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Abstract
Human activities are the main drivers of biotic homogenization, thus affecting ecosystem 
functions. In this study, we aimed to investigate the relationship among anthropogenic dis-
turbances and forest attributes. Moreover, we sought to identify direct and indirect effects 
of topographic heterogeneity (TH), more specifically of standard deviation of altitude, on 
anthropogenic disturbances and forest attributes, respectively, through a path analysis. We 
used data gathered on 186 systematically distributed sample plots located in the Brazil-
ian subtropical Evergreen Rainforest. We selected 14 predictor variables related to anthro-
pogenic disturbances aiming to model seven forest attributes related to species diversity, 
composition, and structure. The aboveground biomass, rarefied species richness, propor-
tion of standing dead trees, and proportion of individuals of pioneer species in the regen-
eration layer were better predicted by global linear regression models. The proportions of 
individuals of pioneer species in the canopy layer and of threatened species in the canopy 
and regeneration layers were better explained by local geographically weighted regres-
sion models. Human activities at different spatial scales may lead to disturbances (e.g., 
edge effects and habitat fragmentation), thus driving changes in forest attributes. The land 
use amidst forest remnants was related to biomass production and biotic homogenization. 
Logging and road networks may imperil the maintenance of threatened species. The path 
analysis showed that TH indirectly affects species richness via pasture area. Furthermore, 
topography appeared to act as a barrier for the expansion of certain human activities over 
the landscape. Our findings evoked the need for implementation of adaptative conservation 
strategies.
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Introduction

Biodiversity conservation is grounded in the maintenance of ecosystem functions, which, 
in turn, generate essential ecosystem services (Brockerhoff et al. 2017). Humans are innate 
users of such services but are, nevertheless, recognized as the main drivers of current bio-
diversity losses (Ceballos et al. 2015). It is known that as losses increase, the rate of change 
in ecosystem functions also increases (Cardinale et al. 2012). Therefore, biodiversity losses 
in forest ecosystems can jeopardize important services delivered by them, like protection of 
water resources and carbon sink. Tropical forests, for example, store more than half of the 
world’s forest carbon stocks, whereas 56% of this carbon is stored in aboveground biomass 
(Pan et al. 2011). Indeed, studies have shown that primary productivity and biomass stocks 
are positively related to species richness (Poorter et al. 2015; Liang et al. 2016).

Several anthropogenic disturbances threaten forest ecosystems, such as edge effect (Lau-
rance et al. 2006; Broadbent et al. 2008), defaunation (Bello et al. 2015; Peres et al. 2016), 
land use change (Jakovac et al. 2015), logging (Huth and Ditzer 2001), habitat loss (Flynn 
et  al. 2009), and climate change (Allen et  al. 2010). The variety of human disturbances 
may generate synergetic forces leading to biodiversity losses and uncertain pathways of 
forest succession (Laurance et al. 2014; Arroyo-Rodríguez et al. 2017). Biotic homogeniza-
tion is another threat to biodiversity driven by anthropogenic disturbances (Olden 2006; 
Lôbo et  al. 2011); it is characterized by an increase in species composition similarity 
among sites. Another issue in this complex scheme is that humans imprint a topographic 
signature on landscapes: forests on low-altitude and flat terrains may be more exposed to 
land use changes and cover losses (Freitas et al. 2010; Sandel and Svenning 2013). Sloped 
terrains, in contrast, may harbor more forest remnants and promote the increase in forest 
cover. Thus, topography could be related to human activities, which, in turn, may affect 
forest attributes such as aboveground biomass (Méndez‐Toribio et al. 2016).

Most remaining forest patches in the Atlantic Forest phytogeographic domain are a 
result of disturbances with different frequencies and intensities. Historical and ongoing 
deforestation reduced its forest area to ~ 12% of its original cover (Fundação SOS Mata 
Atlântica 2018), and most of the remaining stands consist of young secondary forests 
(Ribeiro et al. 2009). Moreover, less than 25% of the existing forest land is fully satisfying 
current demands for ecosystem services (Ferraz et al. 2014). Some stands were selectively 
logged (Carola 2010), while others regenerated naturally on abandoned agricultural lands 
(Rezende et  al. 2015). Thus, old-growth forests are scarce and even large remnants may 
present signs of recent human disturbance (Chazdon 2014; Ferraz et al. 2014). Therefore, 
stands resembling the structural and compositional features of old-growth forests are scant 
in the Atlantic Forest.

