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Abstract
Uebelmannia is a cactus genus represented by three microendemic species with patchy dis-
tributions in campo rupestre landscapes in the Espinhaço Range in eastern Brazil. It is one 
of the ten genera of Cactaceae listed as threatened with extinction due to habitat loss and 
illegal overcollection. Assessment of the genetic diversity and population structure of this 
threatened genus is crucial to provide guidelines for both in situ and ex situ conservation 
and management efforts. Here, we genotyped 12 microsatellite loci from samples covering 
the entire distribution of this genus (485 individuals from 20 localities) to investigate the 
genetic diversity, spatial population structure, and demography of Uebelmannia species. 
The results identified moderate-to-high levels of genetic diversity in Uebelmannia, com-
parable to the wide-range cacti from Cerrado biome. The results confirmed an extremely 
high population structure even at small geographic scales, with population clusters exhib-
iting high inbreeding and genetic signatures of a recent bottleneck. Based on this study, 
we suggest some conservation strategies, including in situ management for populations at 
the borders of protected areas and ex situ seed collection, for further management of this 
genus. Furthermore, the results suggest the use of a precautionary approach for transloca-
tion plans and highlight that effective conservation management of Uebelmannia should 
target genetically clustered populations instead of species or subspecies.
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Introduction

The extraordinary biodiversity of campo rupestre (CR) landscapes in eastern Brazil has 
long drawn the attention of conservation biologists (e.g., Giulietti et al. 1997; BFG 2018). 
Recently, researchers interpreted CR as a bonafide representation of the old stable land-
scapes (Silveira et al. 2016; Mucina 2018) and were alarmed by the unprecedented impacts 
of human disturbances to these areas. This has led to increasing interest in research in vari-
ous areas to investigate the plant life in this megadiverse and highly endemic vegetation 
complex (Morellato and Silveira 2018).

Campo rupestre is montane, grassy-shrubby mosaic vegetation occurring on rocky out-
crops of quartzite sandstone or ironstone along with sandy, stony, and waterlogged grass-
lands (Silveira et al. 2016). The core distribution of CR occurs primarily on high plateaus 
and isolated mountain tops along the Espinhaço Range in eastern Brazil, with smaller dis-
junct areas found in the central Brazilian highlands. Although CR covers approximately 
0.78% (66,447  km2, Silveira et al. 2016) of the land in Brazil, it harbors 14.7% of the Bra-
zilian vascular flora, with c. 2000 endemic species (BFG 2018), of which 255 are at risk of 
extinction (Monteiro et al. 2018). Several environmental, ecological, and evolutionary pat-
terns are observed in CR, such as strong environmental filters (nutrient-poor soils, seasonal 
droughts, and high irradiance; Fernandes 2016), high biodiversity and narrow endemism 
(Conceição et al. 2016), phylogenetic conservatism (Zappi et al. 2017), predominance of 
old lineages (Silveira et al. 2016), and species dispersal limitations (Morellato and Silveira 
2018). These features have supported the existence of CR as an ancient and stable land-
scape (Silveira et al. 2016; Mucina 2018) based on OCBIL (old climatically buffered infer-
tile landscape) theory (Hopper 2009). Considering the ancient and stable heterogeneous 
topography of CR, the diversification patterns found among CR taxa suggest that these 
landscapes contain climate (Bonatelli et al. 2014) and/or fire microrefugia (Conceição et al. 
2016; Mucina 2018), museums of ancient lineages (Zappi et al. 2017) and cradles of con-
tinuing diversification of endemic lineages (Bitencourt and Rapini 2013). Taken together, 
these features establish CR as a priority area for the conservation of Brazilian flora (Loyola 
et al. 2014; Monteiro et al. 2018). An important challenge in the implementation of conser-
vation efforts in CR is the high beta diversity due to the abundance of microendemic taxa, 
increasing the number of protect areas that need effective conservation.

