acuatica son raras pero esenciales para la conservacion exitosa de
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especies. Esto es especialmente crucial en los paises tropicales en desarrollo con alta bio-
diversidad donde su pérdida es mas pronunciada. Evaluamos una red de AP en los Andes
centrales de Perti que abarca partes de la distribucion geografica de dos ranas altoandinas
del género Telmatobius, endémicas y en peligro de extincion. Los sitios dentro y fuera de
los limites de la AP se clasificaron en tres tipos diferentes de AP: (a) uso estricto (pro-
hibe el uso de recursos naturales por parte de los habitantes locales), (b) usos multiples
(permite algun uso por parte de los habitantes locales) y (c) desprotegidos (sin restric-
ciones). Realizamos un analisis espacial de la distribucion de especies, cuantificamos la
abundancia de especies, las tendencias poblacionales, medimos las amenazas potenciales y
la integridad ecoldgica en cada tipo de AP. El analisis espacial indic6 un rango de contrac-
ciones de 57,7% (T. macrostomus) y 69,0% (T. brachydactylus). Las tasas de defaunacion
y abundancia de especies en las AP fueron similares a las de fuera de las AP. La caza fur-
tiva, el ganado y los desechos solidos fueron las amenazas predominantes. El analisis de la
integridad ecoldgica indico que los sitios de uso estricto tenian un indice bidtico y puntajes
de evaluacion de habitat mas altos en comparacion con los sitios de usos multiples. Estos
resultados sugieren que a pesar de los beneficios de una mayor integridad ecoldgica en las
AP de uso estricto, el tipo de proteccion tiene poco efecto en la conservacion de las espe-
cies acuaticas por si mismo. Es poco probable que las areas protegidas sean efectivas sin
una buena gestion de las compensaciones entre las actividades culturales y la conservacion
de la biodiversidad. Para que las redes de AP tengan un mejor valor de conservacion para
la biodiversidad acuatica en el mundo desarrollado, deben estar orientadas a la comunidad
y conectar hébitats de alta calidad con sus fronteras definidas por cuencas.

Introduction

Since the late 19th century, the establishment of protected areas (PAs) has been a global
cornerstone for modern conservation efforts (Watson et al. 2014). Unfortunately, many PAs
only exist on paper, and despite their legal status, conservation efforts within them are mini-
mal or non-existent (Tranquilli et al. 2014). These “paper parks” are often magnified in the
developing world where thousands of PAs suffer significant funding deficits (James et al.
1999; Wilkie et al. 2001). Among many other factors (e.g., logging, hunting, fire, and graz-
ing), insufficient funding limits effective management and coverage of PA networks (Bruner
et al. 2001; 2004). This is troubling, considering that biodiversity loss is pronounced in
tropical and developing countries (Ceballos 2007). Of particular concern are megadiverse
countries such as Peru, which is a global hotspot for amphibians with 655 described spe-
cies (AmphibiaWeb 2021). Currently, Peru has 241 PAs, covering>226,000 km? (17.6% of
the country’s surface; SERNANP 2020). Of these, 75 are protected by the federal govern-
ment and categorized into national parks, sanctuaries, reserves, reserved zones, protection
forests, wildlife refuges, and communal and hunting reserves, which entail different levels
of protection (Aguilar et al. 2012). As elsewhere, PAs in Peru were created to preserve
iconic landscapes (e.g., Machu Picchu Historic Sanctuary) and protect habitat for biodiver-
sity conservation (e.g., Manu National Park). However, PAs can also be created to sustain
the livelihood of local communities, support national economies, enhance fisheries, and
alleviate pressures associated with climate change, which present multiple conflicting aims
(Watson et al. 2014).
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The Junin National Reserve, Historic Sanctuary of Chacamarca and National Sanctuary
of Huayllay are three PAs in the high-Andes of central Peru. This PA network denotes two
levels of protection: strict and multi-use. Strict-use PAs prioritize biodiversity conservation
generally without people (nature for itself), while multi-use PAs also focus on providing
sustainable benefits for people (nature for people; Mace 2014). The movement away from
species conservation towards conservation of ecosystem services in the latter, allows local
inhabitants to ‘rationally’ use the protected natural resources to sustain their livelihoods.
This PA network also encompasses part of the geographical distribution of two endemic,
high-elevation Te/matobius amphibians, the fully-aquatic Junin giant frog (T macrostomus)
and the semi-aquatic Junin riparian frog (7. brachydactylus).

