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Abstract
Global warming is causing shifts in distribution of plants, leading to alterations in the 
native flora. In addition, increased intensity and frequency of wildfires is posing threats 
to Himalayan ecosystems. Modeling a species’ ecological niche and its potential distribu-
tion under projected impacts of climate change and distribution of wildfires provides an 
understanding of the behavior of native flora in altered climatic conditions. In this study, 
we predicted future distribution of four endemic tree species Pinus roxburghii, Quercus 
semecarpifolia, Rhododendron arboretum, and Cedrus deodara in western Himalaya under 
A1B scenario of Special Report on Emission Scenarios for 2030, 2050, and 2080, under 
two conditions: (i) without wildfire and (ii) with wildfire. We included wildfire occurrence 
as a predictor variable in the Maxent model along with 35 climate variables, to predict the 
future distribution of four indicator species. As per the predictions, there will be a sig-
nificant reduction in the geographic distribution of the indicator species under the ‘with 
wildfire’ scenario as compared to the ‘without wildfire’ scenario. The future distribution 
range was shifted towards the northern and north-eastern regions of our study area owing 
to higher moisture availability. We predicted reduction in the range of C. deodara during 
2030, R. arboreum during 2050, and P. roxburghii during 2080, while the distribution of 
Q. semecarpifolia remained unchanged. Our modeling predicted that climate change could 
induce reduction, expansion, and shift in the distributions of endemic plant species, which 
could lead to alteration in the endemic flora of the Himalayas.
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Introduction

Impacts of climate change on terrestrial ecosystems

During last three decades global mean temperature has increased by 0.85 °C relative to the 
mean temperature during 1986–2005 (IPCC 2013). According to Representative concentra-
tion pathway (RCP) 2.6 it is likely to increase further by a minimum of 0.3 °C–1.7 °C, and, 
as forecast by RCP 8.5 by up to a maximum of 2.6 °C–4.8 °C by the end of this century 
(IPCC 2013). The forecasted increase in global mean temperature is neither temporally nor 
spatially uniform (Bellard et al. 2012). Climate change is expected to cause shifts in spe-
cies’ ranges globally as species track their optimal niche, which will likely shift as a result 
of rearrangement of climate zones (Loarie et al. 2008a, b; Velásquez-Tibatá et al. 2012). 
High elevation and high latitude areas are among those regions where rates of warming 
are forecast to be higher than the global average rates. Temperature-limited environments 
such as high mountains are thought to be very sensitive to climate change. Global climate 
change over last few decades has caused numerous shifts in the distribution and abundance 
of mountain ecosystems (Araujo et al. 2011, Chen et al. 2011). The rate of regional warm-
ing in parts of the Himalayas has exceeded the rate of global warming (Chaudhari and 
Bawa 2011). Climate change induced vegetation shift towards higher elevations and higher 
latitudes poses threats to the mountain ecosystems by intensifying the competition for sur-
vival, leading to species extinction (Ashcroft 2010). Globally, climate change over last few 
decades has caused shifts in the distribution of plant species at varying degrees (Kueppers 
et al. 2005; Kelly and Goulden 2008; Loarie et al. 2008a, b; Chen et al. 2011). In addi-
tion, Himalayan ecosystems are experiencing a higher degree of species extinction as well 
as alterations in species distribution due to altered climatic extremes, rising temperatures, 
erratic rainfall pattern (Chitale et al. 2014; Thapa et al. 2018). Projecting the changes in the 
distribution of endemic plants under future climatic conditions might provide important 
information for planning and mitigating the impacts of climate change on native ecosys-
tems (Araujo and Rahbek 2006).

