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Abstract
The recovery of tree species composition after disturbance depends on dispersal either 
from nearby forests or from surviving individuals within the disturbed area. Understand‑
ing the influence of proximity to mature forests on species composition of regenerating 
secondary forests can help in predicting the trajectory of recovery from anthropogenic dis‑
turbances. Using forest inventory data from a chronosequence of regenerating secondary 
forests in the Atlantic Forest of southern Bahia, whereby transects were arranged from the 
edge of mature forest 100 m into the regenerating area, we calculated community weighted 
means (CWMs) for traits and the natural distribution ranges of species. We used General‑
ized Linear Mixed Models to investigate whether site characteristics such as forest age, 
distance from mature forest edge, soil chemical and physical properties, and canopy open‑
ness influence traits and natural distribution of regenerating secondary forest tree species. 
Results show that species traits were associated with regenerating forest age while the pro‑
portion of endemic and widespread species was associated with distance from mature for‑
est and regenerating forest age. Irrespective of distance from mature forest, regenerating 
secondary forests recruit species with heavy and recalcitrant seeds, but this increased with 
regenerating forest age. Our results contribute to understanding the effects of forest frag‑
mentation and in restoring forests after deforestation.
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Introduction

The direct influence of nearby mature forest on disturbed areas were first studied in the 
context of a debate about the influence of clear-cutting on remaining mature forest frag‑
ments of western North America (Keenan and Kimmins 1993; Baker et al. 2013). The spa‑
tial extent and magnitude of the influence of nearby forests on disturbed areas are related 
to several aspects such as species’ life history traits, height of the surrounding trees, soil 
condition and type, slope, aspect, latitude and microclimate (Keenan and Kimmins 1993). 
In addition, resource availability (e.g., light, water, nutrients) and competitive versus facili‑
tative tree species interactions for resources are the major drivers of species’ distributions 
and their geographic ranges (Ries et al. 2004).

In the tropics, studies of edge effects on forest structure and composition in fragmented 
landscapes are common, but these studies have mostly focused on gradients from the edge 
into the interior of mature forests. The most comprehensive set of studies that examine the 
influence of open edge on the interior of intact mature forests were conducted in the Ama‑
zon with the Biological Dynamics of the Forest Fragments Project (Laurance and William‑
son 2001; Laurance et  al. 2002). However, less work has been on understanding reverse 
effects, i.e., the influence of intact forests on adjacent deforested areas that are regenerating 
back to forest (Harper et al. 2005; Baker et al. 2013).

Some studies have tested how forest structure in the early stages of regenerating sec‑
ondary forests within fragmented landscapes of the tropics are influenced by the distance 
from mature intact forest islands. At the landscape level, research has demonstrated that 
forest regrowth rates decrease with distance from remnant forests (Thomlinson et al. 1996; 
Endress and Chinea 2001; Safar et al. 2020). Similarly, Hooper et al. (2004) and Günter 
et al. (2007) found that proximity to mature forest promotes stand-level variations of struc‑
ture in regenerating secondary forests. More recently, our ability to study the influence of 
nearby mature forest on structural recovery in regenerating secondary forests has increased 
with new technologies such as terrestrial and airborne LiDAR and remote sensing (Palace 
et al. 2016; Shapiro et al. 2016; Becknell et al. 2018). Studies designed to understand the 
influence of nearby mature forest on species composition and species functional charac‑
teristics that may explain mechanisms of community assembly during regenerating forest 
development, however, are rare and still rely on intensive fieldwork (Baraloto et al. 2010).

Species composition of regenerating forests after disturbance depends on disper‑
sal either from nearby mature forests or from surviving individuals within the disturbed 
area. The effectiveness of seed dispersal in disturbed areas depends on species’ traits and 
the availability of suitable habitat. Dispersal limitation can be a constraint to tree species 
recruitment (Bullock et al. 2002) because distance influences seed dispersal spatially (Reid 
and Holl 2013; Piotto et al. 2019). This results in distinct floristic assemblages along a dis‑
tance gradient from remnant forests into open areas. For example, in Belize, Kupfer et al. 
(2004) found that species composition changed across a 150 m distance of remnant forests, 
with a higher frequency of legume and liana species establishing within abandoned crop 
fields farther away from the forest; In Puerto Rico, Myster (2003) found more mid- and 
late-successional tree species regenerating in old pastures and coffee plantations that were 
close to remnant mature forest compared to those farther away; and similarly, Ferguson 
et al. (2003) found that proximity to the forest edge increased the presence of fleshy-fruited 
regenerating trees and shrubs in old disused agricultural lands in Guatemala.