Twenty-eight of the 63 described species of Telmatobius frogs are distributed in Peru
(AmphibiaWeb 2021). Unlike most other frogs, adult Telmatobius are highly or strictly
aquatic, showing their greatest diversity at high elevations, above the tree line (Barrion-
uevo 2017). Telmatobius macrostomus and T. brachydactylus have elevational ranges of
32004600 and 4000-4600 m above sea level, respectively. Telmatobius macrostomus is
the world’s largest aquatic frog (Sinsch and Aguilar-Puntriano 2021), and 7. brachydacty-
lus, like most Telmatobius species, is smaller. Geographically and phylogenetically they are
closest to one another (Castillo and Aguilar 2019), with adults occupying the benthos. Tel-
matobius brachydactylus is typically found inhabiting lotic environments whereas 7. mac-
rostomus is more commonly associated with lentic environments (Sinsch 1986), however,
they have been found to live in sympatry (Castillo and Aguilar 2019). Although little is
known about the ecology of T. brachydactylus, adult and larval T. macrostomus are general-
ists, feeding entirely on aquatic prey (Castillo and Elias 2021; Watson et al. 2017a).

Amphibians play a key role in aquatic food webs. They can reach high densities and
biomass, exhibit high per-capita consumption rates, serve as important prey resources, and
are often used as bioindicators as their populations are influenced by numerous environ-
mental factors (Schiesari et al. 2009; Dixon et al. 2011). In addition to their importance in
nutrient cycling, food web dynamics and indicators of ecosystem health, 7. macrostomus
and T. brachydactylus were historically a culturally important resource for human consump-
tion (Angulo 2008). Currently, they are categorized as Endangered by Peruvian and Inter-
national legislation due to declining population trends (IUCN SSC Amphibian Specialist
Group 2018a; b). Unfortunately, the current status of these species in terms of presence/
absence, measures of abundances, and the identification of potential threats is poorly docu-
mented. This is concerning, especially considering that Telmatobius frogs have undergone
severe population declines across much of their geographic range (Angulo 2008). Besides
the threat of unsustainable harvest, species of Telmatobius are threatened by habitat loss,
fragmentation and water pollution from urban, agricultural, and mining expansion, invasive
species, climate change, and emerging infectious diseases (Catenazzi and von May 2014;
Petermann Razetto 2021).

The purpose of this paper is to assess the conservation value of a PA network for aquatic
species in a data-poor region of the developing world. We adapted the approach of Parrish
et al. (2003) by measuring threat status and ecological integrity in different PA types and
conducted a survey of two frog populations at 46 locations with historic records for one or
both Telmatobius species. Our specific research goals were to: (1) identify the current geo-
graphical distributions of 7. macrostomus and T. brachydactylus; (2) quantify Telmatobius
abundances and population trends; and (3) measure potential threats and ecological integrity
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at sites in different PA types. Our study area offers a unique opportunity to evaluate the
effectiveness of PAs for aquatic species conservation in the face of extreme funding deficits,
inadequate management, and surrounding resource extraction. This effort to address the
conservation impact of PA type for endangered and endemic frogs is the first we know of
and aims to provide critical information for biodiversity conservation and PA management.

Methods
Study area and sampling

The Junin National Reserve, Historic Sanctuary of Chacamarca, and National Sanctuary
of Huayllay were designated as national PAs in 1974. The Junin National Reserve, which
includes Lake Junin, a wetland of international importance under the Ramsar convention
(site no. 882), is an historically important habitat for Telmatobius macrostomus, covering
530 km?. It was created for biodiversity conservation, and also under the auspices of con-
tributing to the social and economic development of the area through the sustainable use of
natural resources. Therefore, local inhabitants are allowed to use the area’s natural resources
to sustain their livelihoods, and commercial use is allowed under management plans. In
1932, a dam was constructed at the outflow of Lake Junin, immediately downstream of the
San Juan River and the uppermost reach of the Mantaro River, to generate hydroelectricity
for Cerro de Pasco’s silver mining operations (Rodbell et al. 2014). Numerous populated
areas exist within the Junin National Reserve and its associated buffer zone (e.g., Carhua-
mayo, Ondores, Ninacaca, and Huayre), including the capital of the Junin province (Junin),
with a population of >10,000 people. In contrast, the Historic Sanctuary of Chacamarca
and National Sanctuary of Huayllay cover areas of 25 km? and 68.2 km?, respectively, and
are designated as areas of strict protection. Therefore, the extraction of resources, as well
as modifications and transformations of the natural environment, is prohibited. These PAs
are far less populated and have only a few local inhabitants whose livestock (mostly sheep,
cows and camelids) graze the areas.