Impact of wildfires on forests

Wildfires occur in three principal forms as Surface fires, Crown fires, and Ground fires 
depending on their means of spread and their position to the ground (Semwal and Mehta 
1996; Roy 2004). Vegetation type and density are the two most important floristic factors 
related to ignition of wildfires. Surface fires are common and have been documented in 
wildfire-prone forests in the western Himalaya (Roy 2004). In India about 3.73 million ha 
of forests are annually affected by wildfires (Chandra and Bhardwaj 2015). The effect of 
wildfires on vegetation dynamics mainly includes the changes in composition and structure 
of the communities (Kittur et al. 2014). Fires affect the floristic composition of ecosystems 
by selectively favoring fire-adapted species and destroying the non-fire resistant species 
(De Bano et al. 1998). The timing and periodicity of fires is of extreme importance in some 
plant communities as these factors affect plant survival and flowering, whereas fire inten-
sity affects the resistance of woody plants and seed germination (Trabaud 1987; Wheelan 
1995; Verma and Jayakumar 2015). Fires also have an indirect effect of introducing inva-
sive species and affecting the native biodiversity. Wildfires affect soil properties through 
changing soil microbial activities and water relations, and creating heterogeneous mosaics, 
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which in turn, can further influence fire behavior and ecological processes (Certini 2005). 
As an evolutionary mechanism, some plants have thick bark, capability of re-sprouting, 
and meristem and seed protection strategies to cope up with the recurring wildfires (Bond 
and van Wilgen 1996). A study by Slik et al. (2002) showed that wildfire changes the for-
est structure by significantly reducing the numbers of trees and species in the forest area. 
Considering the positive and negative roles of wildfires in mediating and regulating eco-
systems, they should be incorporated as an integral component of ecosystems and manage-
ment. Nonetheless, there have been no studies on understanding and predicting the role of 
wildfires on future distribution of plants.

Climatic, topographic, and geological variations have resulted in unique ecosystems and 
biota in the Himalayas (Myers et al. 2000; Singh 2019). High calorific value, aggressive 
middle storey vegetation, and the slow-growing nature of the Himalayan forests make them 
vulnerable to this new threat fuelled by a warming climate (Sharma et al. 2010; Ahmad 
and Goparaju 2018). Warming summers and less annual rainfall in recent decades due to 
climate change have increased the frequency of occurrence and severity of wildfires across 
the globe (North et al. 2015; Murthy et al. 2019). Wildfire is considered part of the nor-
mal ‘climate’ in most of the terrestrial ecosystems (Semwal and Mehta 1996). But the 
increased frequency of wildfire events results in warming and thus alters the biodiversity 
of the Indian Himalayan biodiversity hotspot. Pinus roxburghii produces resins and hence 
accommodates the highest frequencies of wildfire events compared to other endemic tree 
species. Cedrus deodara, Quercus semecarpifolia, and Rhododendron arboreum are often 
juxtaposed with P. roxburghii in habitats where there is higher probability of damage due 
to crown fires. The destruction of flora and fauna caused by wildfires during summer sea-
son in the western Himalayan forests is greater than by any other anthropogenic factor on 
these forests (Sahni 1990; Hussain et al. 2018). Hence, there is an urgent need to study the 
impact of the wildfires on the endemic flora of the Himalaya, considering that the mean 
temperature has risen by more than 1 °C during 1970–2002 (McDowell 2002) and contin-
ued increase is predicted over the coming two decades (Shrestha and Bawa 2014) that will 
increase the wildfire events.

Species distribution modelling

Impact of climate change is evident globally on increasing number of species (Fitter and 
Fitter 2002; Cotton 2003; Iverson et al. 2008). Various researchers have anticipated range 
shifts and extinctions of high elevation flora due to increasing temperatures over the com-
ing five decades (Araujo and Rahbek 2006; Iverson et  al. 2008; Loarie et  al. 2008a, b). 
Estimates of the future effects of global climate change on biodiversity have often been 
based on environmental envelope models (Moradi et al. 2019). Species distribution model-
ling is one of the methods used to quantify patterns of species and to extrapolate distribu-
tions across space and time based on a statistical model. These models assume that distri-
butions are caused by the environmental tolerances that define fundamental niches (Leach 
et al. 2013). These models often relate known species distributions to predictor environ-
mental variables to predict future potential distributions under global change scenarios 
(Guisan and Thuiller 2005; Phillips et al. 2006; Hannah et al. 2007; Iverson et al. 2008). 
Most of the studies have used climate factors alone to project species distributions under 
future scenarios; however, there are many other non-climatic factors that can affect poten-
tial distribution of species (Hampe 2004; Melles et al. 2010). This is particularly true for 
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high mountain ecosystems, where wildfire could alter the future distribution of the native 
flora.