Cactaceae is a common component of the xeromorphic phytophysiognomy of CR, usu-
ally growing on bare rock or white sandy soils. Of the 42 cactus species endemic to CR 
(Zappi and Taylor 2008), 28 from 10 genera are listed in the threatened categories of both 
the IUCN (IUCN 2018) and the Brazilian Red List floras (Martinelli and Moraes 2013), 
highlighting CR as a hotspot of threatened cacti (Goettsch et  al. 2015). Among these 
threatened taxa, the genus Uebelmannia contains three microendemic species whose popu-
lations extend over an area of c. 8000  km2 in the southern Espinhaço Range. All three 
species occur in small and patchy populations and are categorized as critically endangered 
or endangered (IUCN 2018) and listed in Appendix I of the Convention on International 
Trade and Endangered Species as a direct consequence of their rarity and illegal overcol-
lection (Zappi and Taylor 2008). In addition, Uebelmannia is the only remaining taxon 
representing the early-divergent lineage within Cactaceae, sister to the clade giving rise 
to most of the Brazilian cactus diversity (Hernández-Hernández et  al. 2011). This phy-
logenetic distinctiveness increases the importance of its conservation even further. Con-
cerning the level of threats and the particularities of the different components of Brazilian 
cactus diversity (e.g., high taxonomic richness, endemicity, ecological singularity, rarity, 
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and conservation status), since 2011, the Chico Mendes Institute for Biodiversity Conser-
vation (ICMBio, Brazilian government) has implemented the National Action Plan for the 
Conservation of Cacti (PAN Cactaceae; Ribeiro-Silva et al. 2011) together with Brazilian 
researchers. Members of the genus Uebelmannia inhabiting CR landscapes in eastern Bra-
zil represent one of the threatened taxa included in the PAN Cactaceae.

Among the three species of this genus, Uebelmannia pectinifera is the one with the 
broadest distribution, occurring on the western side of the southern Espinhaço Range. This 
species is subdivided into three subspecies, the nominate form, U. pectinifera subsp. flav-
ispina, and U. pectinifera subsp. horrida, a taxon formerly known from only a single local-
ity on the northernmost limit of the species distribution. Three new localities of U. pectinif-
era subsp. horrida were recently disclosed by G. Olsthoorn (pers. comm.) and explored 
in this work, showing that the distribution range of this taxon extends to the south into 
the Sempre Vivas National Park. Uebelmannia gummifera occurs on the eastern side of 
the southern Espinhaço Range, with two subspecies, the nominate form and U. gummifera 
subsp. meninensis. Uebelmannia buiningii has the narrowest range in the genus, occur-
ring in a few populations adjacent to the U. gummifera range. All three species are char-
acterized by having solitary, globose or cylindrical stems bearing yellow flowers apically, 
and diurnal flowers that attract hymenopterans as pollinators (Schulz and Machado 2000). 
Recently, Teixeira et al. (2018) reported that U. buiningii is a self-incompatible species and 
does not form fruits or seeds without pollination, with two bee species (Dialictus opacus 
and Plebeia sp.) acting as effective pollinators. Similarly, one of the authors of the current 
study (L.Y.S.A., pers. comm., unpublished results) has investigated the reproductive biol-
ogy of U. pectinifera and also observed that it is a self-incompatible species.

To provide guidelines for the conservation of the Uebelmannia genus, we used nuclear 
microsatellite markers to assess the level and distribution of genetic diversity, level of 
inbreeding, and recent bottlenecks across its entire range of distribution. The main objec-
tives of the study were to address the following questions: (i) Are Uebelmannia popula-
tions experiencing genetic erosion due to their narrow and patchy distribution? (ii) What is 
the level of spatial genetic structure, and does it agree with the taxonomic divisions within 
this genus? Finally, based on the results of this study, we proposed management guidelines 
for this microendemic, phylogenetically important and endangered cactus genus.

Materials and methods

Sampling

We collected root tips of 485 reproductively mature plants from 20 different localities of 
U. buiningii (n = 67), U. gummifera (n = 164), and U. pectinifera (n = 254). The sampling 
strategy was to cover the entire taxonomic diversity and distributional range of the whole 
Uebelmannia genus (Table 1; Fig. 1). Sampling in the protected areas of Serra Negra State 
Park and Sempre Vivas National Park was carried out in accordance with Brazilian law 
through special permits provided to one of the authors of the current study (E.M.M.) by the 
Minas Gerais State Forestry Institute (permit number COL-073/11) and the Chico Mendes 
Biodiversity Conservation Institute (permit number 28464), respectively. Genomic DNA 
was extracted using a DNeasy Plant Mini Kit (Qiagen, Hilden, Germany) and quantified 
using 1% agarose gel.
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Microsatellite analysis

We used a total of 12 perfect (non-composed or interrupted) dinucleotide nuclear micros-
atellite loci characterized by Moraes et al. (2014) for Uebelmannia species. The PCR con-
ditions and thermocycling parameters followed Moraes et  al. (2014) with minor adjust-
ments (Table A1 in the Online Resource 1). Amplicons were visualized on 3% agarose gel 
and subsequently run on a Fragment Analyzer Automated CE System (Advanced Analyti-
cal Technologies, Ames, IA, USA) using the 35–500 bp dsDNA Reagent Kit (Advanced 
Analytical Technologies). Finally, the alleles were scored using PROSIZE v2.0 (Advanced 
Analytical Technologies).