Even though studies have demonstrated gradients of floristic assemblages with dis‑
tance from remnant mature forests, the ecological processes driving these changes have not 
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received much attention (Craven et al. 2015). The influence of nearby mature forest on seed 
dispersal and on the soil and light resource have been proposed to explain differences in 
species richness and composition in the regenerating secondary forests (Hooper et al 2004; 
Günter et al. 2007; Neo et al. 2017). However, initial heterogeneity of both environmental 
and surviving vegetational patterns at the local and landscape level make the interpreta‑
tion of spatial variation in species composition in secondary forests difficult. Yarranton and 
Morrison (1974) noted that spatial variation in secondary forest structure and composition 
can be confounded with environmental heterogeneity and regenerating forest age. Thus, an 
integrated understanding of the influence of nearby mature forest on regenerating second‑
ary forests must properly address environmental heterogeneity and successional age.

Here, we studied the influence of nearby mature forest distance and regenerating forest 
age on tree species composition in the Atlantic Forest hotspot of southern Bahia, which 
holds a higher level of species endemism and richness than any other part of the Neotrop‑
ics (Mori et al. 1981; Martini et al. 2007; Thomas and Barbosa 2008; Ostroski et al. 2018). 
This region is considered to have been a forest refugium during the Pleistocene (Whitmore 
and Prance 1987) and a potential center of diversity for some major groups of plants (Gen‑
try 1992). The coastal forest of southern Bahia is part of the Brazilian Atlantic forest that 
encompasses the coastal rain forests up to 300 km inland in its southern portion (Oliveira-
Filho and Fontes 2000). The Brazilian Atlantic forest is an important biodiversity hotspot 
that has been reduced to less than 13% of its original cover (SOS Mata Atlântica 2020). 
In addition to habitat loss, fragmentation and local extinction of birds and mammals rep‑
resent an imminent threat to several plant species (Silva and Tabarelli 2000; Galetti et al. 
2013) and, as in other tropical forests, local tree species with seed dispersal constraints are 
probably the most affected by habitat loss and fragmentation (Metzger 2000; Tabarelli and 
Peres 2002). Consequently, understanding the influence of nearby mature forest on species 
composition of regenerating secondary forests can help in designing conservation strate‑
gies, predicting recovery from anthropogenic disturbances, and mitigating effects of forest 
fragmentation in tropical landscapes (Matos et al. 2019).

In our study, we tested whether the adjacent mature forest and the age of the regenerat‑
ing area itself influences the composition of the regenerating forest. Our hypothesis is that 
tree species trait composition and the proportion of endemic and widespread species are 
associated with distance from mature forest and the age of the regenerating forest. We also 
examined whether soil chemical and physical properties and the openness of the regenerat‑
ing forest canopy also have influence on the regenerating forest trait composition and pro‑
portion of endemic and widespread species.

Methods

Study sites

The study was conducted in the Serra do Conduru State Park, southern Bahia, Brazil 
(14°25ʹ S and 39°05ʹ W). The park encompasses about 10,000 ha and is composed of a 
mosaic of forest patches in different stages of disturbance and regeneration, including rem‑
nants of undisturbed mature forests. The parklands are interspersed with private inholdings. 
This mosaic facilitated the establishment of a chronosequence of secondary forest stands. 
The study sites are at an elevation of 120–300 m asl. The average monthly temperature is 
24  °C, with annual average precipitation of 2000  mm evenly distributed throughout the 
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year (Landau 2003). The natural vegetation is classified as tropical moist forest (Thomas 
and Barbosa 2008), with rolling to undulating topography (10–30% slope). Typic hap‑
lorthox soils with low fertility and high iron content prevail in the region (Santana et al. 
2002).