Inasmuch as anthropogenic disturbances are acknowledged as drivers of ongoing biodi-
versity losses, little is known about their effects on subtropical forest ecosystems in highly 
fragmented landscapes. These facts motivated us to investigate the effects of anthropogenic 
disturbances on forest attributes related to structure, diversity, and composition. More 
specifically, we aimed to answer the following questions: (1) Which anthropogenic distur-
bances are the main drivers of changes in species composition, ecological guilds and struc-
tural features, and in which degree they are related to these attributes? (2) Is topography 
related to landscape structure and local anthropogenic disturbances? (3) If yes, is it pos-
sible to identify an indirect effect of topography on forest attributes through anthropogenic 
disturbances? To address these questions, we used data gathered on 186 sample plots of a 
systematic sampling inventory conducted in the Brazilian subtropical Atlantic Forest. The 
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spatially unbiased data allowed us to portray a realistic picture of the conservation status of 
a large number of subtropical Atlantic Forest sites.

Methods

Study area

We defined the study area as the Evergreen Rainforest (ERF) of the state of Santa Catarina, 
southern Brazil. It originally represented 33% of the state’s ~ 96,000 km2 territory (Fig. 1), 
and currently ~ 40% of the original ERF cover remains (Vibrans et  al. 2013). Most rem-
nants consist of less than 70 years old secondary forests (Baptista and Rudel 2006). Forest 
cover reduction and overall degradation were driven by intensive logging of several species 
with increased economic importance and by the conversion of forestland into pastures and 
agriculture (Vibrans et al. 2020). Coal mining also contributed to forest degradation in the 
south of the study area (Colonetti et al. 2009).

The ERF is the most biodiverse forest type within the Atlantic Forest domain. It 
is featured by a canopy layer dominated by Lauraceae, Myrtaceae and Fabaceae spe-
cies, and by an abundance of epiphytes, ferns, and palms (Oliveira-Filho and Fontes 
2000; Gasper et  al. 2014). Tropical climatic conditions prevail in the study area, 

Fig. 1   Location of the 186 sample plots over the Evergreen Rainforest in Santa Catarina state, south-
ern Brazil, and the layout of the buffer built around the center of each sample plot to calculate landscape 
metrics
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such as average annual temperatures above 18  °C and rainfall ranging from 1500 to 
2000 mm year-1. According to the Köppen climate classification, the study area is influ-
enced by the Cfa climate type (Alvares et al. 2013).

Data collection

We used data collected by the Forest and Floristic Inventory of Santa Catarina (IFFSC) 
between 2008 and 2010 on 186 sample plots. The sample plots were systematically dis-
tributed at the intersections of a 10 km × 10 km grid. The IFFSC sample plot is com-
posed of four 20  m × 50  m subplots located at 30  m from the sample plot center and 
oriented toward the four cardinal directions, adding up to 0.4 ha (Fig. 1). All living trees 
with diameter at breast height (dbh) ≥ 10 cm on the subplots were measured; total tree 
height was visually estimated after reference measurements of up to eight trees per sam-
ple plot were taken using a hypsometer.

Individuals with dbh < 10 cm and height ≥ 1.50 m were recorded on four 5 m × 5 m 
plots located at the edges of each 20 m × 50 m subplot to assess the regeneration layer. 
The sample plots’ altitude above sea level ranged from 34 to 1195 m. At least 90% of 
the sample plots were located in secondary forests.

Forest attributes

We selected as response variables seven attributes related to species diversity, com-
position, and structure (Table  1). We described community diversity through the rar-
efied species richness of the canopy layer (SRCL) using individual-based rarefaction 
curves (Gotelli and Colwell 2001); we extracted the SRCL using a standard sample of 
95 individuals. In turn, we described community composition through the proportion of 
individuals belonging to pioneer species in the canopy layer (PPCL) and in the regen-
eration layer (PPRL); and the proportion of individuals of threatened species in the 
canopy layer (PTCL) and in the regeneration layer (PTRL). We classified species as pio-
neer (i.e., light demanding) according to Flora Ilustrada Catarinense (Reitz 1965). We 
defined threatened species according to the Brazilian list of endangered species (MMA 
2014).