Various studies have included non-climatic factors for modeling present-day species 
distributions. Such factors include land use and land cover (Thuiller et al. 2004; Pearson 
et  al. 2004; Luoto et  al. 2006), vegetation cover (Matin et  al. 2012), topography (Luoto 
and Heikkinen 2007; Chitale and Behera 2012), or a combination of all these (Brotons 
et  al. 2007), and vegetation structure and landscape configuration (Trivino et  al. 2011). 
Rising temperatures in the Himalayas are expected to increase the intensity and frequency 
of occurrence of wildfires, which could accelerate the rate of degradation of Himalayan 
biodiversity. Global change scenarios based on environmental variables used in the species 
distribution models do not account for factors such as wildfires that affect regional climate 
(Nakicenovic et al. 2000).

To our knowledge, past studies have not considered wildfire event as a predictor vari-
able in predicting the species distribution, particularly in the Himalayan ecosystems. The 
question arises: how the changes in temperature due to wildfire events affect future dis-
tribution of species? In this study, we addressed this question using occurrence data of 
four dominant endemic tree species in the western Himalaya (Fig. 1), viz. Pinus roxburghii 

Fig. 1   a Location of training samples, test samples and meteorological stations overlaid on a digital eleva-
tion model of the study area; b photographs indicating ecological details of the indicator species
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(Pine), Quercus semecarpifolia (Kharsu Oak), Cedrus deodara (Devdar) and Rhododen-
dron arboreum (Burans) (see Table  1). Former three species are endemic to Himalayas 
and are known as key species of subtropical forests, while tree rhododendron is endemic to 
whole Asia and, in India, it is the state tree of Uttarakhand and the state flower of Himachal 
Pradesh. We studied the changes in predicted distribution of these four species under with- 
and without-wildfire condition for year 2030, 2050, and 2080 under SRES A1B scenario.

Methods

Study area

The study area covered Himachal Pradesh and Uttarakhand States of India, covering 
109,156 km2 of forests that experience the greatest annual numbers of forest fires (Kelkar 
et al. 2008). The study area encompassed 716, 84 km2 of forest cover with diverse vegeta-
tion communities (Fig. 1). In summer 2016, a large portion of the forests in Uttarakhand 
burned during the infamous Uttarakhand forest fire incident. This resulted in damage to 
forest resources estimated at billions of rupees, caused the death of 6 people, and killed 
hundreds of wild animals (Gupta et al. 2018). We observed an increasing trend of wildfire 
occurrence from 2009 to 2012. In 2009, 797 wildfires occurred in the study area, which 
increased to 984 in 2010, to 1104 in 2011, and to 1498 by 2012.

Species distribution modelling

We used MaxEnt model (version3.3.3e) that works on the maximum entropy method (Phil-
lips et al. 2006), to conduct the species distribution modelling and assess the changes in 
distribution of indicator species under two scenarios, (i) with wildfires and (ii) without 
wildfires (Fig. 2). Maxent is a general-purpose machine learning method with a simple and 
precise mathematical formulation, and it has a number of aspects that make it well-suited 
for species distribution modeling. The model was formulated by Phillips et al. (2006) and 
first implemented over the Amazonian region.