The genetic diversity at each sampled locality was assessed according to the number of 
alleles (A), effective number of alleles (ne), number of private alleles (Pa), and expected 
(HE) and observed heterozygosities (HO) using GENALEX v6.501 (Peakall and Smouse 
2012). The allelic richness (AR) and inbreeding coefficient (FIS) were computed in FSTAT 
v2.9.3.2 (Goudet 2001). Deviations from Hardy-Weinberg equilibrium (HWE) and link-
age disequilibrium (LD) were assessed using ARLEQUIN v3.5.2.2 (Excoffier and Lischer 
2010), and the significance levels of these tests were adjusted according to the sequential 
Bonferroni correction for multiple comparisons (Rice 1989). All loci were checked for the 
presence of null alleles as implemented in MICRO-CHECKER v2.2.3 (Van Oosterhout 
et al. 2004). To avoid the possible bias introduced by null alleles, we estimated the global 

Fig. 1  Map of natural occurrence and sampling localities of the genus Uebelmannia. Sampling localities 
are coded according to Table 1 and taxa are labeled by symbols according to the inset. Black dots repre-
sent the natural occurrence of the genus according to the Global Biodiversity Information Facility (GBIF) 
records. Expected heterozygosity predicted by empirical Bayesian kriging across the Uebelmannia distribu-
tion range is depicted according to the color scale in the inset. The limits of the conservation units in the 
studied area are shown by the green lines
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FST based on the corrected data for null alleles in FREENA (Chapuis and Estoup 2007). 
We used a probabilistic interpolation method and the empirical Bayesian kriging (EBK) 
approach as implemented in ArcGIS 10.6 (Krivoruchko 2012) to generate a geographic 
map of the expected heterozygosity across the Uebelmannia range.

Spatial population structure

Genetic differentiation among all Uebelmannia samples (global differentiation) and within 
species were assessed using the standard fixation indices based on the infinite alleles model 
(FST and G′′

ST
 ) and the stepwise mutation model (RST) using ARLEQUIN and GENALEX. 

We also used AMOVA in ARLEQUIN to explore the level of genetic variance in the hier-
archical models assuming taxonomic and geographic groupings inferred by clustering 
analyses.

We explored the population genetic structure using different approaches. Since each 
approach involves its own assumptions and issues (Excoffier and Heckel 2006; Putman and 
Carbone 2014; Janes et al. 2017), we inferred the population genetic structure according to 
congruent clustering results. First, we used the Bayesian clustering approach in STRU CTU 
RE v2.3.4 (Pritchard et al. 2000), assuming no admixture model and correlated allele fre-
quencies (Appendix A1 in the Online Resource 1). To explore the hierarchical structuring, 
in the first run, we used all 20 sampled localities. In a second round, we used the subsets 
of data corresponding to the identified genetic clusters in the first round. To supplement 
the results of STRU CTU RE, we performed discriminant analysis of principal components 
(DAPC, Jombart et al. 2010) as implemented in ‘adegenet’ (Jombart 2008).

Among the clustering methods considering spatial distribution, we used GENELAND 
v4.0.5 (Guillot et al. 2005), TESS v2.3 (Chen et al. 2007), and BAPS v6.0 (Corander et al. 
2008) (Appendix A2 in the Online Resource 1). For these analyses, we selected the uncor-
related or correlated frequency models according to the presence or absence of isolation by 
distance, respectively. Finally, we employed BAPS under the model of spatial clustering 
of groups to estimate the most likely number of genetic clusters in the populations. We 
also used STRU CTU RE to assess the evidence of migration between the sampled locali-
ties, incorporating geographic information into the analysis. The occurrence of migration 
is inferred from the establishment of a minimum probability (0.5) that the genotype of a 
particular individual belongs to a specific population. Individuals with values below this 
cut-off were considered migrants or descendants of migrants.

We tested the presence of isolation by distance (IBD) through redundancy analy-
sis (RDA) following the approach described by Meirmans (2015; Appendix A3 in the 
Online Resource 1). Conditioned by the presence of a significant correlation, we then used 
the pairwise genetic differentiation matrix to construct a map of local differentiation in 
LOCALDIFF (Duforet-Frebourg and Blum 2014) considering two simulated neighbors at a 
distance of 0.1 and 100 posterior replicates.

