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Abstract
Species distribution data provide critical baseline information for conservation planning 
and decision making. However, in many of the Earth’s most biodiverse regions, such data 
are lacking for many species. Here, we used ecological niche modeling and connectiv-
ity analyses to model distributions of endangered species and protected area connectivity 
across the Upper Guinea Forest (UGF) Global Conservation Hotspot of West Africa. We 
estimated the current distributions of African forest elephant Loxodonta cyclotis (Vulner-
able), western chimpanzee Pan troglodytes verus (Critically Endangered), and pygmy hip-
popotamus Choeropsis liberiensis (Endangered) across the region and optimized connec-
tivity in two main forest complexes in the region. We used occurrence data for the period 
2010–2016 for the three species from two well-sampled national parks in Liberia (Sapo 
National Park and Gola National Park), and remotely sensed MODIS enhanced vegetation 
index data for the period 2010–2015. Our models predicted a total of 75,157 km2 of suit-
able habitat for chimpanzees in the region, 79,400 km2 for elephants, and 290,696 km2 for 
hippos. Of these areas, for chimpanzees, 30% of the area predicted falls within the bounda-
ries of proposed or designated protected areas, and likewise 30% for elephants, and 19% 
for hippos. Liberia had the largest blocks of contiguous forest suitable for these species 
compared to other countries in the region but this forest was largely unprotected. This 
study identifies priority areas for biodiversity conservation and forest connectivity in the 
region, and reemphasizes the practicality of these tools to optimize conservation planning 
and implementation.
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Introduction

Biodiversity conservation is a global priority, yet garnering resources to meet global con-
servation priorities is challenging, in largest part owing to escalating threats to biodiversity, 
particularly in biodiversity-rich regions of the world (Squires 2014). These threats, includ-
ing forest fragmentation, habitat degradation and destruction, overhunting, disease associ-
ated with human activities, and a myriad of negative impacts of climate change, are push-
ing endangered species to the brink of extinction (Thomas et al. 2004; Pimm et al. 2014).

To optimize biodiversity conservation and reduce threats in the wake of limited 
resources, conservation biologists have employed conservation triage (i.e., prioritize invest-
ments for maximum returns, given limited resources (Wilson et  al. 2007; Bottrill et  al. 
2008, 2009), ecosystem/landscape level conservation, in  situ species-level conservation, 
and ex situ captive breeding programs (Primack 2010). The debate over whether species-
level strategies versus ecosystem/landscape-level approaches may lead to greater success 
continues unabated (Lindenmayer et  al. 2007; Franklin 1993). Whereas Franklin (1993) 
argued that ecosystem/landscape level conservation is cost-efficient and holistic in species 
coverage (e.g., including microbes), Lindenmayer et  al. (2007) argued that species-level 
strategies provide useful baseline information for policy and management, particularly 
for threatened species, keystone species, and invasive species, that have specific impacts 
on the environment. Carignan and Villard (2002), however, cautioned that, whatever the 
case may be, conservationists should select indicators carefully, to optimize biodiversity 
conservation.