The Maxent model uses training samples to simulate the scenario of prediction against a 
set of bioclimatic variables, which are mostly climatic and physiographic indicators of the 
niche, and the model uses test samples to assess the accuracy of modeling while attempting 
to estimate a probability distribution of species occurrence that is closest to uniform while 
still subject to environmental constraints (Elith et al. 2011). We used the free version of 
Maxent software, version 3.3.3e (http://www.cs.princ​eton.edu/~schap​ire/maxen​t/), which 
generates an estimate of probability of presence of the species that varies from 0 to 1, i.e. 

Table 1   Niche parameters of indicator plant species

Sl. no. Species Family Altitude (m.a.s.l.) Temperature (°C) Precipitation (mm)

1 Pinus roxburghii Pinaceae 450–2300 0–30 1000–1200
2 Quercus semecarpifolia Fagaceae 2500–3800 0–30 500–2500
3 Cedrus deodara Pinaceae 1200–3500 0–17 300–2000
4 Rhododendron arboreum Ericaceae 1200–3800 0–20 200–1800

http://www.cs.princeton.edu/%7eschapire/maxent/
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from the lowest to the highest probability. Maxent works best with the presence only data-
sets viz., locations of presence records of the species and produces precise results with few 
samples as well, hence it is a suitable modelling technique to be used for endemic species 
(Leach et al. 2013). Therefore, we used this modelling technique for our study.

Plant distribution data

Based on the plant distribution data of ‘Biodiversity characterization project’ (Roy et al. 
2012), we selected four indicator species that are endemic to the study area and have high-
est species dominance compared to other endemic species. One hundred eighty-seven 
records were extracted from the field data of ‘Biodiversity characterization project’ (Roy 
et al. 2012) that contained geographical distribution of four indicator species. We used at 
least fifteen records of each species as training and test samples for running the model, as 
recommended by Leach et al. (2013). The occurrence records of the indicator species were 
split into training and test samples with a 70:30 proportion respectively using ‘random 
data splitting’ method. In total, we used 38 and 19 records of Pinus, 24 and 16 records of 
Quercus, 24 and 17 records of Cedrus, and 31 and 18 records of Rhododendron as training 
and test samples respectively. We assume this sample can be taken as representative of the 
part of the Himalayan flora distributed in India because it includes records of four domi-
nant endemic tree species, which are currently exposed to the threat of increasing wildfire 
frequency. Throughout this study we refer to the baseline distributions of our four indicator 
species as their “2008 distributions” because 2008 was the final year of the national biodi-
versity survey project.

Predictor variables

Our predictor variables comprised of climate and disturbance factors (Table  2). We 
used the future climate prediction data for three time periods viz., 2030, 2050, and 2080 

Predictor variables 

Bioclim data

Forest fire data

Indicator species data

Distribution modelling

With-wildfire scenario

Range dynamics analysis

Range dynamics analysis 
for 2030

Range dynamics analysis 
for 2050

Range dynamics analysis 
for 2080

Model validation

Predictor importance

Prediction period: 2030, 2050, 2080

Predictor variables 

Bioclim data

Indicator species data

With-wildfire scenario

Model validation

Predictor importance

Fig. 2   Methodology flowchart
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under the IPCC A1B scenario, (Parry et al. 2007). The A1 scenario describes a world 
with rapid economic growth and population that peaks in mid-century and declines 
thereafter and assumes rapid introduction of new and more efficient technologies, while 
concentrations of carbon increase from 380 ppm in 2000 to 800 ppm in 2080, and tem-
perature rises by 3.6 K. A1B is a subset of A1 family, which refers to a balanced empha-
sis on all energy sources (IPCC 2001). We used 35 bioclimatic variables with 10 × 10 
kms spatial resolution from the CliMond database (https​://www.climo​nd.org, Table 1) 