We compiled a bibliographic search of historic and recent records from 1948 to 2017
(Department of Herpetology, San Marcos Natural History Museum, theses and reports) of
the presence of 7. macrostomus and T. brachydactylus, along with recent sightings from
park rangers and local residents throughout the study area. Large bodies of water (e.g., Lake
Junin) were not surveyed due to logistical constraints involving the use of a boat, accessibil-
ity to sites, extreme environmental conditions, and health and safety requirements of par-
ticipants. As a result, a total of 46 locations were identified and 109 stream transects within
the locations were searched (Fig. 1). We classified locations into three types (hereafter ‘PA
types’): (a) strict-use (5 locations within the Historic Sanctuary of Chacamarca and National
Sanctuary of Huayllay), (b) multi-use (33 locations within the Junin National Reserve),
and (c) unprotected (8 locations outside of the PA network). The surveys took place from
October to December 2018 and consisted of a standardized method in which 100 m tran-
sects were searched thoroughly, with an effort of 4 person-hours per transect, moving in
the upstream direction using dip-nets (net dimensions 0.4 0.4 m with 4.8 mm mesh). Sur-
veyors performed dip-net sweeps in all types of microhabitats: pools, riffles, backwaters,
beneath overhanging banks, along the substrate, and within floating and emerged vegetation
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Fig. 1 Historic (1948-2017) and present (2018) occupancy of Telmatobius macrostomus and T. brachydacty-
lus at stream segments throughout their known historic range. Insert: Peru with the regions Junin and Pasco
shown in black

checking the contents of their nets after each pass through the water. To increase confidence
that 7 macrostomus or T. brachydactylus were absent from a site, we performed each survey
twice. Watson et al. (2017b) found that two frog surveys on a particular transect are enough
to be 95% certain that T macrostomus is absent from a site. Captured individuals were
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identified to species using Peters (1873) and Sinsch (1986), and grouped in general stages
as either tadpoles, metamorphs or adults following Gosner (1960).

Geographical distribution

To analyze the geographical distribution of 7 macrostomus and T. brachydactylus, we delin-
eated stream segment-level watersheds throughout the study area (sensu Strager et al. 2009).
Specifically, we generated a high-quality drainage map of the study area using digital eleva-
tion (DEM) data from the Shuttle Radar Topography Mission (United States Geological
Survey Earth Resources Observation and Science Center 2020; sensu Thieme et al. 2007)
with a resolution of 1 arc-second (30-meter) in ArcMap Version 10.6.1. Using a hydro-
logically corrected (fill) DEM we created flow direction and flow accumulation datasets to
delineate stream segment-level watersheds from the raster data. All transects surveyed were
assigned to their appropriate segment-level watersheds. We assumed frog presence/absence
within a transect (100 m) to be equivalent to their presence/absence within a segment-level
watershed. Finally, we compared historic occupancy (1948-2017) to present occupancy
(2018) by calculating the area of the segment-level watersheds occupied by each species at
each time interval (i.e., the percent area occupied within and outside of PA type boundaries),
and the percent area lost compared to the known historic area.

Abundance and population trends

To test the effect of PA type on the abundance of each species, we used analysis of variance
(ANOVA) with type-III sums-of-squares (unbalanced design) and statistical significance
(»<0.05). To investigate population trends, we compared abundances of 7. macrostomus at
‘long-term’ sites. We used abundance data collected at eight sites (transects) from the current
study (October — December 2018) and during a research trip in June — July 2019 and com-
pared them to abundance data collected at the same sites in October 2015 and April 2016.
Detection probability was assumed constant across surveys because tadpoles, metamorphs,
juveniles and adults are known to coexist at all times of the year, due to their extensive larval
development and constant reproductive activity, possibly linked to stable water tempera-
tures (Vellard 1951; Sinch 1986; Watson et al. 2017b; Castillo and Elias 2021). Regardless,
we searched each transect twice to account for human error in capture. However, it should
be noted that detection probabilities of amphibians have the potential to vary for a variety
of environmental and physiological reasons. We used a two-way ANOVA to investigate the
fixed main effects of PA type (three levels: strict-use, multi-use, and unprotected) and year
(two levels: 2015-2016 and 2018-2019) on total abundance. Prior to analyses, we standard-
ized abundance to catch per unit effort (CPUE; number of individuals captured per person-
hour), and tested variance heterogeneity with Levene’s test.

Threat status and ecological integrity
To measure threat status at each site (transect) we recorded the presence or absence of 11
potential threats (Table 1). Threats included: the presence of solid waste, rainbow trout

(Oncorhynchus mykiss; introduced species), livestock (<1 m), railway line (<50 m), sew-
age, road (<50 m), laundry washing, high sedimentation (due to its relationship as a cause
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Table 1 List of the potential threats identified at each transect, the rationale for their inclusion in the assess-
ment, and their percent presence at each of the protected-area types

Potential threat Reason Presence (%)
Strict-use Multi-use Unprotected

Poaching Biodiversity loss 100.0 100.0 100.0
Livestock (<1 m) Habitat degradation 100.0 94.3 92.9
Solid waste Contaminant 85.7 89.7 71.4
Rainbow trout (O. mykiss) Introduced species 429 11.5 64.3
Laundry washing Contaminant 28.6 24.1 35.7
High sedimentation Habitat degradation 0.0 56.3 35.7
Sewage Contaminant 14.3 10.3 7.1
Road (<50 m) Habitat fragmentation ~ 14.3 8.0 7.1
Mining Habitat degradation 0.0 8.0 143
Chuilo Habitat alteration 0.0 5.7 7.1
Railway line (<50 m) Habitat fragmentation 0.0 10.3 0.0