Forest structure was described by the aboveground biomass stock (AGB; Mg ha−1) 
and proportion of standing dead trees in the canopy layer (PDCL). We estimated the 
AGB at the individual level using the pantropical model AGB = 0.0673 (ρ ⋅ dbh2 ⋅ 
h)0.976 + ε (Chave et  al. 2014), where AGB is the aboveground biomass (kg), ρ is the 
species’ wood density (g cm−3), h is the total tree height (m), and ε is the random resid-
ual. We gathered ρ data from the Global Wood Density database (Zanne et  al. 2009); 
when ρ for a given species was lacking, we calculated the mean ρ of its genus, as sug-
gested by Chave et  al. (2006). We applied specific AGB models to Cecropia glazio-
vii, Cyatheaceae species (Uller et al. in review), and Syagrus romanzoffiana (Moreira-
Burger et  al. 2010). The palm Euterpe edulis and the tree fern Dicksonia sellowiana 
were not included in the estimates due to the lack of specific AGB models to generate 
reliable estimates at the individual level.
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Predictor variables

We selected 14 predictor variables related to anthropogenic disturbances at the landscape, 
forest patch, and sample plot scales (Table 1). We gathered data on landscape and forest 
patch-scale variables from a land use map of Santa Catarina (Geoambiente 2008) within 
buffers of 2.8 km radius built around the center of each sample plot (Fig. 1). Additionally, 
we employed data from OpenStreetMap (Geofabrik 2018) to compute the total length of 
roads within the buffers. We performed these procedures in ArcGIS 10 (ESRI 2012), and 
most of the variables were calculated using V-LATE 2.0 beta (Vector-based Landscape 
Analysis Tools Extension). At the sample plot scale, the  presence  or  absence of human 
activities was recorded by the IFFSC (Table 1).

We assigned the predictor variables to five categories representing independent types of 
human disturbances on forest communities (Table 1). In this way, we aimed to assess the 
effect of each category, as well as the combined effects of the categories on the response 
variables. Moreover, we aimed to identify which predictor variable in each disturbance 
category presented the largest contribution in explaining the variation in the response 
variables.

We assessed the relationships among topography heterogeneity (TH) and human distur-
bances, as well as indirect effects of the former on forest attributes. We used the standard 
deviation of altitude within the buffers as an indicator of TH (Table 1). Altitude data were 
derived from the digital elevation model calibrated by Valeriano and Rossetti (2012).

Data analysis

We fitted linear multiple regression models through ordinary least squares (OLS) using the 
‘base’ R package aiming to illustrate the global relationships among each forest attribute 
and the anthropogenic disturbances. All possible combinations of the 14 predictors within 
the five categories of disturbances were considered, such that each model had only one pre-
dictor variable per category. We admitted a single variable in each category aiming to build 
parsimonious models and to avoid strong collinearity within the categories. The models 
may generally be written as

where Y is a forest attribute; EE is an edge effect descriptor; CN is a forest connectivity 
descriptor; LU is a land use descriptor; HA is a human accessibility descriptor; LD is a 
local disturbance descriptor; α and βk (k = 1, 2, …, 5) are regression parameters to be esti-
mated; and ε is the random residual.

We used the Akaike Information Criterion (AIC) to select the best models among the 
144 candidates for each forest attribute. The predictor variables embedded in all selected 
models yielded a variance inflation factor (VIF) < 4. We also fitted null models (intercept-
only models) to compare their performance with the best OLS model for each response 
variable.

In addition, we fitted Geographically Weighted Regression models (GWR; Fothering-
ham et al. 2002) to search for effects of predictor variables on forest attributes at the local 
level. We employed the adaptive Gaussian kernel function for geographical weighting to 
allow for variations in bandwidths as a function of sample plot density (Fotheringham et al. 
2002). We fitted the GWR models using the ‘spgwr’ R package. We searched for evidence 

Y = α + β
1
⋅ EE + β

2
⋅ CN + β

3
⋅ LU + β

4
⋅ HA + β

5
⋅ LD + ε
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that the GWR models were more suitable to explain the relationships among the varia-
bles than the global OLS models. For this, we tested, using ANOVA and α = 0.05, the null 
hypothesis that the GWR models did not significantly reduce the sum of squared errors in 
comparison to the global OLS models.

We applied different transformations in the response variables aiming to fulfill the 
assumptions of homoscedastic and normally distributed residuals. The AGB, PDCL, PPCL 
and PTCL were log10 transformed, and the PPRL and PTRL were square-root transformed. 
The SRCL did not require any transformation to fulfill the aforementioned assumptions. 
The estimated regression coefficients of the OLS and GWR models were standardized 
(denoted as β̂*), with exception of the coefficients associated with presence-absence 
(dummy) variables because of their direct relationship with the models’ intercept. Stand-
ardized coefficients can be interpreted as standardized effect sizes (Neter et al. 1996).