Chronosequence classification and sampling design

Sites were selected carefully to minimize variation in environmental conditions arising 
from past land use history and inherent variation in soils and hydrology in relation to land‑
scape-scale topography. The estimation of stand ages and past land uses was based on a 
sequence of available aerial photographs and remote sensing data, which provided precise 
and verifiable estimates of stand age. Changes in forest cover and land use in a 5000-ha 
area inside Serra do Conduru State Park were estimated from 1965 to 2007. The remote 
sensing windows were based on aerial photos taken in 1965, 1975, 1986, 1997, 2002, and 
2007. Land use maps were generated for every set of aerial photos, and maps of forest age 
classes were derived using GIS. Information on type and intensity of past land use was 
gathered by interviewing local farmers.

A total of 95 secondary forest stands larger than 3 ha and adjacent to a mature forest 
were found in the study area. Ages ranged from 10 to 43 years. To study changes in forest 
structure and composition with forest development, fifteen stands were randomly selected 
to cover three age classes: 10–12, 22–25, and 37–43 years old, with five replications each. 
All secondary forest stands selected were established next to a mature forest and had been 
cleared and burned, followed by 1–2 years of manioc (Manihot esculenta Crantz) cultiva‑
tion, the principal carbohydrate consumed by the people of the region. At each secondary 
forest, a 100-m-long transect was established from the mature forest edge into the second‑
ary forest.

Vegetation inventory

Forest inventory plots were installed in each secondary forest, comprising five contigu‑
ous 20 m × 10 m plots. The plots were continuously distributed along the 100-m transect 
towards the center of the secondary forest. All tree species with stems ≥ 5 cm diameter at 
breast height (dbh) were measured (dbh and height) and identified or recorded as a ‘mor‑
pho-species.’ A voucher for identification was collected for each morpho-species. Voucher 
specimens from the vegetation inventory were identified by comparisons with herbarium 
specimens deposited at the “Centro de Pesquisas do Cacau” (CEPEC) herbarium in Ilhéus, 
Bahia. All botanical voucher specimens were deposited in the CEPEC herbarium.

Light environments

The light environments of the 15 secondary forests were measured at 75 sample points 
with a hemispherical canopy photograph. In each secondary forest, five measurements 
were made at 20-m intervals along the 100-m transect from the mature forest edge into the 
secondary forest (Fig. 1).

On uniformly cloudy days, photographs were taken at each sample point using an 8-mm 
hemispherical lens with a Nikon 35 mm camera. The camera was fixed on a tripod and 
mounted at 1 m above the ground on a leveling device with a compass for image alignment. 
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Photographs were scanned and converted into digital images. Images were analyzed using 
Gap Light Analyzer 2.0 (Frazer et al. 1999). This software converts images into gray scale 
and then binary (black and white pixels) using a given gray threshold. The threshold can 
be manually adjusted to compensate for different sky conditions, but a fixed threshold was 
used in this study since the photographs were taken under similar sky conditions. Measures 
of canopy openness were estimated for every image. Canopy openness was the percentage 
of open sky seen from the forest floor.

Soil sampling

In each secondary forest, five soil samples were taken at 20-m intervals. Measurements 
were made at 20-m intervals along the 100-m transect from the mature forest edge into the 
secondary forest (Fig. 1).

Soils were sampled using two methods. The first method (for chemical analysis) was 
a composite sample of three sub-samples taken at 5-m intervals, encompassing the edges 
and center of forest inventory plots. Soil sub-samples were collected from 0–10 cm depth 
immediately below the litter layer using a hammer and a 10 cm stainless steel tube (1 dm3) 
and pooled together in labeled plastic bags. The soil samples were analyzed for pH (water), 
Mehlich-1 extractable potassium (K), total nitrogen (N) using the Kjeldahl method, and 
total carbon (C) and organic matter (OM) using the Tiurin method. All soil analyses were 
performed at the “Centro de Pesquisas do Cacau” (CEPEC/CEPLAC) soil laboratory.