for cleaning canals), chufio (a traditional Andean food where potatoes are buried in a stream
bed and left to ferment before they are excavated and dried), poaching, and mining within
the catchment. These potential threats were identified during the 2nd Workshop to Establish
a Conservation Strategy for the Frogs of Junin (Watson et al. 2016). To visualize if threats
were driving differences in PA types, we applied principal coordinates analysis (PCO; Jac-
card dissimilarity coefficient). Vector overlays (Pearson’s correlation) were used to visual-
ize which threats were strongly correlated (absolute value>0.5) to a PCO. Separation of
sites, with PA type overlays, in ordination space was used to interpret the degree of differ-
ence between sites in different PA types. To determine if there were differences between PA
type and cumulative threats, we used the non-parametric Kruskal Wallis test, with statistical
significance (p<0.05).

To measure the ecological integrity of PA types, we used aquatic invertebrate commu-
nities, as well as a variety of physical and chemical conditions at 20 sites throughout the
study area. Sites were classified as above into PA type: strict-use (seven sites within the
Historic Sanctuary of Chacamarca and National Sanctuary of Huayllay), multi-use (seven
sites within the Junin National Reserve), and unprotected (six sites outside of the PA net-
work). Aquatic invertebrate communities were sampled in October 2015 and April 2016 fol-
lowing a modified version of the multi-habitat approach for low gradient streams (Watson
et al. 2017b). At each site, we obtained 11 dip/kick-net samples using a D-frame net (net
dimensions 0.3x0.3 m with 500 pm mesh) to sample a total of 1.0 m?> (WVDEP 2014). We
filtered all 11 samples through a 250 pum sieve and preserved the composite sample in 95%
ethanol. A random sub-sample of 200 invertebrates (£ 10%) from each site were identified
to family or the lowest possible taxonomic level, and eight aquatic invertebrate community
metrics were calculated. These included taxa richness, Ephemeroptera/Plecoptera/Trichop-
tera (EPT) richness, % EPT abundance, % E abundance, % Chironomidae, % 2 dominant
families, Modified Hilsenhoff Index (MHI), and the Andean Biotic Index (ABI; sensu Rios-
Touma et al. 2014). To assess habitat quality, we used a rapid bioassessment protocol (Bar-
bour et al. 1999). Additionally, we recorded descriptions of stream substrate, mean stream
width, and mean stream depth at evenly spaced points along the 100 m transects. Instream
water quality measurements (pH, temperature, and specific conductance) were obtained
instantaneously with an ExStik EC500 meter prior to each survey.
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To investigate if differences existed between aquatic invertebrate communities and PA
type, we used a combination of multivariate statistics and ordination procedures. Prior to
analyses, invertebrate abundance data were fourth-root transformed to reduce the influence
of dominant species to allow less abundant species to contribute to differences in commu-
nity composition. Then, we used non-metric multidimensional scaling (NMDS; Bray-Curtis
distance coefficient) to visualize differences in aquatic invertebrate assemblages among dif-
ferent PA types. We labeled samples (sites) in ordination space by PA type and added to the
ordination weighted mean positions of selected taxa. Additionally, we correlated significant
aquatic invertebrate community metrics and instream parameters to the ordination. Correla-
tions were considered significant when p<0.05 (for 999 permutations of the data). Next,
ADONIS (ANOVA using distance matrices) was used to test for differences. Finally, we
used Similarity Percentage (SIMPER) to identify which aquatic invertebrates contributed
most to the average dissimilarity between PA types. ANOVA and Tukey’s HSD post-tests
were used to identify which community metrics and instream parameters were statistically
different among PA types. All statistical analyses were performed in the R statistical envi-
ronment Version 3.6.1 (R Development Core Team 2020). NMDS, ADONIS and SIMPER
were performed with the package vegan (Oksanen et al. 2019). PCO was performed in
Primer 6 (PRIMER-E, Ivybridge, UK).

Results

T. macrostomus T. brachydactylus
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Fig.2 Historic (1948-2017) and present (2018) percent area of occupancy for Telmatobius macrostomus and
T. brachydactylus by protected-area type and percent area lost compared to known historic segment-level
watersheds
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rostomus and T. brachydactylus at occupied transects in 2018. Transects are grouped by protected-area type
(strict-use, multi-use, and unprotected). Sample sizes are shown above bars
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macrostomus in long-term transects. Transects are grouped by protected-area type (strict-use, multi-use, and
unprotected) and years. Sample sizes are shown above bars
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Geographical distribution, abundance, and population trend

We delineated a total of 8,455 segment-level watersheds throughout the study area which
averaged 2.35 km? in size (Fig. 1). Spatial analysis indicated range contractions of 57.7%
(T. macrostomus) and 69.0% (T. brachydactylus) from known historic locations (Fig. 2). Of
the current known areas identified to be occupied by 7. macrostomus, 12.3% are in the Junin
National Reserve (multi-use PA), and 3.0% are in the Historic Sanctuary of Chacamarca and
National Sanctuary of Huayllay (strict-use PAs). While for 7. brachydactylus, 7.8% are in
the Junin National Reserve and 1.6% in the National Sanctuary of Huayllay.