We performed two analyzes to assess the influence of topography on forest attributes 
and anthropogenic disturbance patterns. We first calculated Pearson’s correlation coeffi-
cient between topographic heterogeneity and all anthropogenic disturbances. Subsequently, 
we performed a path analysis (Grace 2006) to evaluate the indirect effects of topography on 
forest attributes. Our conceptual model assumed that topographic heterogeneity is directly 
related to the intensity of anthropogenic disturbances and is indirectly related to forest 
attributes. In the path model for each forest attribute, we used the anthropogenic distur-
bance variables embedded in the  respective best OLS model. Every relation among the 
variables was expressed by a hypothetical causal path. We calculated standardized coef-
ficients of partial regression for each causal path, also known as path coefficients (Grace 
2006). Path coefficients measure the direct effects of one variable on another; in turn, the 
indirect effect is given by the multiplication of the path coefficients on a path linking two 
variables (Grace 2006). Because we could not assume that all variables were normally dis-
tributed and most of them presented increased kurtosis, we validated the models through 
the Bollen-Stine bootstrap method for structural equation modelling (Bollen and Stine 
1992). These procedures were conducted using the ‘lavaan’ R package.

Results

The OLS models outperformed the GWR models regarding the prediction of AGB, SRCL 
and PPRL (Table 2). The AGB presented a stronger positive association with forest cover 
and agriculture area. In the OLS model for the SRCL, the significant predictors were pas-
ture area, mean shape index (both with a negative effect), and mean proximity (positive 
effect). The PPRL was, in turn, positively associated with perimeter-area ratio and forest 
cover (Table 2). The OLS models with ∆AIC < 2 for each forest attribute are found in the 
Supplementary Materials, except for the PDCL, whose null model performed equivalently 
to full models. This indicates that the predictors we considered may not be related to tree 
mortality.

The PPCL, PTCL and PTRL were better predicted by GWR models. The GWR model 
for the PPCL performed better in the extreme south of the study area (0.26 ≤ R2 ≤ 0.28), 
where pasture area (0.24 ≤ ̂β* ≤ 0.40) and clearcutting (0.52 ≤ ̂β ≤ 0.66) presented 
the greatest effect (Fig. 2). In the central-southern region (dark grey and black points 
in Fig.  2), edge density (–0.36 ≤ ̂β* ≤ –0.26) and pasture area (0.36 ≤ ̂β* ≤ 0.44) 
were related to PPCL (Fig.  2). The PTCL was better predicted at the central portion 
of the study area (0.25 ≤ R2 ≤ 0.34; black points in Fig.  3), where the perimeter-area 
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ratio (–0.46 ≤ ̂β* ≤ –0.36) and clearcutting (0.53 ≤ ̂β ≤ 0.70) yielded the largest effects 
(Fig. 3). In the regeneration layer, the PTRL presented a stronger relationship with road 
length (0.22 ≤ ̂β* ≤ 0.69) and selective logging (0.63 ≤ ̂β ≤ 0.93) in the extreme north 

Table 2   Summary of the best OLS models

Statistical significance (p ≤ 0.05) is indicated in bold text.  β̂ = estimated regression coefficient; β̂* = esti-
mated standardized regression coefficient

Response variable Predictor variable β̂ β̂* p value

Aboveground biomass (AGB) Intercept 1.67 –  < 0.001
R2 = 0.17 Distance from the edge 6.63 × 10–5 0.14 0.04
AIC =  −65.8 Forest cover 1.63 × 10–8 0.35  < 0.001
AIC (null model) =  −42.4 Agriculture area 2.16 × 10–8 0.29 0.001

Inner pathways  −6.97 × 10–2 – 0.02
Selective logging 6.78 – 0.07

Rarefied species richness (SRCL) Intercept 40.653 –  < 0.001
R2 = 0.17 Mean shape index  −1.185  −0.181 0.009
AIC = 1218.1 Mean proximity 4.05 × 10–4 0.195 0.005
AIC (null model) = 1241.4 Pasture area  −5.42 × 10–7  −0.243  < 0.001

Road length  −2.38 × 10–5  −0.102 0.146
Selective logging 2.020 – 0.077

Proportion of individuals of pio-
neer species in the regeneration 
layer (PPRL)