Several habitat connectivity modeling approaches have been used in biodiversity sci-
ence to optimize species and ecosystem conservation in a combined effort (Ball et al. 2009; 
McRae et al. 2008; Brás et al. 2013; Lehtomäki and Moilanen 2013; Cushman et al. 2018; 
Hearn et al. 2018; Khosravi et al. 2018; Zacarias and Loyola 2018). These approaches are 
generally based on least-cost analysis of resistance surfaces (e.g., habitat suitability, topog-
raphy) to assess connectivity between distributional areas, but vary in input data require-
ments, scale of analysis, and conservation goals. Here, we explore the use of correlative 
ecological niche modeling to build resistance surfaces (niche models) for habitat connec-
tivity analysis to identify spatial patterns of connectivity in the humid rainforest of West 
Africa. Correlative ecological niche modeling (ENM) uses known occurrences of a spe-
cies and associated environmental data (e.g., temperature, precipitation) to identify areas of 
similar suitable environments for the species (Peterson et al. 2011). Ecological niche mod-
els are usually developed using machine-learning algorithms to characterize current and 
potential distributions of species in geographic and environmental spaces, and has been 
adopted widely in the scientific community, with notable applications in conservation, 
climate change, biogeography, and zoonotic disease research (Jennings and Veron 2015; 
Peterson et  al. 2017; DeMatteo et  al. 2017). A landscape connectivity approach, imple-
mented in the Circuitscape program, which uses electronic circuit theory to predict patterns 
of animal movement between fragmented or heterogonous landscapes (e.g., connecting 
protected areas; McRae et al. 2008, 2016). Circuitscape uses resistance surfaces between 
fragmented range areas to map corridors with greater connectivity. Like ENM applications, 
several studies have applied Circuitscape to diverse challenges in large mammal conserva-
tion (Beier et al. 2011; Roever et al. 2013; Dickson et al. 2013).

Over the last 200 years, West Africa has been identified to rank among the world’s most 
heavily deforested regions, leaving its unique biota severely threatened (Allport 1991; 
Darwall et  al. 2015). The remaining portions of the region’s well-known humid Upper 
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Guinea lowland rainforest are highly fragmented; the exception is Liberia, currently pos-
sessing ~ 42% of its original forest in a relatively well-preserved, extensive, and continuous 
state (Liu et al. 2016). However, an increasing wave of investments from the agricultural 
and mining sectors raises concerns about threats to the remaining biodiversity (Primack 
2010). Regional efforts have begun to address these threats, but little is known about the 
ecology and distributions of most West African species. If better documented and ana-
lyzed, distributional data could be leveraged to inform conservation programs and at least 
partially mitigate development-associated habitat fragmentation.

In this study, we integrated these two techniques to address questions about endan-
gered species distributions, and protected area connectivity across the Upper Guinea For-
est (UGF) of West Africa. Specifically, we aimed to (1) use correlative ENM to predict 
the current distributions of African forest elephant (Loxodonta cyclotis; Vulnerable), west-
ern chimpanzee (Pan troglodytes verus; Critically Endangered), and pygmy hippopotamus 
(Choeropsis liberiensis; Endangered) (hereafter referred to as chimpanzee, elephant, and 
hippo) across the humid lowland UGF of West Africa. Then, (2) we use the resulting mod-
els as surrogates to explore landscape connectivity and identify ideal movement corridors 
to connect protected areas across Liberia and neighboring countries (Guinea, Côte d’Ivoire, 
and Sierra Leone) using Circuitscape. We identified 14 suitable corridors to connect pro-
tected areas within two main forest complexes (Gola-Ziama and Sapo-Tai); these corridors 
likely represent practical candidate regions for applied conservation action.

Materials and methods

This study was conducted in the UGF, one of the two major humid tropical lowland rain-
forests blocks of western and central Africa (Fig. 1). We fitted ENM models in the portion 
of UGF from western Ghana to western Guinea to characterize suitable habitats for our 
target species, while forest connectivity analysis covered the portion of UGF within the 
Manor River Basin (Guinea, Sierra Leone, Liberia, and Côte d’Ivoire; Fig.  1). We used 
three severely threatened, but well-sampled/documented species (chimpanzee, elephant, 
hippo) to answer our questions. These species were selected because they are known to be 
flagship/umbrella species with large home ranges, have high ecological importance, well-
sampled, and are of high global conservation priority.