We investigated the recent reduction in the effective population size by assessing 
whether the populations deviated from mutation-drift equilibrium with BOTTLENECK 
v1.2.02 (Cornuet and Luikart 1996), as detailed in Appendix A4 (Online Resource 1). We 
also used the modified Garza-Williamson index in ARLEQUIN v3.5.2.2 (Excoffier and 
Lischer 2010), assuming a reduction in population size of M ≤ 0.68 (Garza and Williamson 
2001). In addition, estimates of contemporary effective population size (Ne) were based on 
a single-sample approach using the LD method (Waples and Do 2008), as implemented in 
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NEESTIMATOR v2.01 (see details in Appendix A5 in the Online Resource 1; Do et al. 
2014).

Results

Genetic diversity

The mean genetic diversity at the species level was generally higher for U. gummifera and 
U. buiningii than for U. pectinifera (Table 2). Within the populations, we found a low num-
ber of effective alleles (1.03–3.03) and allelic richness (1.09–3.95) for U. pectinifera at 
most sampled localities. In contrast, we found moderate genetic diversity in U. buiningii 
(AR = 3.89–4.83; ne = 2.46–2.84) and U. gummifera (AR = 3.99–5.59; ne = 2.98–4.48). 
Furthermore, the highest number of sampled localities (six) harboring private alleles was 
found for U. gummifera (Table 2). The observed heterozygosity was moderate for U. buin-
ingii (HO = 0.404–0.477) and U. gummifera (HO = 0.318–0.427), while a wide range of 
values among localities (HO = 0.000–0.443) was observed for U. pectinifera. According 
to the EBK approach, the highest levels of HE were predicted in the U. buiningii and U. 
gummifera ranges (Fig. 1). Interestingly, U. pectinifera showed moderate to low HE pre-
dictions for the populations in the Sempre Vivas National Park and outside the protected 
areas, respectively.

A significant amount of inbreeding was suggested by the significant positive values 
of FIS for almost all localities of the genus (FIS = 0.222–1.000; Table  2) except for the 
cases of Ub-1 and Ub-2 (U. buiningii). At the species level, U. buiningii showed the lowest 
mean value of inbreeding (0.147), followed by U. pectinifera (0.336) and then U. gum-
mifera (0.433). All species had at least one population with a locus deviating from HWE. 
In addition, null alleles were found at all sampled localities (Table 2). A high number of 
locus pairs showing LD was found in only two populations: U. buiningii (Ub-2) and U. 
gummifera (Ugm-2; Table 2). Lastly, FREENA estimates for all loci were almost the same 
for the original (FST = 0.359) and null allele-corrected (FST = 0.364) datasets. Therefore, 
we carried out all the subsequent analyses without the exclusion of any loci except when 
the missing data from locus Upec214 (not transferred, Table A1 in the Online Resource 1) 
caused the performance of the analysis to be problematic.

Genetic and spatial structure

The global genetic differentiation was significantly high for all loci in Uebelmannia (FST = 
0.36, RST = 0.57, and G��

ST
= 0.73 ; Table A2 in the Online Resource 1). Within species, U. 

pectinifera showed the highest estimates of genetic divergence among populations (FST = 
0.45, RST = 0.63, and G��

ST
= 0.76 ), while U. gummifera showed low to moderate estimates 

of the fixation indices (FST = 0.10, RST = 0.28, and G��

ST
= 0.30 ). Estimates of genetic dif-

ferentiation in U. buiningii were low and significant for most fixation indices (FST = 0.05, 
G

��

ST
= 0.13 ). There was no IBD when considering the genetic variation in U. buiningii, 

U. gummifera, and U. pectinifera separately or for the combination of U. buiningii and U. 
gummifera. However, we found very low IBD (RDA × FST = 16%) when all three species 
were combined. Nonstationary patterns of IBD showed the highest local genetic differen-
tiation in a small area of the U. buiningii and U. gummifera ranges located in the north-
western border of Serra Negra State Park (Fig. 2).
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The clustering methods revealed much subdivision at the highest hierarchical level of 
population structure in Uebelmannia, resulting in 15 (GENELAND and DAPC) or more 
genetic clusters: 17 in BAPS and 21 in TESS (Fig.  3; Figs. A1 and A2 in the Online 
Resource 1). We could not find the most likely K groups at the genus level using STRU 
CTU RE because we obtained multiple peaks of ΔK and the inferred clusters for the same 
K were instable across different runs (Fig. A3 in the Online Resource 1). The highest 
number of genetic clusters was observed in U. pectinifera, with 10 clusters according to 
GENELAND and 11 for TESS, BAPS, and DAPC, where individuals from each sampled 
locality were assigned to a distinct genetic cluster. Uebelmannia buiningii individuals were 