There was no difference between catch per unit effort in transects grouped by PA type
for T" macrostomus (F 34 =0.265, P=0.769) or T. brachydactylus (F, ,, = 0.586, P=0.575)
during the 2018 surveys (Fig. 3). There was also no significant difference between catch per
unit effort and PA type (F} 53 = 2.520, P=0.102) and year (F| ,3 = 0.417, P=0.525) for T.
macrostomus at ‘long-term’ transects (Fig. 4), and no interaction (£ ,3 = 0.649, P=0.532).

Threat status
Two PCO axes accounted for 51.8% of the variation between transects in the threat vari-

ables (Fig. 5). The presence of high sedimentation (-0.96) was correlated with PCO 1; while
PCO 2 was strongly correlated with the presence of solid waste (0.73), trout (-0.73), and

40T A

* Strict-use
Solid waste A Multi-use
O Unprotected

N
2

PCO2 (24.4% of total variation)

20t &
-407 Trout
A
A o
607 = = — |
-60 -40 -20 0 20 40

PCO1 (27.4% of total variation)

Fig. 5 Bivariate scatter plot of principal coordinate (PCO) 1 and 2 scores for each transect overlaid with
protected-area type. Threats with high (>]0.5]) correlation are shown
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laundry washing (0.51; Fig. 5). There was no separation in ordination space between multi-
use sites and unprotected sites, however, strict-use sites grouped together in the positive
direction of PCO 1. Overall, the predominant threats identified at the strict-use sites (tran-
sects) were livestock (100%) and solid waste (85.7%; Table 1). For multi-use sites, the
most prevalent threats identified were livestock (94.3%), solid waste (89.7%), and high
sedimentation (56.3%), and for unprotected sites livestock (92.9%), solid waste (71.4%)
and trout (64.3%) were the main threats (Table 1). Illegal harvesting was assumed equal
(100%) across all sites because poaching occurs throughout the study area (personal com-
munications with SERNANP staff). There was no significant difference between PA type
and cumulative threats (Kruskal-Wallis, y>=0.451, df=2, P=0.798).

Ecological integrity

A total of 8,205 aquatic invertebrates were identified from the 20 sites sampled in 2015 and
2016. There were significant differences in aquatic invertebrate communities between PA
types (F, 3, = 4.539, P<0.001, R’=0.20; Fig. 6). Subsequent pairwise comparisons found
that aquatic invertebrate communities from strict-use sites were statistically different to
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Fig. 6 Nonmetric multidimensional scaling (NMDS) ordination of aquatic invertebrate samples from 2015—
2016 (Bray-Curtis distance coefficient) in two dimensions showing (a) sites labeled by protected-area type
(S=strict-use, M=multi-use and U=unprotected), (b) instream parameters, (c) invertebrate metrics, and (d)
weighted mean positions of selected taxa. Stress=0.14 in the three-dimensional solution. SpCond: specific
conductance; MSW: mean stream width; ABI: Andean Biotic Index; EPT: Ephemeroptera Plecoptera Tri-
choptera; E: Ephemeroptera; MHI: Modified Hilsenhoff Index. ADONIS p value=0.001
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those in multi-use sites (£ 5 = 7.121, P<0.001, R?=0.22), and unprotected sites (F, u=
4.817, P<0.001, R’ =0.17), but the multi-use sites were not statistically different to those in
unprotected sites (£ 54 = 1.094, P=0.39, R’=0.04). SIMPER analysis indicated that 80.5%
of the dissimilarity between multi-use and strict-use sites was explained by the invertebrate
families Hyalellidae (19.5%), Baetidae (17.1%), Chironomidae (11.0%), Corixidae (11.0%),
Physidae (11.0%), and Elmidae (10.9%). Multi-use and unprotected sites had 82.0% of their
dissimilarity explained by Hyalellidae (20.1%), Chironomidae (18.1%), Physidae (11.4%),
Elmidae (11.4%), Hydroptilidae (10.7%), and Baetidae (10.3%). Strict-use and unpro-
tected sites had 82.8% of their dissimilarity explained by Hyalellidae (21.3%), Baetidae
(17.1%), Chironomidae (14.9%), Elmidae (13.1%), Hydroptilidae (9.2%), and Corixidae
(7.2%). ANOVA tests showed that strict-use sites had greater EPT richness than multi-use
and unprotected sites (F, 3, = 12.33, P<0.001; Table 2), and % E was greater at strict-use
sites than unprotected sites (£, ;37 = 3.94, P=0.028; Table 2). The Andean Biotic Index (ABI
score) was greater at strict-use sites than at multi-use sites (F, ;3; = 4.19, P=0.023; Table 2).