Intercept 2.41 –  < 0.001

R2 = 0.09 Perimeter/area 123.3 0.358 0.003
AIC = 564.2 Forest cover 6.48 × 10–8 0.303 0.012
AIC (null model) = 570.2 Forest plantation area  −7.33 × 10–8  −0.094 0.205

Inner pathways 2.46 × 10–1 – 0.126
Clearcutting 3.22 × 10–1 – 0.102

(a) (b) (c) (d) (e)

Fig. 2   Local R2 (a) and significant (α = 0.05) local regression coefficients of the predictor variables (b–e) 
embedded in the GWR model fitted to the proportion of individuals of pioneer species in the canopy layer 
(PPCL)
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(0.22 ≤ R2 ≤ 0.26; Fig.  4), whilst agriculture area (0.28 ≤ ̂β* ≤ 0.30) yielded a greater 
effect in the extreme south (R2 = 0.22; Fig. 4).  

TH was significantly (p < 0.05) correlated with most of the landscape metrics. For-
est cover was positively correlated with TH (r = 0.48), while edge density (r = −0.48), 
perimeter-area ratio (r =  −0.43), agriculture area (r =  −0.29), road length (r = −0.20), 
forest plantation (r = −0.19) and pasture area (r =  −0.03) were negatively correlated 
with TH, as expected.

The path analysis revealed that our conceptual model was valid only for the SRCL 
(Fig. 5). TH had negative effects on pasture area, which, in turn, yielded negative effects 

Fig. 3   Local R2 (a) and significant (α = 0.05) local regression coefficients of the predictor variables (b–e) 
embedded in the GWR model fitted to the proportion of individuals of threatened species in the canopy 
layer (PTCL)

(a) (b) (c) (d)

Fig. 4   Local R2 (a) and significant (α = 0.05) local regression coefficients of the predictor variables (b–d) 
embedded in the GWR model fitted to the proportion of individual of threatened species in the regeneration 
layer (PTRL)
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on the SRCL. From these relationships, TH affects indirectly the SRCL via pasture area, 
with a positive effect of 0.079 standard deviations.

Discussion

Effects of human activities on AGB

We identified the main human activities driving changes in forest attributes related to com-
position, diversity and structure. Some of these activities may be perceived as threats to 
forest and biodiversity conservation. Greater forest connectivity and distance between sam-
ple plots and forest edges were related to stands with more AGB, as shown also by Paula 
et  al. (2011) and Haddad et  al. (2015). Less fragmented Atlantic forests may have been 
less disturbed by logging and thus still shelter some large trees, which accumulate most 
of a stand’s AGB (Lutz et  al. 2018). In our study area, less fragmented forests are usu-
ally found near or within protected areas (Fig. 1). These areas have an important role in 
protecting large trees in the subtropical Atlantic Forest, as shown by Scipioni et al. (2019). 
On the other hand, the presence of inner pathways was related to stands with less AGB. 

Fig. 5   Structural model for the SRCL. The path coefficients linking TH to anthropogenic disturbances are 
Pearson correlations, and the paths between anthropogenic disturbances and the SRCL are coefficients 
of partial regressions. The paths linking TH (exogenous variable) to SRCL (response variable) via each 
anthropogenic disturbance (endogenous variables) represent the indirect effects of TH on species richness. 
*p < 0.05; **p < 0.01; ns non-significant
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Pathways may lead to the proliferation of soft-wooded species due to increased light avail-
ability (Silva et al. 2017) and may augment soil compaction, which can limit tree growth.

The presence of selective logging and larger agriculture area within the landscape buff-
ers presented a positive relationship with AGB, although it would not be expected. A pos-
sible explanation for this relationship is that selective logging in the ERF has been car-
ried out in stands with greater AGB, where trees with larger diameters may still be found. 
Regardless of our results, Gatti et al. (2015) showed that intense regimes of selective log-
ging may significantly reduce the AGB of tropical forests and its effects may last for sev-
eral decades. The lack of historical data on the frequency and intensity of selective logging 
in the Atlantic Forest may hinder the detection of its influence on AGB reduction.