Fig. 2  Local genetic differentiation within the genus Uebelmannia based on LOCALDIFF

(a)

(b)

Fig. 3  Population genetic clustering in Uebelmannia with color plots from a TESS results using the no 
admixture model and K = 21 and b GENELAND results for the uncorrelated model and K = 15. Black bars 
show U. pectinifera, U. gummifera, and U. buiningii, with population code in Table 1. Each color corre-
sponds to a distinct genetic cluster, and each bar corresponds to the proportion of an individual’s genotype 
in the genetic clusters
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consistently assigned to a unique genetic cluster according to all clustering methods. In 
contrast, the clustering results for U. gummifera were inconsistent, showing three clusters 
according to DAPC, four for TESS and GENELAND, and five for BAPS, which partially 
corresponded to the geographic distribution and subspecies status of the populations.

Additional clustering analyses taking into account each species separately (Fig. 4; Figs. 
A4 and A5 in the Online Resource 1) supported U. pectinifera as a highly structured spe-
cies subdivided into 10 (DAPC), 11 (GENELAND and BAPS), or 12 (TESS) clusters, each 
one generally corresponding to a single sampled locality. On the other hand, STRU CTU 
RE assigned individual genotypes into only two genetic clusters, with most of the U. pec-
tinifera individuals showing admixed membership proportions (Fig. 4; Figs. A4 and A5 in 
the Online Resource 1). For U. gummifera, the clustering methods showed three (STRU 
CTU RE and DAPC), six (GENELAND and BAPS), and seven (TESS) genetic clusters. 
For the K = 3 model, both STRU CTU RE and DAPC assigned individuals of the subspe-
cies meninensis into a single cluster, while individuals of the subspecies gummifera were 
subdivided into two additional clusters corresponding to the eastern and western portions 
of the range of the subspecies. The analyses resulting in high K values (six or seven clus-
ters) identified most U. gummifera individuals as having admixed genotypes from several 
clusters (GENELAND and TESS) or according to each sampled locality (BAPS). The clus-
tering analyses generated contrasting results for U. buiningii (Fig. 4; Figs. A4 and A5 in 
the Online Resource 1). STRU CTU RE and GENELAND identified three and four clusters, 
respectively, with most individuals showing admixed genotypes from all genetic clusters. 

Fig. 4  Population genetic clustering in U. buiningii, U. gummifera, and U. pectinifera with color plots from 
STRU CTU RE, GENELAND (correlated model), and TESS (admixture model). Each color corresponds to 
a distinct genetic cluster, and each bar corresponds to the proportion of an individual’s genotype in the 
genetic clusters, with the population codes in Table 1. STRU CTU RE results were inconsistent in U. buin-
ingii and U. pectinifera due to no resolution of ΔK or multiple peaks and no stability in clustering groups. 
GENELAND also showed artificial clusters for all populations in U. gummifera likely due to low MCMC 
convergence
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BAPS identified two clusters (Fig. A5 in the Online Resource 1), assigning individuals 
from the neighboring localities Ub-2 and Ub-3 into the same genetic cluster, while DAPC 
assigned individuals of each sampled locality into one distinct cluster. Although TESS 
identified four genetic clusters for U. buiningii, the largest membership proportion of each 
individual was assigned to the same cluster.

The hierarchical AMOVA results were in line with clustering analyses and showed 
higher genetic variance among populations within species or subspecies than among these 
taxonomic groups (Table A3 in the Online Resource 1). In general, the genetic variance 
was higher among than within groups (i.e., FCT > FSC) when each species was subdivided 
into several clusters. Specifically, the AMOVA results supported a population structure 
composed of at least 15 clusters for Uebelmannia, 10 clusters for U. pectinifera, four clus-
ters for U. gummifera, and a single cluster for U. buiningii..