Input data

Ecological niche modeling requires two types of input datasets: environmental data and 
georeferenced species occurrence data. Environmental data typically include layers sum-
marizing aspects of temperature, precipitation, and/or vegetation, all of which may influ-
ence the survival of a species. Species occurrence data consist of unique, georeferenced 
locations where a species has been recorded (Peterson et al. 2011). Occurrence data were 
split into calibration and evaluation subsets (Peterson et al. 2011). The geographic space 
was divided into a calibration area (M), the area that has been accessible to the species over 
relevant time periods (we further reduced this area to the area from which we had avail-
able detailed sampling, Sapo National Park or Sapo NP), and a projection area (see below), 
a larger area of interest to which models are transferred in space or time (Peterson et al. 
2011).
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We used the NASA Moderate-resolution Imaging Spectroradiometer (MODIS) 
enhanced vegetation index (EVI) dataset at 250 m spatial and 16-day temporal reso-
lutions to characterize the environmental landscape for the species (www.modis .gsfc.
nasa.gov). MODIS vegetation indices have high spatial resolution and provide a realis-
tic characterization of place and time specific environmental conditions (Bodbyl-Roels 
et al. 2011; Feilhauer et al. 2012; Peterson 2014). We downloaded 16-day composite 
MODIS Terra Satellite EVI data for the period 2010–2015- for West Africa. We chose 
EVI over Normalized Difference Vegetation Index (NDVI) because of EVI’s improved 
sensitivity over dense vegetation conditions, which is the case in our study region. Fur-
ther processing of these data is described below.

We used primary occurrence data collected over the period 2010–2016, as part of 
ongoing systematic biomonitoring projects and other surveys across Sapo NP in south-
eastern Liberia and Gola National Park (Gola NP) in northwestern Liberia (e.g., Tweh 
et  al. 2015; Fig.  1). All models were calibrated in Sapo NP and tested in Gola NP 
(Fig. 1). Sapo NP was chosen as our calibration area (M) because it is well-sampled 
and contains high-quality primary occurrence data for each of our species of inter-
est; Gola NP was well-sampled and independent of Sapo NP. All data were collected 
as part of systematic surveys that used GPS for establishing geographic coordinates. 
Occurrence data for both Sapo NP and Gola NP were imported into ArcGIS and con-
verted to point shapefiles. We used SDM Toolbox to subsample high-density cells and 
remove duplications in occurrence data (Brown 2014). At the end of the cleaning exer-
cise, we calibrated our models with a total of 40 occurrence points for hippo, 120 for 
chimpanzee, and 59 for elephant.

Fig. 1  The extent of Upper Guinea lowland rainforest in West Africa, proposed and protected areas across 
the region, including, Sapo National Park and Gola National Park in Liberia where our ecological niche 
models were calibrated and tested respectively

http://www.modis.gsfc.nasa.gov
http://www.modis.gsfc.nasa.gov
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Data processing and analysis

The original set of MODIS EVI data layers was mosaicked and cleaned in ArcGIS version 
10.3. Cloudy images or artifacts were removed and excluded from further analysis, leav-
ing images for 105 time periods that were included in model fitting. We applied princi-
pal components analysis (PCA) to the remaining 105 images to reduce dimensionality and 
correlation among data layers. PCA extracts the major axes of variation in a dataset and 
compresses them into fewer orthogonal variables or principal components, with the first 
PC explaining the most variation in the dataset (Abdi and Williams 2010). In our case, the 
first 46 PCs accounted for 95% of the variation in the data. These 46 PCs were converted 
to ASCII file format for ENM. We used the extract by mask (batch) tool in ArcGIS to 
extract Sapo NP (the model calibration area) from the 46 PCs which were used in calibrat-
ing models.