Table 2   Details of 35 bioclimatic 
variables acquired from CliMond 
database

Variable Description

Bio01 Annual mean temperature (°C)
Bio02 Mean diurnal temperature range (mean(period 

max–min)) (°C)
Bio03 Isothermality (Bio02/Bio07)
Bio04 Temperature seasonality (C of V)
Bio05 Max temperature of warmest week (°C)
Bio06 Min temperature of coldest week (°C)
Bio07 Temperature annual range (Bio05-Bio06) (°C)
Bio08 Mean temperature of wettest quarter (°C)
Bio09 Mean temperature of driest quarter (°C)
Bio10 Mean temperature of warmest quarter (°C)
Bio11 Mean temperature of coldest quarter (°C)
Bio12 Annual precipitation (mm)
Bio13 Precipitation of wettest week (mm)
Bio14 Precipitation of driest week (mm)
Bio15 Precipitation seasonality (C of V)
Bio16 Precipitation of wettest quarter (mm)
Bio17 Precipitation of driest quarter (mm)
Bio18 Precipitation of warmest quarter (mm)
Bio19 Precipitation of coldest quarter (mm)
Bio20 Annual mean radiation (W m−2)
Bio21 Highest weekly radiation (W m−2)
Bio22 Lowest weekly radiation (W m−2)
Bio23 Radiation seasonality (C of V)
Bio24 Radiation of wettest quarter (W m−2)
Bio25 Radiation of driest quarter (W m−2)
Bio26 Radiation of warmest quarter (W m−2)
Bio27 Radiation of coldest quarter (W m−2)
Bio28 Annual mean moisture index
Bio29 Highest weekly moisture index
Bio30 Lowest weekly moisture index
Bio31 Moisture index seasonality (C of V)
Bio32 Mean moisture index of wettest quarter
Bio33 Mean moisture index of driest quarter
Bio34 Mean moisture index of warmest quarter
Bio35 Mean moisture index of coldest quarter

https://www.climond.org
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that represent biologically meaningful measures for characterizing species distributions. 
CliMond database provides crucial information on climate datasets of the study area 
and describe temperature, precipitation, solar radiation, and moisture index with annual 
mean, and lowest and highest extremes. For correlative species distribution models, the 
10 × 10 kms climatology data from CliMond database provides an opportunity to the 
modeler to identify marginally climatically suitable locations and appears to support 
model projections that are ecologically meaningful (Kriticos et  al. 2012). Hence, we 
used CliMond datasets of climate projections for year 2030, 2050, and 2080 under A1B 
scenario. A raster layer of fire disturbance was created based on the mean temperature 
of wildfire events and the spatial locations of wildfire events using Krigging spatial 
interpolation technique in ArcGIS. For this purpose, spatial locations of 4204 wildfire 
events that occurred in the States of Himachal Pradesh and Uttarakhand during year 
2008 to 2012 were acquired from Forest Survey of India (http://www.fsi.org.in/fores​
t-fire.php). The spatial layer of wildfire events was overlayed on the vegetation type map 
of the study area (Roy et al. 2012) in GIS environment ArcGIS 9.2 to generate separate 
raster layers of wildfire events that occurred in the areas containing Pinus, Quercus, 
Cedrus, and Rhododendron. Finally, the spatial resolution of all the predictor variables 
was set to 10’ to match with the climate datasets. All the layers were converted to.csv 
(comma-separate values) match the format for the modelling in Maxent. We used the 
area under curve (AUC) values that range from 0 to 1 and provide the accuracy value of 
the prediction with training and test samples. The results with only above 90% estima-
tion accuracy on training and testing samples were retained and used in the analysis.

Range dynamics

We analyzed the predicted distribution of all four indicator species under with-wildfire 
and without-wildfire conditions under 2030, 2050, and 2080 and quantified the range 
expansion and range reduction. We also analyzed the range expansion and range reduc-
tion across different classes of distribution probability e.g., 0–20%-very low; 20–30%-
low; 30–40%-moderate; 40–60%-high; > 60%-very high probability.