In terms of physical habitat and water quality, strict-use sites had lower conductivity com-
pared to multi-use and unprotected sites (£, 3; = 10.90, P<0.001; Table 2), and mean stream
depth was lower at strict-use sites than multi-use sites (£, 3; = 3.45, P=0.042; Table 2). The

Table 2 Means and standard deviations (SD) of physical habitat, instream parameters, and aquatic inverte-
brate metrics for each protected-area type

Protected-area type

Strict-use Multi-use Unprotected
(n=7) (n=7) (n=6)
Mean SD Mean SD Mean SD F-value df
pH 8.27 0.61 7.99 048  8.15 048  0.96 2,37
Temperature (°C) 1271 2.08 1325 231 13.01 340 0.15 2,37
Conductivity (uS cm™2) 256.90° 136.74 417.07° 69.71 40575 77.39  10.90 2,37
Mean stream width (m) 2.66 231 5.08 3.50 9.84 12.80 3.10 2,37
Mean stream depth (m) 0.50°  0.16 098 079  0.61™ 031 345 2,37
% RVHA score 67.39° 1190  48.61° 13.80 58.13® 1436 6.94 2,37
% Bedrock 0.00 0.01 0.00 0.00  0.00 0.00  0.93 2,37
% Boulder 0.00 0.00 0.00 0.00  0.06 0.14 297 2,37
% Cobble 0.09®°  0.16 0.01* 003 015" 016 3.62 2,37
% Gravel 0.24* 022 0.03® 006 017 021 7.18 2,37
% Sand 022 021 0.06° 0.2  0.04> 0.09 7.80 2,37
% Silt 0.29° 036 0.77° 031 045" 039  6.62 2,37
% Clay 0.15 0.18 0.14 020 0.12 0.16  0.10 2,37
Taxa richness 8.64 2.06 8.43 224 858 1.83  0.04 2,37
% EPT 33.80 2070 1878 2594 1737 1573 2.44 2,37
EPT richness 3.000  1.36 121> 080 133> 089 1233 2,37
MHI 5.33 0.55 5.82 0.86 5.72 0.63  1.95 2,37
% Chironomidae 1555  9.78 17.83 1978 2458  20.79 0.93 2,37
% 2 Dominant 7421 1099 6874 12.64 7174 1645 0.59 2,37
%E 2330° 2124  929® 1428 6.96° 1122 3.94 2,37
ABI score 42.93* 1244  33.07° 7.67  3450® 7.86  4.19 2,37

Means with different letters among protected-area types are statistically different (p<0.05; analysis of
variance, Tukey post-test). RVHA: Rapid Visual Habitat Assessment; EPT: Ephemeroptera, Plecoptera,
Trichoptera; MHI: Modified Hilsenhoff Index; E: Ephemeroptera; ABI: Andean Biotic Index
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percent Rapid Visual Habitat Assessment (RVHA) score was greater at strict-use sites than
multi-use sites (£, 3, = 6.94, P=0.003; Table 2). For stream substrate, strict-use sites had a
greater percentage of gravel than multi-use and unprotected sites (£, 37 = 7.18, P=0.002;
Table 2), and a greater percentage of sand than multi-use sites (£, 3, = 7.80, P=0.001;
Table 2). Multi-use sites had a greater percentage of silt than strict-use sites (£, 37 = 6.62,
P=0.003; Table 2), and unprotected sites had a greater proportion of cobble than multi-use
sites (F, 37 =3.62, P=0.037; Table 2).

Discussion

In general, the effectiveness of PAs is compromised by explicitly aiming to meet diverse
human expectations other than biodiversity conservation and supporting recreational or
agricultural activities (Acreman et al. 2020). In the high-Andes of central Peru, local inhab-
itants primarily use the protected natural resources for agricultural purposes (e.g., grazing
of livestock), but also extract sod to dry and use as fuel, and clear reeds for thatching. Such
land-use practices are detrimental to aquatic systems and, therefore, if PAs are to be more
effective, management of the trade-offs between culturally important practices and biodi-
versity conservation is required. Furthermore, our results show that PA status alone is not
adequate for aquatic species conservation. Although strict-use PAs had greater ecological
integrity, defaunation rates and species abundances of endangered and endemic frogs in
PAs are similar to those outside PAs. Our analysis demonstrates that PAs are unlikely to be
effective for aquatic biodiversity conservation unless management can reduce threats from
external pressures. The threats quantified throughout our study area identified poaching,
livestock grazing, and solid waste as the most prevalent. Although some of the threats quan-
tified are quite localized to the study area (e.g., chufio harvest), all of the threats measured
are proxies of global change that have been well documented as detrimental to biodiversity
conservation (e.g., Cohen et al. 1993; Davis 2003). For example, introduced rainbow trout, a
predator/competitor, as a proxy of invasive species and high sedimentation or chuilo harvest
as a proxy of land-use development. In addition to these ubiquitous threats, other ecologi-
cal processes also explain why PA status, by itself, does not guarantee aquatic biodiversity
conservation.