Table 3  Detection of a reduction in population size of Uebelmannia genetic clusters inferred by clustering 
analyses in this work

Probabilities from the Wilcoxon test using BOTTLENECK and a modification of the Garza–Williamson 
index using ARLEQUIN
TPM two-phases model; G–Wmodified Garza–Williamson index, SD standard deviation
*Significant at P < 0.05 for the Wilcoxon test; SMM, stepwise mutation model

Source Wilcoxon test M-ratio

SSM TPM Mean G–W SD

U. buiningii 0.8837 0.2158 0.1102 0.0580
U. gummifera
 Ugg-1 0.2885 0.0046* 0.1369 0.0597
 Ugg-2 0.1601 0.0007* 0.1198 0.0416
 Ugg-3 0.1601 0.0336 0.0986 0.0436
 Ugg-4 0.7675 0.0615 0.1157 0.0506
 Ugm-1 0.7216 0.2460 0.1173 0.0646
 Ugm-2 0.6176 0.0737 0.1211 0.0634
Western U. gummifera subsp. gummifera 0.4155 0.0061* 0.1582 0.0630
Eastern U. gummifera subsp. gummifera 0.5507 0.1201 0.1295 0.0557
U. gummifera subsp. meninensis 0.6499 0.1201 0.1395 0.0677
U. pectinifera
 Upf-1 0.6870 0.5000 0.0543 0.0270
 Upf-2 0.5312 0.1875 0.0474 0.0299
 Upp-1 0.2500 0.2500 0.0251 0.0134
 Upp-2 0.5390 0.2460 0.0851 0.0488
 Upp-3 0.4550 0.1250 0.0659 0.0408
 Upp-4 0.8608 0.3188 0.0728 0.0289
 Upp-5 0.8496 0.3671 0.0606 0.0378
 Uph-1 0.7934 0.4492 0.0907 0.0428
 Uph-2 0.8969 0.2885 0.0864 0.0424
 Uph-3 0.1391 0.0105* 0.0905 0.0407
 Uph-4 0.3501 0.1201 0.0940 0.0460



1275Biodiversity and Conservation (2020) 29:1263–1281 

1 3

Demographic analyses

The ‘USEPOPINFO’ model in STRU CTU RE identified eight individuals as migrants 
among the 485 sampled individuals (Table A4 in the Online Resource 1). Three individu-
als sampled as U. buiningii were identified as migrants from a U. gummifera population 
(Ugg-2), and one was identified as being from another locality of U. buiningii (Ub-2). The 
remaining identified migrants included one individual sampled as U. gummifera and iden-
tified as originating from a U. pectinifera population and three U. pectinifera individuals 
originating from U. gummifera or from other localities where U. pectinifera occurred.

Based on the BOTTLENECK analysis, only the western populations of U. gummifera 
subsp. gummifera (Ugg-1 and Ugg-2) and one population of U. pectinifera (Uph-3) exhib-
ited excess heterozygosity in relation to the expectation under the TPM model. In con-
trast, the M-ratio tests supported a recent population size reduction in all tested groups 
and populations, as indicated by the consistently low values of the Garza-Williamson index 
(Table  3). These contrasting results were expected due to the lower statistical power of 
the heterozygosity-excess approach in comparison to M-ratio tests in detecting bottlenecks 
(Peery et al. 2012).

The effective population size estimate of the cohesive genetic cluster of U. buiningii 
resulted in Ne = 18.30 (95%  CIjackknife 9.00–38.30). In the U. pectinifera and U. gummif-
era tests, all the genetic clusters except Uph-2 (Ne = 19.20; 95%  CIjackknife 7.20–322.90) 
showed infinite estimates at the upper limit of the CI (Table 4), suggesting that the effect 
of sampling error is larger than any signal of LD or genetic drift (Waples and Do 2010). 

Table 4  Estimates of contemporary effective population size (Ne) for Uebelmannia genetic clusters inferred 
by clustering analyses in this work using a single-sample LD method implemented in NEESTIMATOR

N number of samples

Genetic cluster N PCrit Ne

Estimate 95% CI

U. buiningii 67 0.01 18.3 9.0–38.3
U. gummifera
 Western U. gummifera subsp. gummifera 50 0.02 201.2 62.4–∞
 Eastern U. gummifera subsp. gummifera 52 0.02 187.9 61.6–∞
 U. gummifera subsp. meninensis 62 0.01 174.5 64.9–∞
U. pectinifera
 Upf-1 26 0.02 492 14.1–∞
 Upf-2 22 0.03 50.2 2.9–∞
 Upp-1 20 0.03 ∞ ∞
 Upp-2 20 0.03 ∞ 19.9–∞
 Upp-3 23 0.03 38.8 7.7–∞
 Upp-4 22 0.03 31.2 6.4–∞
 Upp-5 29 0.02 190.2 22.8–∞
 Uph-1 25 0.03 87 22–∞
 Uph-2 20 0.03 19.2 7.2–322.9
 Uph-3 25 0.03 298 32.7–∞
 Uph-4 22 0.03 65.9 17.7–∞
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On the other hand, similar values at the lower limit of the CI were found in U. gummifera, 
ranging from 61.60 to 64.90, while they were lower and ranged from 2.90 to 32.70 in U. 
pectinifera.