Ecological niche modeling

To estimate the current distribution of our focal species, we used Maxent version 3.3.3 k, 
a machine-learning software platform widely used to model ecological niches of spe-
cies (Phillips et al. 2006; Phillips and Dudík 2008). Before fitting our models, we further 
reduced the 46 PCs for each species using the delete-one jackknife approach in Maxent 
with each species’ occurrence data and the 46 PCs (Wold et al. 1987; Abdi and Williams 
2010; Shcheglovitova and Anderson 2013). To do this step, we set the random test percent-
age to 50%, output format to logistic, and left all other features at default. Once the variable 
set was reduced, we desired to assess many calibration conditions to be able to choose opti-
mal models. As a result, we used six combinations of feature classes (Linear, Quadratic, 
Product, Threshold and Hinge) and five regularization multiplier values (0.1, 0.5, 1, 2, and 
5) in Maxent (Phillips and Dudík 2008; Shcheglovitova and Anderson 2013; Muscarella 
et  al. 2014). We further explored two environmental data sets for each species: one set 
using the jackknife-selected PCs, and another using the first nine PCs (1–9) that accounted 
for 85% of the variation in our dataset from the 46 PCs. We used these nine PCs separately 
because we observed that most of the PCs selected by the jackknife approach were not 
within the first ten PCs for all the species. We also used transects surveyed in Sapo NP as 
bias surfaces for each model to reflect survey effort (Fourcade et al. 2014), which consti-
tuted another variable in the model selection process.

To choose optimal models, we assessed model significance, performance, and complex-
ity, in candidate models for each species. We used ENMtools (Warren et al. 2010) to gen-
erate scores for sample-corrected Akaike Information Criterion (AICc) for each model to 
assess complexity. We used Niche Toolbox for partial ROC significance test (http://shiny 
.conab io.gob.mx:3838/niche toolb 2/; Peterson et  al. 2008) and we calculated an omission 
rate for each species (based on a 5% training presence threshold). Also, we calculated the 
proportion of areas predicted by each model and used this quantity in a subsequent bino-
mial significance test. Best models for each species were selected based on (1) partial ROC 
and binomial significance tests, (2) minimum omission rates, and (3) model complexity 
(Table 1), in that order. Best models were projected across the region to predict suitable 
habitats for each species, both with and without clamping and extrapolation. We then took 
the median of the medians of the final models for each species and applied a 5% minimum 
training presence threshold to produce a binary distribution map. Finally, we used Mobility 

http://shiny.conabio.gob.mx:3838/nichetoolb2/
http://shiny.conabio.gob.mx:3838/nichetoolb2/
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Oriented-Parity (MOP) analysis based on 10% sampling of the reference region to test for 
extrapolation in transfers of model predictions (Owens et al. 2013).

To identify suitable corridors for connectivity between suitable protected areas for our 
species of concern identified in our ENMs, we used 15 proposed and designated protected 
areas in the two major forest complexes in Liberia, Guinea, Sierra Leone, and Côte d’Ivoire 
(Fig. 3). These forest complexes together comprise > 60% of remaining forest in the UGF 
region. We used Circuitscape version 3.5 and its auxiliary software, Linkage Mapper 
(which uses least-cost corridor analysis to identify and map linkages between core areas) 
and Pinchpoint Mapper (which uses Circuitscape to identify pinch-points or bottlenecks 
in corridors produced by Linkage Mapper; McRae et al. 2016, 2008) to model connectiv-
ity between proposed and protected areas for each species within these forest complexes. 
Circuitscape uses electronic circuit theory concept to predict patterns of animal move-
ment between fragmented or heterogeneous landscapes (McRae et al. 2008). To do this, it 
requires a resistance surface layer(s) and layers of the areas to be connected or core areas. 
We rescaled the continuous versions of our individual best models for each species from 
250 m spatial resolution to 1 km resolution to reduce processing time, summed them using 
raster calculator tool in ArcGIS, and took the additive inverse (i.e., subtracting from unity) 
of each sum to recreate resistance surfaces. Our resistance values range between 1 and 100, 
representing low to high resistance. We used these resistance layers together with shape-
files of proposed and designated protected areas in the two forest complexes to build con-
nectivity models (Fig. 3). To build networks and linkages between our core areas, we used 
pairwise analysis between core areas in each forest complex separately. We set the cut-off 
distance (cost-weighted corridor width) at 20 km.