For PAs to be of value for conservation of aquatic biodiversity, they must account for
hydrologic connectivity (Roux et al. 2008). Here, we refer to hydrologic connectivity in an
ecological sense relating to the water-mediated transfer of inorganic and organic matter, and
dispersal of aquatic organisms (Pringle 2001). This is of primary importance to the value of
PAs for aquatic species conservation. Protected areas are geographically fixed, and perva-
sive land use development can have profound effects on their ecological integrity (Pringle
2001; Hannah et al. 2007). Consequently, disturbances well outside PA boundaries (e.g.,
deforestation and mining) can result in the direct transmission of pollutants (e.g., sedimenta-
tion, nutrients, and mine drainage) to recipient ecosystems. Unfortunately for Lake Junin,
the Upamayo Dam has resulted in decades of mine drainage from the Cerro de Pasco region
entering the lake, making the sediments among the most polluted in Peru (Rodbell et al.
2014). Therefore, PAs are only effective if root causes to ecological impairment are identi-
fied and prevented, allowing the integrity and maintenance of communities, populations,
and endangered species to persist (Parrish et al. 2003; Frangoso et al. 2015).
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With regard to connectivity as a means of aquatic organism dispersal and population
viability, the metacommunity concept (Leibold et al. 2004) also explains why PAs, by them-
selves, cannot guarantee aquatic biodiversity conservation. For example, Merriam and Petty
(2016) demonstrated that even aquatic communities within the most pristine streams are at
risk of extirpation when isolated within an intensively mined region. Metacommunity and
metapopulation processes, such as rescue and mass effects, can become easily altered, and
aquatic biodiversity will not be sustained by simply protecting un-impacted streams (Mer-
riam and Petty 2016). This has serious implications for PAs in heavily impacted regions like
Junin and Pasco, Peru, increasing their vulnerability to becoming population sinks for the
wildlife that they were designated to conserve and protect.

The use of aquatic invertebrate communities as a proxy for ecological integrity in our
study showed that strict-use sites had greater biotic index and habitat assessment scores
than multi-use and unprotected sites. As expected, the strict-use PAs (Historic Sanctuary
of Chacamarca and National Sanctuary of Huayllay) have fewer human settlements within
their boundaries in comparison to the multi-use PA (Junin National Reserve) and unpro-
tected sites. Since most human activities include the modification and use of resources it
is not surprising that aquatic invertebrate communities in more anthropogenically altered
landscapes/riverscapes are more degraded than communities in more pristine habitats (i.e.,
strict-use PAs). This result is consistent with numerous studies (e.g., Lammert and Allan
1999; Mancini et al. 2005). Similarly, Francoso et al. (2015) found that strict-use PAs have
significantly less deforestation rates than multi-use PAs. In addition, Ferreira et al. (2020)
observed higher mammal diversity within strict-use PAs compared to multi-use PAs and
attribute this difference to the level of protection. Currently, the strict-use PAs here com-
prise<20% of the area of the multi-use PA (Fig. 1).

Although we did not investigate the role of PA size as a variable that could influence their
effectiveness as management tools for the conservation of these endangered and endemic
frogs, other studies have found that a key contrast between Freshwater Protected Areas
(FPAs) and Marine Protected Areas (MPAs) is that size matters (Watson et al. 2022). When
resources become limited in an MPA, highly mobile species emigrate in search of more
suitable habitats and resources outside of the PA. However, strictly aquatic species in FPAs
may not be able to ‘spill-over’ or migrate between waterways, so the number of juveniles
and adults that an FPA can accommodate is ultimately regulated by the quality and extent of
target species’ habitat (Watson et al. 2022). Debate over PA size dates back almost a century,
when Wright et al. (1933) recognized that PAs in the United States were too small for wide-
ranging species. This scale mismatch continues today (e.g., Chundawat et al. 2016), and is
exemplified by migratory species that depend on the quality and connectivity of disparate
habitats. On the other hand, non-migratory species have very different spatial-scale require-
ments. For range-limited, endangered species, the most urgent conservation action is the
establishment of new PAs for target species in good quality habitat. Undoubtedly, the per-
sistence of endangered aquatic species in heavily impacted regions is grim, and although not
ideal, smaller PAs are especially important for conserving endemic species (Shafer 1995;
von May et al. 2008). Furthermore, smaller PAs have the potential to be managed more
intensively, focusing on reducing local-level threats (e.g., poaching, livestock grazing, and
solid waste).