Discussion

Genetic diversity and assessment of population structure

The CR landscapes of eastern Brazil, with their astonishing biodiversity, endemism and 
high number of threatened plant species, have been considered to be a top priority for 
conservation investment and research regarding plant life in Brazil (Monteiro et al. 2018). 
Here, we investigated the level and distribution of genetic diversity in the Uebelmannia 
genus, a highly prioritized, microendemic, and threatened CR taxon. Our findings provide 
guidelines for conservation of the Uebelmannia species and improve the understanding 
of the conservation genetics of endemic habitat specialists among CR plants. We used 12 
nuclear microsatellite loci coupled with broad-scale sampling, covering the entire distri-
bution of Uebelmannia. The results showed moderate-to-high levels of genetic diversity, 
extremely high population structure, and genetic signatures of recent bottlenecks in this 
genus. The results further confirmed that U. buiningii is the only species in the genus 
deviating from this scenario; however, it has the narrowest range among the species of the 
genus.

Although small populations are particularly likely to have low levels of genetic vari-
ability (Frankham 1996), Uebelmannia maintains a unique pattern of moderate-to-high 
levels of HE and AR. The mean values of HE (0.394) and AR (2.988) for U. pectinif-
era are the lowest among the studied plant species in CR using microsatellite markers 
(Khan et al. 2018b and references therein). However, the other two species, U. buiningii 
and U. gummifera, showed higher genetic diversity, suggesting that these species are not 
suffering from genetic erosion. Such unexpected patterns of genetic diversity have also 
been observed in other microendemic cacti in CR (Moraes et al. 2012; Bonatelli et al. 
2014; Khan et al. 2018b), a characteristic in line with the predictions of OCBIL theory 
(Hopper 2009). The indication of higher genetic diversity within U. buiningii and U. 
gummifera than in U. pectinifera suggests that habitat fragmentation either as a result 
of anthropogenic degradation (Goettsch et  al. 2015) or initially established during the 
Plio-Pleistocene transition by glacial cycles may explain the differences in the levels of 
genetic diversity (examples in Franco et al. 2017; Silva et al. 2018). In addition, U. pec-
tinifera populations occur on the westernmost side of the distribution of this genus, with 
a larger range outside the protected areas, and are therefore most prone to habitat deg-
radation by humans. The relatively low diversity of the individuals at the Datas locality 
(Upp-1; HE: 0.027; AR: 1.083), which occurs outside the protected areas, is also related 
to the small number of individuals. This finding highlights the consequences of anthro-
pogenic disturbance, as previously mentioned by Schulz and Machado (2000). Similarly, 
the EBK approach predicted a heterogeneous level of genetic diversity from moderate to 
high among the populations in unprotected and protected areas, respectively (Fig.  1). 
However, the maintenance of a positive FIS in U. gummifera and U. pectinifera is a sign 
of habitat fragmentation (Lowe et al. 2015). It is worth noting that our results confirm 
the occurrence of recent bottleneck in all Uebelmannia populations. These results and 
the low Ne estimates obtained here mostly reflect the scenario of habitat disturbance and 
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fragmentation (Frankham 2002; Allendorf and Luikart 2006). Contemporary Ne values 
are the most useful estimators in conservation and wildlife management for predicting 
the extinction risk of populations (Luikart et al. 2010). Thus, we are confident that these 
estimates might be useful for conservation assessments of U. buiningii (the species with 
the narrowest geographical distribution), as well as for U. pectinifera and U. gummifera.