Results

We calibrated a total of 120 models (5 values of regularization multiplier × 6 combinations 
feature classes x 2 sets of environmental variables x bias/no bias surface) for each species. 
Of the 120 models fitted for chimpanzees, three were selected as best. These models were 
significantly different from random and had relatively low omission rates < 28% (Table 1).

For elephants, three models were selected; however, none of the three models met our 
criteria for model selection. They had reasonable omission rates, but were not statistically 
significant, and were the most complex models of all species (Table 1). Eight models were 
selected for hippo, all of which were significantly different from random, less complex, and 
had low omission rates. All the best models for chimpanzees and elephants were models 
derived from the first PC variables, whereas the best models for hippos were those from 
jackknife-selected variables.

Our models predicted a total of 75,157 km2 of suitable habitats for chimpanzees in the 
region, 79,400 km2 for elephants, and 290,696 km2 for hippos (Fig. 2). Of these areas, for 
chimpanzees, 30% of the area predicted falls within the boundaries of proposed or desig-
nated protected areas, and likewise 30% for elephants, and 19% for hippos (Fig. 4). For 
both chimpanzees and elephants, Liberia held the largest area of suitable habitats (51 and 
53% of total areas, respectively), followed by Côte d’Ivoire (33% for chimpanzees and 32% 
for elephants), and Ghana (12 and 11%; Fig.  4). Thirty-nine percent of suitable habitat 
for both species predicted in Liberia was within proposed or designated protected areas, 
whereas in Côte d’Ivoire, 48% was within the boundaries of protected areas; in Ghana, 14% 
fell within the boundaries of protected areas. Guinea and Sierra Leone had the least area of 
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suitable habitats for both species, with Guinea hosting 1.3% for chimpanzees and 1.6% for 
elephants, and Sierra Leone hosting 2.7% for chimpanzees and 2.3% for elephants (Fig. 4). 
Côte d’Ivoire held the largest predicted area for hippos (35%), followed by Liberia 25%, 
and Ghana (19%; Fig. 4). Connectivity analysis showed that Liberia has the largest blocks 
of suitable contiguous forest compared to Côte d’Ivoire, Guinea, and Sierra Leone, which 
had much more fragmented forest landscapes (Fig. 3). The forest blocks are concentrated in 

Fig. 2  Distribution maps within the Upper Guinea lowland rainforest for western chimpanzee, African for-
est elephant, and pygmy hippopotamus as predicted by ecological niche modeling



679Biodiversity and Conservation (2019) 28:671–685 

1 3

southeastern Liberia, with Sapo NP connecting to Tai National Park in southwestern Côte 
d’Ivoire to the northwest, and in northwestern Liberia, with Gola NP connecting to Gola 
Rainforest National Park in Sierra Leone to the west, and Ziama Forest in Guinea to the 
north. Our connectivity analysis in the two forest complexes identified a total of 14 suitable 
corridors to connect proposed and designated protected areas in the two forest complexes, 
many of which overlapped among the three species (Fig. 3, Table 2).  

Fig. 3  Suitable corridors for connectivity of proposed and protected areas predicted within the Sapo-Tai and 
Gola-Ziama forest complexes in West Africa based on least cost path. 1. Tai National Park 2. Krahn-Grebo 
National Park 3. Sapo National Park 4. Grand Kru Proposed Protected Area (PPA) 5. Senkwen PPA 6. Gbi 
PPA 7. Zwedru PPA 8. Gouin Park 9. Scio Park 10. Kpo PPA 11. Gola National Park 12. Foya PPA 13. 
Wologizi PPA 14. Ziama Forest Park 15. Mt. Yonon
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Discussion

Model predictions

ENM provides a framework for estimating geographic distributions of species; however, 
ENMs are cast on geographic extents, and as such do not and cannot take into account 
finer-scale phenomena such as land use and land cover distributions. In ENM, the best 
models are those that meet set criteria of statistical significance, model complexity, and 
performance. However, in this study, we found no agreement between AICc and the other 
two criteria. Even though the AICc metric has been widely adopted in the field of ENM 
as a criterion (Shcheglovitova and Anderson 2013; Warren et al. 2013; Muscarella et al. 
2014), we caution that it should be used with care and along with other criteria as used in 