The positive effect of agriculture area on AGB could be understood as a synergy with 
the forest cover effect. When forest cover alone is regressed on AGB, it renders an R2 = 3%, 
while agriculture area regressed on AGB does not explain any of its variation. In turn, 
when both variables are regressed on AGB, the model yields an R2 ≈ 12%. This synergetic 
effect may be explained in a few ways. First, fertilizers applied in agriculture areas might 
increase biomass production of nearby forests (Vitousek et  al. 1997; Schlesinger 2009). 
Second, agriculture is usually implemented in sites with better physical and chemical soil 
properties; hence, forests near these sites are naturally more productive. Third, when agri-
culture is conducted over complex landscapes, it could deliver more food resources for ani-
mals and thus the connectivity among forests patches may intensify the mobility of seed 
dispersion. This interaction may, in the long run, drive the increment of forest biomass by 
the increase in species diversity and/or tree density (Tscharntke et al. 2005). Fourth, all the 
above may occur simultaneously.

Aside from these issues, according to Brazil’s Forest Code, landowners are obligated 
to designate a Legal Reserve (LR), that is a forest area corresponding to 20% of the total 
area of a property within the Atlantic Forest domain; this area should provide the minimum 
conditions for maintenance of biodiversity (Brasil 2012). The importance of LRs for bio-
diversity conservation in Brazil is widely acknowledged (Metzger et al. 2019). Other poli-
cies, nonetheless, such as payment for carbon sequestration and management of secondary 
forests, could be implemented to encourage landowners to maintain other forest areas than 
LRs, thus harmonizing forest conservation with agricultural and economic development.

Human disturbances may affect species richness and composition

The SRCL was related to forest connectivity, mean shape index, and pasture area. Land-
scapes with more pasture area and with more isolated forests with irregular shape (non-
circular) tend to present less tree species. It is known that fragmentation has negative 
effects on species diversity. Edge effects may accelerate the death of individuals belonging 
to species that do not tolerate intense desiccation and wind turbulence, thereby leading 
to changes in species diversity patterns (Laurance 2000; Tabarelli et  al. 2004). Further-
more, the landscape matrix may affect tree species richness because colonization processes 
depend both on the resilience and on the distance among forests (Prevedello and Vieira 
2010; Leithead et  al. 2012). The connectivity among forest patches could also be influ-
enced by the land use amidst them. Pastures, for instance, could be regarded as barriers for 
seed dispersers (de la Pena Domene et al. 2018), as potential dispersers may avoid open 
areas due to greater likelihood of predation.

The proportion of individuals of threatened species was related to disturbances at the 
local level, as revealed by the GWR models. All threatened species in our dataset are shade 
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tolerant and consequently are more susceptible to the increase of light exposure prompted 
by forest edges (Laurance et al. 2002). Against our expectations, selective logging and road 
length yielded positive effects on the PTRL. A possible explanation is that although these 
endangered species had been logged (Martinelli and Moraes 2013), it did not completely 
inhibit the maintenance of seedling banks over time. For example, threatened species cor-
responded to more than 30% of the trees on a sample plot at the northern region of the 
study area. The original tree density of threatened species like Ocotea catharinensis may 
have been so great that many individuals were not felled due to their inferior stem quality 
or small size. Indeed, Reitz et al. (1979) asserted that individuals of O. catharinensis added 
up to one third of the wood volume in one hectare at the northern region of the study area. 
Other threatened species, such as Euterpe edulis and Cedrela fissilis, are still among the 
most abundant in southern Santa Catarina (Colonetti et al. 2009), despite the expansion of 
agriculture.

The maintenance of populations of threatened species was favored by Brazil’s Federal 
Decree 750 and Atlantic Forest law, which prohibited deforestation of primary and second-
ary forests (with exception of early successional forests) (Brasil 1993, 2006). Nevertheless, 
threatened species are still being illegally logged in the study area, and it may imperil the 
conservation of these species, especially of their genetic diversity (Montagna et al. 2018). 
Possible actions that would prevent this illegal activity, at least partially, would be the rein-
forcement of supervision and the implementation of sustainable forest management pro-
grams that would be economically attractive to landowners.

Impacts on species guilds patterns

The PPCL presented a stronger association with the evaluated disturbances in the extreme 
southern region of the study area (Fig. 2), where pasture areas and presence of clearcutting 
were related to PPCL. Clearcutting is often conducted to expand pasture areas, or even to 
facilitate the access of cattle into stands. Unfenced pastures permit cattle to enter forests for 
thermal comfort and alimentation. They also transit within permanent preservation areas 
along rivers and streams for water consumption. Several  studies have shown that cattle 
trampling and grazing disturb the natural regeneration of Atlantic forests (e.g., Rosa et al. 
2016; Vefago et al. 2019). Facing these issues, more sustainable cattle ranching methods, 
like silvopastoral systems, are highly encouraged. Such win–win approaches would pro-
vide shade and forage for livestock, whilst the natural regeneration of adjacent forest stands 
would be spared. In addition, other benefits would be attained regarding multiple environ-
mental services and diversification of income for landowners.