The second method (for physical analysis) was a composite sample of two sub-samples 
taken 5 m apart with a Kopecky’s ring. This ring is made of stainless steel (5 cm diameter, 
2.5 cm depth, and volume of ≈50 cm3) and was driven into the soil with a hammer. The 
surface litter was removed before sampling. Samples were carefully extracted from the ring 
and stored in metal containers. Containers were labeled and sealed immediately after the 
samples were taken to preserve soil moisture. At the soil laboratory, soil samples were 
weighed, dried at 105 °C for 48 h, and weighed again to determine soil moisture content 

Fig. 1   Illustration of the experimental design of forest inventory plots (five contiguous 20 m × 10 m plots 
from the mature forest edge) and sample points of soil chemical and physical properties and canopy open‑
ness
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(difference between wet and oven dried weight). Bulk density was determined by the ratio 
between soil oven-dried weight and the ring volume.

Natural distribution range and species’ traits

The natural distribution range and the traits characterizing dispersal mode, seed dormancy, 
weight of 1000 seeds, ability to persist in the soil seed bank, and N-fixation were compiled 
from the literature for every species. The natural distribution ranges were compiled from 
Forzza et  al. (2010) and categorized as: widespread South America (WSA), endemic of 
the Atlantic forest of eastern Brazil (EEB), and endemic of the Atlantic forest of southern 
Bahia and northern Espírito Santo (EBA), following Thomas et al. (1998).

Species with reports of root-nodules were classified as nitrogen-fixing species. Informa‑
tion on nodulation of tree species was compiled from Sprent (2009). The dispersal mode 
was categorized as biotic (animal-dispersed) or abiotic (wind and explosive dispersal). The 
categorization of dispersal modes included an extensive literature review and examination 
of herbarium specimens. The information on seed dormancy and weight of 1000 seeds was 
obtained from the Seed Information Database (Royal Botanic Gardens Kew 2017) and the 
Compendium of Information on Seed Storage Behavior (Hong et al. 2000). For some spe‑
cies for which information was not available, seed viability and/or seed weight was esti‑
mated using information of congeneric species, species descriptions in the literature, and 
herbarium specimen verification. Because not all orthodox seeds are dormant (Murdoch 
2014), the ability of each species to persist in the soil seed bank was also included as a 
trait. Persistence in the soil seed bank was determined after a literature search of soil seed 
bank studies performed in the Neotropics (Young et  al. 1987; Nepstad et  al. 1996; Dal‑
ling et al. 1997; Dupuy and Chazdon 1998; Wijdeven and Kuzee 2000; Araujo et al. 2001; 
Baider et  al. 2001; Grombone-Guaratini and Rodrigues 2002; Sautu et  al. 2006; Costa‑
longa et al. 2006; Gasparino et al. 2006; Baraloto and Forget 2007; Mamede and Araújo 
2008; Braga et al. 2008).

Data analyses

We calculated community weighted means (CWM) for each functional attribute and nat‑
ural distribution range. For the categorical variables, CWM represents the proportion of 
individuals for each functional attribute and natural distribution range (Ricotta and Moretti 
2011). Then, we investigated how functional attributes and natural distribution range 
(CWM) responded to mature forest distance (mature.forest.distance) and regenerating for‑
est age as fixed or explanatory variables using a Generalized Linear Mixed-effects Mod‑
els (GLMM). The secondary forest fragment (site) was the random effect. This statistical 
approach of random intercept allows the model to control possible variance in the inter‑
cept values of each site (Zuur et al. 2009), although we were only interested in the popula‑
tion model. We also added the 20 × 10 m inventory plots (plot) as another random effect 
to account for plot-level variability (Bates et al. 2014; Harrison 2015). We used binomial 
distribution family for all variables except the weight of 1000 seeds, where we applied 
a Gamma distribution. All models were validated using the relationship between stand‑
ardized residuals with standardized normal quantiles and, for the weight of 1000 seeds, 
the residuals were tested for deviation from the normal distribution using the Shapiro test. 
To compare the effect size, all explanatory variables were standardized, centering on the 
mean and rescaling to unit variance. To account for possible confounding effects promoted 
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by environmental gradients in the models, we also included co-variables that could also 
influence the response variable. However, to avoid problems with variance inflation we 
included into the models only variables with Spearman correlations values lower than 0.6 
(Fig. S1), i.e., canopy openness (CO), pH, potassium (K), nitrogen (N) and bulk density 
(BD) were included while total carbon (C) and organic matter (OM) were not included. 
Thus, we defined our global model as follows:

We selected our models using the corrected Akaike Information Criterion (AICc). 
All models with ∆AICc ≤ 4 were considered as plausible models (Burnham and Ander‑
son 2002). Then, we used the approach of Multimodel Inference to obtain the effect size 
and the relative importance of each fixed variable, which allowed us to account for model 
selection uncertainty or precision (Burnham and Anderson 2002). When the 95% confi‑
dence interval of an explanatory variable did not include zero, the effect was considered 
to have substantial evidence in support of it. (Burnham and Anderson 2002; Grueber et al. 
2011; Symonds and Moussalli 2011).

To calculate CWM we used the function “functcomp” from the “FD” package, which 
follows the calculation proposed by Lavorel et al. (2008). For variables standardization we 
used the function “decostand” and applied the standardization method “sta” (Oksanen et al. 
2020) from the “Vegan” package. The GLMM models were built using the function “lmer” 
from the package “lme4”. For model selection and multimodel inference we used the func‑
tion “dredge” from the “MuMIn” package. Analyses were performed in the R statistical 
computing language, version 3.6.0 (R Core Team 2019).

Results

We recorded a total of 3405 individuals of 307 tree species. Traits and natural distribu‑
tion range of recorded species are shown in Table  1. While measures of soil properties 
and canopy openness were correlated with regenerating forest age, they did not correlate 
with distance from mature forest edge (Fig. S1). All soil measures and canopy openness in 
regenerating forest plots immediately adjacent to mature forest edges were similar to plots 
at 100 m into the regenerating forests.

CWM ∼ age +mature.forest.distance + CO + pH + K + N + BD + (random = site)

Table 1   Traits by natural distribution range of 307 inventoried tree species found in a chronosequence of 
secondary forests in the coastal forests of southern Bahia, Brazil

WSA (widespread South America), EEB (endemic of the Atlantic forest of eastern Brazil), and EBA 
(endemic of the Atlantic forest of southern Bahia and northern Espírito Santo) are species’ natural distribu‑
tion range

Natural range N-Fixer Zoochoric 
dispersal

Recalcitrant Persist in 
seedbank

Average and standard 
error of weight/1000 
seeds

No Yes No Yes No Yes No Yes (g)

EBA 60 7 8 59 22 45 59 8 2320.0 (633.2)
EEB 118 7 19 106 56 69 95 30 568.4 (102.2)
WSA 108 7 10 105 51 64 82 33 759.1 (123.7)
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The multi-model inference approach showed substantial evidence of associations 
between all species’ traits and regenerating forest age, except the proportion of zoochoric 
dispersal. While the proportion of nitrogen-fixing species and the proportion of species 
that persist in the soil seed bank were negatively associated with regeneration age, the pro‑
portion of recalcitrant species and weight of 1000 seeds were positively associated (Fig. 2). 
Additionally, regeneration age showed substantial evidence of association with species 
natural distribution range. The proportion of EBA species was positively associated with 
regeneration age, while the proportion of WSA species was negatively associated (Fig. 2).

Among the species’ traits, the only trait associated to distance from mature forest was 
the proportion of nitrogen-fixing species, which showed evidence of a positive association, 

Fig. 2   Results of the multimodel inference (model averaging) with all candidate models (ΔAICc ≤ 4). All 
averaged coefficients (95% confidence intervals). All explanatory variables were standardized, but the origi‑
nal units were: Forest distance (m); Forest age (years); Canopy openness (%); Soil bulk density (g/cm3); 
K = Potassium (cmol c/cm3); pH = pH in H2O; N = Total nitrogen (cmol c/cm3). Nitrogen-fixing, Seedbank 
species, Zoochoric, Recalcitrant, and Weight of 1000 seeds are species’ traits. WSA (widespread South 
America), EEB (endemic of the Atlantic forest of eastern Brazil), and EBA (endemic of the Atlantic forest 
of southern Bahia and northern Espírito Santo) are species’ natural distribution range
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i.e., nitrogen-fixing species proportion increased with distance from mature forest. In addi‑
tion, distance from mature forest showed substantial evidence of associations with species 
natural distribution range. There was evidence to support an association between distance 
from mature forest with the proportion of WSA species (positive association) and EBA 
species (negative association).