Results

Prediction accuracy

The prediction accuracy of the model for the four indicator species under with-wildfire 
and without-wildfire was found to be > 90%, which is acceptable for using the prediction 
results for the further analysis. In case of Pinus, the AUC values for training data ranged 
from 0.92 to 0.978 for different time periods, whereas that for testing data ranged from 
0.915 to 0.966 (Table  3). The AUC values for training data for Quercus ranged from 
0.91 to 0.965, whereas that for the testing data ranged from 0.914 to 0.978. The AUC 
values for training and testing data Cedrus ranged from 0.911 to 0.96 and from 0.935 
to 0.963 respectively. For Rhododendron, the AUC values for training and testing data 
ranged from 0.916 to 0.98 and from 0.915 to 0.948 respectively.

http://www.fsi.org.in/forest-fire.php
http://www.fsi.org.in/forest-fire.php
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Species wise niche dynamics

The four indicator plant species depicted different patterns in predicted distribution under 
future climate change scenarios under with-wildfire and without-wildfire scenarios. The 
models predicted a reduction in the future distribution of all four species particularly in 
high altitude areas (5500–7200 m) under with-wildfire condition in 2030, 2050, and 2080 
(Fig.  3). However, the overall predicted changes suggest that distribution of the indica-
tor species will shift in eastern and north-eastern direction. In case of P. roxburghii the 
range reduction was not so prominent in 2030 and 2050, however in 2080 a prominent 
range reduction was predicted in high altitude areas, along with range expansion in low 
altitude areas. This indicates that niche of this species will be altered more in the long 
time period (e.g., 2080) than in short/mid-term time period (e.g., 2030, 50). This is in line 
with the results from a similar study by Chakraborty and Joshi (2016). On the contrary, the 
niche of Q. semecarpifolia is predicted to change by 2030 (Fig. 4), with increased distribu-
tion range in high altitude areas, which indicates availability of more area for expansion 
of the species. This is in line with the results of Saran et al. (2010). We did not observe 
any significant changes in the predicted distribution of Q. semecarpifolia in mid-term and 
long-term time periods (e.g., 2050, 80). The predicted distribution of C. deodara depicted 
range expansion in high altitude, while reduction at low and moderate altitude in 2030 and 
2080. In 2050, the niche of the species is predicted to expand in most of the study area. 
This shows varied response to short-term, mid-term, and long-term climate change. We 
predicted severe range reduction in the distribution of R. arboreum in 2050 and in 2080, 
while minor change in the distribution were predicted in 2030 (Fig. 4). This indicates that 
species’ niche will get impacted in the mid-term period and might continue with the simi-
lar trend towards the long-term period.

We also analyzed the range reduction and expansion under different classes of pre-
dicted probability of distribution of the indicator plants, where the expansion-reduction 
varied according to indicator species (Fig.  5). In 2030, the predicted distribution of 
Cedrus showed maximum range expansion by ca. 30% in moderate probability class of 

Table 3   Area under curve values for the different prediction catogories

Prediction cat-
egory

Type AUC values for 
Pinus roxburghii

AUC values for 
Quercus seme-
carpifolia

AUC values for 
Cedrus deodara

AUC values for 
Rhododendron 
arboreum

2030 WOF Training 0.92 0.965 0.925 0.98
2030 WOF Testing 0.915 0.978 0.935 0.945
2030 WF Training 0.94 0.935 0.92 0.922
2030 WF Testing 0.93 0.914 0.945 0.948
2050 WOF Training 0.978 0.955 0.915 0.916
2050 WOF Testing 0.956 0.96 0.948 0.92
2050 WF Training 0.932 0.91 0.911 0.935
2050 WF Testing 0.963 0.936 0.938 0.94
2080 WOF Training 0.948 0.925 0.96 0.945
2080 WOF Testing 0.966 0.944 0.948 0.915
2080 WF Training 0.935 0.95 0.925 0.927
2080 WF Testing 0.923 0.93 0.963 0.933
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distribution and range reduction in all other probability classes. Quercus also showed 
minor increase during 2030. In 2050, Rhododendron showed maximum range expansion 
in high probability distribution class, while range reduction was observed in all other 

Fig. 3   Distribution of indicator species in 2030, 2050 and 2080 under without-wildfire and with-wildfire 
scenarios
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probability classes, whereas in 2080, large range reduction was predicted in moderate 
probability distribution class of Pinus.