Early succession species may proliferate in forest fragments adjacent to open habitats 
due to the increase in light availability (Laurance et al. 2006). The dispersion of such spe-
cies may also be driven by tree mortality, which may be more pronounced in forest edges 
bordered by pastures than in edges bordered by vegetation in early stages of succession 
(Mesquita et al. 1999). Nonetheless, we did not find evidence that the PDCL is related to 
the PPCL on the evaluated sample plots. Remarkably, we also did not identify a relation-
ship among PDCL and the anthropogenic disturbances. Tree mortality did not appear to 
be strongly related to edge effects generated from surrounding land use (e.g., pasture), nor 
from human disturbances in our study area. Mortality is most likely related to natural spe-
cies turnover processes of secondary succession.

The massive colonization of pioneer species may lead to biotic homogenization and 
may delay species turnover in secondary forests (Tabarelli et al. 2012; Silva et al. 2017). 
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Anemochoric species in pastures adjacent to forest fragments may produce an increased 
amount of seeds that may retard successional processes, although little is known about how 
far these species may penetrate stands (Laurance et al. 2006). The PPRL was not related to 
pasture area (Table 1). The predominance and maintenance of such species in the natural 
regeneration layer may, however, be influenced by greater intensities of edge effects, as evi-
denced by the positive association between the PPRL and perimeter-area ratio.

Relationships among topography and human disturbances

Greater TH was shown to be associated with greater forest cover, smaller edge density, and 
less anthropism. Steeper terrains usually shelter less fragmented forests than plain terrains 
because of the restricted accessibility and limited conditions for tree felling and agriculture 
mechanization (Rezende et al. 2015). Such conditions also appear to limit land use changes 
and urbanization. We observed less agriculture, pasture and forest plantation areas, as well 
as sparser road networks, in landscapes with greater TH.

The path analysis indicated that TH has negative effects on pasture area, thus it has 
positive indirect effects on species richness. Areas where TH limits forest degradation 
may have augmented conservation value not only due to the preservation of larger forest 
patches, but also for protecting different pools of tree species (Everson and Boucher 1998). 
On the other hand, our results indicate that areas with less TH are more vulnerable to forest 
degradation. This is specially relevant for conservation purposes because coastal plains, for 
instance, shelter several rare tree species but are, nevertheless, under pressure due to real 
estate development (Oliveira et al. 2019) and have a few protected areas (Fig. 1).

Conclusions

Our study supported evidences that human activities at different spatial scales lead to dis-
turbances such as edge effects and habitat fragmentation/isolation. These disturbances are 
related to ongoing changes in the structure and composition of secondary Atlantic forests 
and might even imperil biodiversity conservation. Land use amidst forest remnants is a 
relevant factor for forest conservation. Agriculture and pastures can affect forest attributes 
in different ways. The former was related to stands with more AGB in landscapes with 
large forest remnants, while the latter was related to stands with less species diversity. Pas-
ture areas appeared to be related to the intensity of pioneer species colonization in nearby 
forests and may stand as a driver of biotic homogenization, thus delaying species turnover. 
In addition, the proportion of threatened species was positively related to long road net-
works and selective logging. Therefore, monitoring forest regeneration throughout time is 
essential to evaluate the eventual impacts of anthropogenic disturbances on this seminal 
component.

TH limits certain human activities, thus promoting the preservation of forests with 
greater species diversity. Conversely, coastal plains are more exposed to human activities, 
and therefore, by necessity, conservation strategies should be aimed at these environments. 
We could only validate our conceptual path model embedding indirect effects of TH on the 
SRCL. Therefore, new conceptual models could be proposed and tested.

Our study provided insights on issues related to the conservation of a threatened phyto-
geographic domain, the Atlantic Forest. Understanding these challenges are necessary for 
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comprehensive decision-making regarding forest conservation and management. Neverthe-
less, for the planning of strategies related to the definition of priority areas for conserva-
tion and ecological corridors, other components, such as environmental features and socio-
economic aspects, should be considered along with biodiversity and structural aspects.
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