Environmental variables also showed high explanatory importance in our models 
(Fig. 3). For species’ traits, there was evidence to support a negative association of canopy 
openness with the proportion of nitrogen-fixing species and a positive association of can‑
opy openness with the proportion of species that persist in the soil seed bank. For species’ 
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natural distribution range, there was evidence to support a positive association of soil nitro‑
gen (N) with the proportion of WSA species and a negative association of soil nitrogen 
with the proportion of EBA species.

Discussion

Influence of regeneration age and distance from mature forest on species’ traits

Our results show that successional changes in forest structure leads to lower light avail‑
ability but higher soil nutrient contents (C, N, and K) in regenerating secondary forests. 
Changes in environmental factors directly prevent the establishment or persistence of tree 
species during forest regeneration through environmental filtering (Uriarte et  al. 2010; 
Lebrija-Trejos et al. 2010; Kraft et al. 2015). In general, studies have used functional and 
reproductive traits to assess the effects of environmental filtering in community assembly 
based on the main assumption that particular combinations of traits are expected under dif‑
ferent environments (Walker and Chapin 1987; Uriarte et al. 2010). As found in our study, 
traits related to the establishment and persistence of tree species change in importance with 
forest development (Lasky et al. 2014; Craven et al. 2015). This is because in early stages 
of stand development, regenerating secondary forests are commonly dominated by pioneer 
tree species, with life history traits that favor establishment and fast growth in disturbed 
sites (Finegan 1996). Typical traits of pioneer tree species are small seed size, abundant 
seed production and dispersal, seed dormancy, photoblastic seeds, high light saturation 
intensity and compensation point, and high rates of photosynthesis, respiration, and tran‑
spiration (Bazzaz 1979; Wright et al. 2004).

With forest development, changes in the life history traits of trees are mainly caused by 
the replacement of dominance from pioneer species to long-lived late successional spe‑
cies (Opler et al. 1980; Ibarra-Manríquez and Martínez-Ramos 2001; Chazdon et al. 2003; 
Kang and Bawa 2003; Lebrija-Trejos et al. 2010; Craven et al. 2015). For instance, Opler 
et al. (1980) found that flower and pollinator sizes became larger and mean seed weight 
and associations with animal dispersal increased with forest development, while inbreed‑
ing, the number of seeds per fruit, and seed dormancy decreased. Our results show similar 
associations. The weight of 1000 seeds increased with regenerating forest age, as did the 
proportion of trees with recalcitrant seeds, whereas the proportion of nitrogen-fixing spe‑
cies and species that persist in the soil seed bank decreased with the age of regenerating 
forest. These changes in dominant life history traits across the chronosequence of regen‑
erating secondary forests can be mostly attributed to the correlation found between forest 
age and environmental variables (soil properties, canopy openness), indicating that com‑
munity assembly in these secondary forests may be influenced by environmental filtering. 
However, we found no associations of soil characteristics or stand canopy openness with 
distance from mature forest edge into the regenerating forest. This suggests that the spatial 
variation in tree species composition found with distance from mature forest edge is unre‑
lated to soil conditions or the degree of canopy openness.

Assuming that dispersal limitation associated with the distance from mature forest edge 
influences the contribution of seed rain to tree regeneration, we expected to find spatial 
variation in tree species traits. However, we only found that the proportion of nitrogen-
fixing species was positively influenced by distance from mature forest. None of the other 
traits used in this study were influenced by distance from mature forest. Perhaps distances 
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longer than 100 m from the mature forest edge or a greater selection of life history traits 
are necessary to detect the influence of nearby forests on regenerating tree species’ traits. 
Our study supports many other studies that show higher numbers of N-fixing species in 
younger regenerating forests, and this declines with forest regeneration age (Gehring et al. 
2005; Davidson et al. 2007; Batterman et al. 2013; Winbourne et al. 2018). In addition, the 
positive influence of distance of mature forest edge on the proportion of N-fixing species 
suggest differential seed dispersal of N-fixing species as compared to other species. As in 
our study, Kupfer et  al. (2004) found a higher frequency of legumes establishing within 
abandoned crop fields farther away from the forest and no evidence of differences in soil 
characteristics between crop fields closer or farther from the forest. Other studies in tem‑
perate forest ecosystems suggest that N-fixing species have higher water use efficiencies, 
which might be a reason why such plants are more abundant in the open, desiccating envi‑
ronment of younger forests farther from mature forest patches (Wright et al. 2003). Further 
studies need to examine the relationships of N-fixing species dispersal and establishment in 
more detail.