Role of predictor variables

The highest contribution value of 4.8% for forest fire disturbance was predicted for 
Quercus, followed by 2% for Rhododendron, 1.9% for Cedrus and 1.6% for Pinus. Tem-
perature seasonality was the most significant factor in all predictions for all four indicator 
species (Fig. 6). Minimum temperature of the coldest week was the second ranked param-
eter and its effect was most prominent with-wildfire. A minor contribution was predicted 

Fig. 4   Range reduction and expansion in the distribution of indicator species in year 2030, 2050 and 2080 
caused by climatic variations in with- and without-wildfire scenarios

Fig. 5   Percent area under range expansion vs. reduction in the distribution of indicator species in year 2030, 
2050 and 2080
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for three variables, viz. mean temperature of wettest quarter, mean temperature of driest 
quarter, and mean moisture index of wettest quarter.

Discussion and conclusions

Increasing frequency of wildfires in recent years is posing a threat to the biodiversity of the 
study area, which compelled us to study the impacts of wildfires by including them in the 
species distribution models. Predictions of the response of biodiversity to climate change 
alert researchers and policy makers to potential future risks and can support the develop-
ment of proactive strategies to reduce impacts of climate change on biodiversity (Bellard 
et  al. 2012). Despite uncertainties, our results illustrate the potential importance and the 
likely direction of effects climate change. From a conservation point of view, a proportion 
of Himalayan flora could become vulnerable to effects of wildfires. P. roxburghii showed 
the largest changes in distribution range, while R. arboreum showed the least shift. Large 
areas of the present distribution of four indicator species were predicted to shift in north-
erly and north-easterly directions under future climate change. These results are in line 
with those of Chitale et al. (2014), where they observed vast change in the species distribu-
tion of endemic plants in the Himalayan biodiversity hotspot in India. Nonetheless, owing 
to their range of habitats and adaptability the response of each indicator species differed 
from that of the others.

Our results coincide with the results from recent studies, which reported an upward shift 
of plants in western Himalaya owing to high rates of warming. Our results coincide with 
the direction of observations made by Singh et al. (2012), although the magnitude of the 
risks we predict is lower: We predict the highest shift in distribution range of indicator 
species, while Singh et al. (2012) observed a tree line shift of approximately 400 m from 
year 1976 to 2010. Bharti et al. (2011) predicted forest canopy increase devoid of timber-
line shift, whereas Telwala et al. (2013) observed shifts in 87% of endemic species in the 
eastern Himalaya as compared to 19th century field sampling records. An apparent shift of 
range along the valleys in our study area could be linked to higher moisture levels along 
the river channels in the valleys. Panigrahy et  al. (2010) reported vegetation ingression 
in snowmelt regions in Central Himalaya. Matin et al. (2012) observed shift in projected 
distribution of Poa annua and Medicago sativa towards the valleys in the western Himala-
yas. Chitale and Behera (2012) predicted shift in the range of Shorea robusta towards east 
and northeast India in response to moisture availability in the eastern part of the country. 

Fig. 6   Contribution of climate variables in the future distribution of indicator species
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Projecting future changes in the distribution of endemic flora is a crucial step towards 
adapting to the impacts of climate change on biodiversity (Araujo and Rahbek 2006). The 
differences in the distribution ranges of the four indicator species could be attributed to the 
local disturbance factors, species’ response to changes in climate, and the ability of species 
to disperse and establish themselves in new habitat. The rate of change in tropical forests 
would be higher than in temperate and subtropical ecosystems due to narrow ranges of 
temperature tolerance among the two latter types. Predictions of potential distribution of 
the species in this study could help in developing better conservation strategies for moni-
toring and managing vulnerable flora of Himalayan biodiversity hotspot, by providing an 
account on impacts of climate change on future distribution of plants.
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