The high molecular variance among Uebelmannia groups is mostly reflected in the tax-
onomic groups and subspecies, but it was most significant under the scenario of extreme 
population structure, with nearly each locality forming a distinct cluster. These results are 
in agreement with the naturally fragmented distribution of Cactaceae in CR due to con-
stant fires, restricting these species to patches on rocky outcrops (Taylor and Zappi 2004). 
The low or absence of gene flow estimated among Uebelmannia populations by STRU 
CTU RE explains the scope of drift-driven genetic differentiation and suggests that each 
genetic cluster might be an evolutionarily significant unit (Crandall et  al. 2000). Similar 
reports of high population genetic differentiation and low gene flow have been described 
for Pilosocereus cactus species, which have a broader distribution in the Cerrado biome 
(Bonatelli et  al. 2014; Khan et  al. 2018a). However, our results contradict those regard-
ing the microendemic cactus Pilosocereus aureispinus, in which all populations in CR 
were clustered into one unique genetic group (Khan et al. 2018b). Considering that Uebel-
mannia species are self-incompatible (Teixeira et al. 2018), the high genetic structure may 
also be attributed to the low abundance of pollinators and potential mates together with 
the low seed production rates and aggregated distribution. Thus, the prediction of effec-
tive cross-pollination in the CR species under OCBIL theory seems to not be applicable 
to Uebelmannia. In addition to the high genetic structure and low gene flow, although we 
did not find evidence of IBD, we did find high local genetic differentiation among the simi-
larly distributed U. buiningii and U. gummifera, showing important fine-scale differentia-
tion, which is in agreement with other species with restricted ranges (Moreira et al. 2010). 
For instance, even though U. gummifera populations are separated by a few kilometers, 
all of them exhibit private alleles, a common characteristic found in isolated populations 
(Bocanegra-González et al. 2018). In addition to the natural differentiation among patches, 
anthropogenic barriers caused by habitat loss and illegal collection seem to be important 
factors shaping the extreme population structure in this rare and endangered genus.

Conservation implications

This is the first conservation genetics study on the microendemic and endangered Uebel-
mannia confined to CR landscapes. The results discussed here are useful for designing 
in situ and ex situ conservation and management guidelines for Uebelmannia. The mod-
erate-to-high levels of genetic diversity in the face of extreme population fragmentation 
and isolation suggest that most populations have genetic potential for conservation strate-
gies. However, this picture may be a delayed response to the environmental changes, high-
lighting the urgency in conservation strategies (Aavik et al. 2019). Despite the apparently 
nondepauperated genetic diversity found in this taxon, the choice of populations for in situ 
conservation often relies on the stability of habitat for the maintenance of long-term pop-
ulations and the absence of inbreeding in these populations (Bocanegra-González et  al. 
2018). Given the assumptions regarding the habitat conditions, most populations with high 
genetic diversity occur at the borders of protected areas and are subjected to human dis-
turbance and overharvesting. Furthermore, signs of inbreeding were identified for nearly 
all population genetic clusters (except Ub-1 and Ub-2). Nevertheless, the high levels of 
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genetic variation associated with the population structuring at the fine scale and the pres-
ence of private alleles show the evolutionary potential of these populations in terms of 
long-term persistence, mitigating the negative effects of inbreeding for in situ management. 
In this sense, we suggest the in situ conservation of the U. buiningii and U. gummifera pop-
ulation clusters (Ub-1, Ub-2, Ub3, Ugg-1, Ugg-2, Ugg-3, and Ugg-4) at the border of Serra 
Negra State Park and U. pectinifera (Upp-2, Upp-3, Upp-4, Uph-1, and Uph-4) nearest to 
Biribiri State Park and Sempre Vivas National Park. In particular, our data suggest that 
the most compelling results will come from expanding the northwestern border of Serra 
Negra State Park, where most of the genetic and taxonomic variation in Uebelmannia 
occurs. Furthermore, as another vital component of the conservation of Uebelmannia, we 
suggest seed collection from all genetic clusters identified here. Seed collection planning 
will be most effective if accompanied by storage techniques for the long-term preservation 
of germplasm, such as cryopreservation, and considering updated guidelines for sampling 
effort required to preserve population genetic variation and reduce the effects of germi-
nation failures (Hoban 2019). Even in cases in which populations have low diversity or 
common alleles, we still suggest management actions until the adaptive responses of such 
populations to the environment and human degradation are clear. However, such actions 
can be hampered by the reduced number of individuals in populations near roadsides or 
far from natural parks, a scenario found in most of the U. pectinifera genetic clusters. For 
these clustered populations, we strongly suggest ex situ conservation for the subsequent 
reintroduction of plants into their natural habitats. Finally, we highlight the robustness of 
the extreme population genetic clusters obtained here according to a wide range of statis-
tics using microsatellite markers. Thus, we suggest that eventual translocation of individu-
als should be performed with caution due to the apparent risk of outbreeding depression in 
Uebelmannia populations. We also suggest that further investigations should be conducted 
using a genome-wide multilocus approach to improve the understanding of these genetic 
clusters and provide insight into the development of future translocations plans.
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