Influence of secondary forest age and distance from mature forest on species 
natural distribution range

Research on the recovery of widespread and endemic tree species during regenerating 
secondary forest development has been controversial. Liebsch et al. (2008) estimated that 
about 2000  years are necessary for young secondary forests to reach the proportions of 
endemic species that occur in mature forests in the Brazilian Atlantic forest. Our results 
suggest they might have underestimated the potential of regenerating secondary forests to 
recover populations of endemic tree species. In fact, a significant body of research else‑
where found trends similar to the ones of our research, with potentially rapid recovery of 
endemic tree species with secondary forest development (Greig-Smith 1952; Kessler 2001; 
Endress 2002; Gemerden et al. 2003; Piotto et al. 2009; Chai and Tanner 2010).

The results of our study show a positive relationship between the proportion of individu‑
als of endemic species with regenerating secondary forest age, indicating a shift in species 
characteristics from widespread to endemic species in the first 40 years of forest develop‑
ment. Endemic species recovery during secondary forest development has been tradition‑
ally measured in two ways: changes in the proportion of endemic species, and changes 
in the proportion of individuals of endemic species. Part of the debate about recovery of 
endemic tree species in secondary forests may be explained by differences in the rates of 
recovery of species and individuals. While recovery of the proportion of endemic species 
in secondary forests approaches mature forest levels very early in development (Greig-
Smith 1952; Endress 2002; Chai and Tanner 2010), recovery of the proportion of individu‑
als of endemic species takes much longer to reach those found in the mature forest (Greig-
Smith 1952; Piotto et al. 2009; Chai and Tanner 2010; Matos et al. 2019; Safar et al. 2020).

Endemic species occur more commonly on relatively infertile substrates (Cowling and 
Holmes 1992); and are known to be more restricted to stressful habitats and unable to com‑
pete with more widespread species for resources in more productive habitats (Lavergne 
et al. 2004). In addition, endemic plant species have lower colonization ability than wide‑
spread species (Byers and Meagher 1997), i.e., local persistence is a key feature of popu‑
lations of these species. Consequently, local endemic trees should exhibit a suite of life 
history traits reflecting stress-tolerance as well as traits related to low frequency and short 
distance dispersal abilities. In this study, local endemic trees exhibit, in general, heavy and 
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recalcitrant seeds that germinate immediately after dispersal, factors which limit dispersal 
frequency and distance (Greene and Johnson 1993). The only trait that reflects stress toler‑
ance used in this study was symbiotic nitrogen fixation, which was positively correlated 
with the proportion of local endemic species (EBA) and may reflect their tolerance to rela‑
tively infertile substrates.

Our results show that distance from mature forest, mediated by regenerating secondary 
forest age, influenced the recovery of local endemic and widespread tree species. Thus, 
medium to large-sized anthropogenic disturbances may result in biotic homogenization by 
potentially restricting the ability of local endemic species to recolonize secondary forests, 
while favoring widespread species establishment in fragmented tropical landscapes (Lôbo 
et al. 2011; Solar et al. 2015).

Implications for forest conservation in the region

The results of this research showed that secondary forests are successfully recruiting trees 
common to mature forest stands, including several endemic and threatened tree species. 
Furthermore, the results indicate that endemic species recovery is more rapid in areas 
immediately around forest remnants. These findings strongly suggest that secondary forests 
can serve as refuges and reservoirs of biodiversity for native trees in the region. Thus, poli‑
cies that guarantee the protection of the last remnants of the Atlantic forest and promote 
restoration strategies building around these forests can be fruitful for tree species conserva‑
tion in the region.
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