It is evident that a key factor for conserving biodiversity is the appropriate design of
PAs, however, it is likely that no single design will provide benefits for all, and species-
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specific responses to protection will occur (Halpern 2003). Therefore, for PAs to succeed in
the conservation of individual species, their establishment should be linked with programs
designed to provide information on their effectiveness as management tools (Watson et al.
2021), and to direct a posteriori adaptive management actions (Halpern and Warner 2003).
While highly and strictly aquatic species require core aquatic habitats, most amphibians
have a dual reliance on terrestrial and freshwater ecosystems to complete their life-histories.
For T. macrostomus and T. brachydactylus basic ecological information, such as movement
or habitat requirements for reproduction, is lacking. Therefore, restricting our attention to
amphibian population dynamics and community ecology in freshwater systems alone, as
has been the tradition, is guaranteed to lead to incomplete understanding of the basic ecol-
ogy and management requirements of these and other aquatic species (Lowe 2009). Ter-
restrial zones around aquatic environments are important for protecting aquatic species and
may be more important than previously thought (Semlitsch and Bodie 2003). It is evident
that most species are of conservation concern because certain aspects of their life history
bring them into conflict with land development (Steen et al. 2012), and Telmatobius frogs of
the high Andes are probably no exception.

In addition to habitat loss, the principal threat to 9 out of every 10 threatened amphibian
species (Baillie et al. 2004), poaching is known to be one of the greatest threats to wildlife
conservation worldwide (Moore et al. 2018). In fact, the harvesting of wild Telmatobius
spp. for human consumption is the predominant threat affecting amphibians in the Peruvian
Andes (Angulo 2008; Aguilar et al. 2010). Furthermore, the live trade of frogs harvested
from wild populations facilitates the spread of chytrid fungus Batrachochytrium dendroba-
tidis, which has had its greatest effects in large-bodied, range-restricted anurans (Scheele et
al. 2019), and has been responsible for the collapse of anuran species richness and abun-
dance in Manu National Park, Southeastern Peru (Catenazzi et al. 2010). A recent study
by Peterman Razetto (2021) confirms that chytrid fungus is found in the Junin National
Reserve and that both species have been infected. To reduce poaching-related threats, and
consequently the risk of spreading disease through live trade, Moore et al. (2018) suggests
increasing the number of anti-poaching patrols to sites where the probability of poaching is
high, and/or expanding the number of park ranger posts. However, these recommendations
are not cost-effective avenues for PAs with funding limitations. Recently, a regional ordi-
nance (N°331-GRJ/CR) was passed declaring the conservation and protection of both 7e/-
matobius species a priority. Although the ordinance does not restrict the harvesting and sale
of these endangered amphibians in local markets, it still marks a significant step towards the
ultimate goal of conservation. Unfortunately, due to financial resource constraints, effective
legislation in the developing world relies on voluntary compliance (Rowcliffe et al. 2004).
Given that poachers will not comply voluntarily, we believe that the protection of these spe-
cies will depend on community-based environmental education initiatives.

Aguilar et al. (2010) considers the importance of local inhabitants in Andean amphibian
conservation, and although somewhat controversial, demonstrates how in the absence of
resources (e.g., national herpetologists to carry out long-term monitoring), local inhabitants
are the only source of information available. Furthermore, locally-lead projects will even-
tually facilitate the behavior changes needed to make sustainable, long-term conservation
gains. This also highlights the importance of local PAs (versus national PAs), such as private
and municipal reserves. In addition to requiring fewer economic resources, local PAs can
have better monitoring practices, better relations with surrounding communities, and can
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provide better protection for endangered, endemic species than national PAs (von May et al.
2008; Aguilar et al. 2010; Shanee et al. 2017).

In conclusion, many PAs are becoming progressively more isolated as surrounding land-
use and resource extraction intensifies to meet ever-increasing global demand. Additionally,
human activity within PA boundaries is prevalent worldwide. In fact, one-third of protected
land is under intense human pressure (Jones et al. 2018) and, therefore, the analogy of PAs
as oceanic islands surrounded by inhospitable seas of anthropogenically impacted environ-
ments seems even more relevant today (Haila 2002). For PAs to be of more value to aquatic
species, we recommend the strict protection and connection of unprotected high-quality
habitats to the existing PA network with borders defined by watershed boundaries. For this
to happen, freshwater focal areas and critical management zones must first be identified
and embedded within catchment management zones (Abell et al. 2007; Esselman and Allan
2010). However, adopting such a protection strategy must be done in a hierarchical frame-
work that builds upon existing high-quality habitats, and that prioritizes poorer habitats for
future restoration (Merovich et al. 2013). It is also recommended that more effort is needed
to ensure that any socioeconomic objective of a PA is consistent with maintenance or res-
toration of ecosystem resilience and conservation of aquatic biodiversity (Acreman et al.
2020). Therefore, a community-based approach to PA management such as local PAs could
provide strategic management solutions tailored to specific (local-level) threats and needs.
This is especially important to meet conservation targets and provide financially feasible
solutions for the expansion of PA networks in resource limited regions of the developing
world (Le Saout et al. 2013; Shanee et al. 2017). These results further highlight the need for
a more holistic approach to environmental management that approaches conservation and
sustainability issues by incorporating life histories, species’ requirements, habitat protection
and restoration as unified goals.
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