Fig. 4  Estimated protected and unprotected suitable areas for each species in Upper Guinea Forest across 
each country. Note the different vertical scale used for the hippo models, which suggests and reflects the 
overly general nature of the models for this species
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this study. In particular, the best models selected for elephants did not meet our criteria, 
perhaps for two reasons. First, the species as sampled here within Sapo NP only, is a clas-
sic example of a “Wallace’s Dream species,” as described in Saupe et al. (2012). In this 
situation, a species’ distributional area is constrained by dispersal capabilities, and mod-
els for such species will not be significantly different from random because all habitats in 
the species’ calibration area are suitable. The second related reason could be attributed to 
our selection of Sapo NP as a calibration area, which was influenced by the availability of 
high-quality data. We recognize that this feature was a limitation of this study that should 
be carefully considered in future studies (Barve et al. 2011).

However, in spite of the statistical uncertainty in the elephant models, their biologi-
cal explanation is relevant. Areas of suitable habitats predicted by the elephant models 
are similar to those predicted by chimpanzees, as we expected given the broader dis-
tribution of these species in the region. Unlike the related African elephant Loxodonta 
africana, African forest elephants inhabit the dense humid tropical rainforest of west 
and central Africa and have overlapping ranges with western chimpanzees. In Sapo NP, 
for example, these species inhabit the same sites, as evident by camera trapping records 
(Vogt 2012). In addition, we tested our chimpanzee models using independent data from 
several chimpanzee projects across the region. We found that our predictions strongly 
correlated with areas currently occupied by chimpanzees, including areas in Sierra 
Leone and Guinea, which are known important sanctuaries for chimpanzees and ele-
phants in the region. A notable example is the Western Area Peninsula National Park in 
Sierra Leone, a designated World Heritage Site that hosts 80–90% of Sierra Leone’s ter-
restrial biodiversity, including chimpanzee (UNESCO World Heritage 2018), which was 
identified as a disjunct, but highly suitable area for chimpanzees.

In contrast, and perhaps of greatest concern in this study, hippo models met all of 
our criteria for statistical significance, model complexity, and performance, and yet the 
models seemed to be underfit and overly general. Of the three species, hippos use the 

Table 2  Fourteen suitable corridors identified in this study including their respective distances between 
core areas

Forest complex Corridor Distance (km)

Gola-Ziama Kpo Proposed Protected Area Gola NP 39
Gola-Ziama Foya Proposed Protected Area Kpo Proposed Protected Area 21
Gola-Ziama Kpo Proposed Protected Area Wologizi Proposed Protected Area 44
Gola-Ziama Foya Proposed Protected Area Gola NP 13
Gola-Ziama Foya Proposed Protected Area Wologizi Proposed Protected Area 6
Gola-Ziama Ziama Forest Wologizi Proposed Protected Area 14
Sapo-Tai Senkwen Proposed Protected Area Gbi Proposed Protected Area 73
Sapo-Tai Senkwen Proposed Protected Area Sapo NP 37
Sapo-Tai Gbi Proposed Protected Area Sapo NP 28
Sapo-Tai Gbi Proposed Protected Area Zwedru Proposed Protected Area 13
Sapo-Tai Zwedru Proposed Protected Area Gouin Park 17
Sapo-Tai Grand Kru Proposed Protected Area Sapo NP 8
Sapo-Tai Krahn-Grebo National Park Sapo NP 60
Sapo-Tai Krahn-Grebo National Park Tai National Park 4
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most restricted habitats (aquatic forest habitats); as such, the widespread distributional 
potential of the species across the region compared to elephants and chimpanzees was 
unexpected. This could be attributed to the spatial bias in our dataset as articulated 
above and explained by Warren et al. (2013). Thus, we caution that the hippo models 
should be interpreted with care.

Overall, an important consideration in interpretation of ENM results is the movement 
capability (mobility) of a species. That is, uninhabited suitable areas predicted in these 
models can only be occupied if dispersal barriers do not prevent these species from 
colonizing them (Peterson et al. 2011). Therefore, providing suitable corridors that con-
nect suitable habitats will enhance these dispersal abilities of these species to colonize 
uninhabited habitats.

Species distributions and forest connectivity

Using ENM to inform conservation planning is a relatively novel approach in Africa, 
particularly for West Africa (Iloh and Ogundipe 2016). This study predicted areas of 
suitable habitat for each of the three focal species across the western sector of the Upper 
Guinea Forest block, highlighting priority areas inside and outside of protected areas. 
One notable result was the congruence between predicted suitable habitats and the 
distribution of the remaining forest in the region, as reported in other studies (Allport 
1991; Liu et al. 2016). Our models clearly showed that Liberia retains the largest contig-
uous portions of suitable habitats for these species, followed by Côte d’Ivoire. However, 
most Liberian forest areas remain unprotected, far short of its neighbors, which have all 
major forest patches designated as protected areas. Since 2006, the Liberian Govern-
ment set a goal of protecting 30% of the country’s forest in a network of protected areas 
(NFRL 2006); this goal is yet to be realized, with just ~ 10% of the country’s forest pres-
ently designated as protected areas.

Our connectivity analysis identified 14 corridors and three potential sites for estab-
lishment of new protected areas in both Gola-Ziama and Sapo-Tai forest complexes, sev-
eral of which coincide and at least partially agree with results of previous analyses (Jun-
ker et al. 2015), reinforcing the importance of these areas as putative habitat corridors. 
The southeastern block of forest (in Liberia) connecting to southwestern Côte d’Ivoire 
(Sapo-Tai forest complex) should be considered a particularly significant regional prior-
ity. This forest block holds > 50% of the contiguous forest suitable for our focal species 
in the region. Interestingly, the Liberian side of this forest is largely unprotected, and is 
under increasing threats from oil palm (Elias guinesis) plantation expansion, artisanal 
mining, and logging (Freeman et al. 2018). We emphasize here that the potential to pre-
serve this forest block should focus on these areas with urgency. We acknowledge cur-
rent regional initiatives aimed at this forest block, one of which led to the recent (2017) 
designation of the Krahn-Grebo National Park. However, even though we applaud 
these efforts, they should be expanded to reflect the proportional significance of this 
area. Additionally, the Gola-Ziama forest complex, in northwestern Liberia (bordering 
Sierra Leone and Guinea), is notable for its potential conservation urgency, given that 
it is also largely unprotected and equally threatened. We recognize efforts of the last 
decade resulting in designation of Gola National Park in Liberia and Gola Rainforest 
National Park in Sierra Leone; the northern portion of this forest block, extending north 
to Ziama in Guinea, is characterized by highly heterogeneous natural landscapes (e.g., 
submontane forest, semi-deciduous forest), and many unique, high-value species for 
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conservation. Additionally, it should be noted here that to optimize biodiversity conser-
vation, conservation efforts should not only be focused on forest protection but should 
also address other major drivers of biodiversity loss, particularly hunting, a major threat 
to West African biodiversity to avoid the empty forest syndrome (Wilkie et al. 2011).

We show that the integration of ENM and connectivity analysis studies provides 
powerful practical tools to optimize conservation planning and identify priority areas 
objectively for implementation (conservation action), with the goal of optimizing con-
nectivity among distributional areas of species. These tools, when adopted and applied 
appropriately, will accelerate knowledge of species distribution and conservation efforts 
in incompletely-known but highly biodiverse regions of the world. We emphasize that 
connecting suitable habitats for these species will enhance their dispersal abilities and 
survivability in the region.
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