
ORIGINAL PAPER

High-resolution species-distribution model based
on systematic sampling and indirect observations

Oded Nezer1 • Shirli Bar-David2 • Tomer Gueta1 •

Yohay Carmel1

Received: 16 March 2016 / Revised: 1 November 2016 / Accepted: 10 November 2016 /
Published online: 18 November 2016
� Springer Science+Business Media Dordrecht 2016

Abstract Species distribution models (SDMs) are often limited by the use of coarse-

resolution environmental variables and by the number of observations required for their

calibration. This is particularly true in the case of elusive animals. Here, we developed a

SDM by combining three elements: a database of explanatory variables, mapped at a fine

resolution; a systematic sampling scheme; and an intensive survey of indirect observations.

Using MaxEnt, we developed the SDM for the population of the Asiatic wild ass (Equus

hemionus), a rare and elusive species, at three spatial scales: 10, 100, and 1000 m per pixel.

We used indirect observations of feces mounds. We constructed 14 layers of explanatory

variables, in five categories: water, topography, biotic conditions, climatic variables and

anthropogenic variables. Woody vegetation cover and slopes were found to have the

strongest effect on the distribution of wild ass and were included as the main predictors in

the SDM. Model validation revealed that an intensive survey of feces mounds and high-

resolution predictor layers resulted in a highly accurate and informative SDM. Fine-grain

Communicated by Dirk Sven Schmeller.

Electronic supplementary material The online version of this article (doi:10.1007/s10531-016-1251-2)
contains supplementary material, which is available to authorized users.

& Yohay Carmel
yohay@technion.ac.il

Oded Nezer
nezer.oded@gmail.com

Shirli Bar-David
shirlibd@bgu.ac.il

Tomer Gueta
tomer.gu@gmail.com

1 Department of Environmental Engineering, Technion – Israel Institute of Technology, 32000 Haifa,
Israel

2 Mitrani Department of Desert Ecology, Jacob Blaustein Institutes for Desert Research, Ben Gurion
University of the Negev, Midreshet Ben-Gurion, Israel

123

Biodivers Conserv (2017) 26:421–437
DOI 10.1007/s10531-016-1251-2

http://orcid.org/0000-0002-5883-0184
http://dx.doi.org/10.1007/s10531-016-1251-2
http://crossmark.crossref.org/dialog/?doi=10.1007/s10531-016-1251-2&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10531-016-1251-2&amp;domain=pdf


(10 and 100 m) SDMs can be utilized to: (1) characterize the variables influencing species

distribution at high resolution and local scale, including anthropogenic effects and geo-

morphologic features; (2) detect potential population activity centers; (3) locate potential

corridors of movement and possible isolated habitat patches. Such information may be

useful for the conservation efforts of the Asiatic wild ass. This approach could be applied

to other elusive species, particularly large mammals.

Keywords Equus hemionus � Wild Ass � Habitat preferences � Feces � MAXENT � Species
distribution model

Introduction

Species distribution models (SDMs) are commonly used for purposes of conservation,

environmental planning, and wildlife management programs (Guisan et al. 2013). SDM

models quantify the relationships between the distribution and demography of a species

and the environment (Peterson 2011). SDMs allow us to study species distribution in large

areas and even in remote habitats, where logistic and financial restrictions preclude direct

observations (Duff and Morrell 2007). They may be particularly useful for assessing the

success of reintroduction activities (Manel et al. 1999, 2001). Understanding habitat

characteristics and distribution determinants of reintroduced species is important, as this

information is a key factor for ensuring the protection of landscape components that are

critical for the long-term persistence of these species in the wild.

The use of environmental variables to explain and predict species distribution is not

trivial: these relationships are complex, and a large number of variables are involved

(Guisan and Zimmermann 2000; Radosavljevic and Anderson 2014). It is well known that

the variables that affect the distribution of a species change with the change of observation

scale (Blank and Carmel 2012; Crawley and Harral 2001; Kent et al. 2011; Stauffer and

Best 1986). Coarse-scale distribution models may be preferred in, for example, bio-geo-

graphic studies. In contrast, fine-scale distribution models can depict local scale phe-

nomena such as essential corridors and animal passages and effects of roads and rivers,

which coarse-scale models cannot detect. Thus, fine-scale distribution models may be

preferable for conservation planning and management (Hess et al. 2006). Yet, in most

studies, the selection of resolution is a consequence of the availability and quality of data

pertaining to the specific study area, which is typically the limiting factor in distribution

studies (Elith et al. 2006; Hess et al. 2006). Data layers used in such studies are most

commonly derived from global databases, in which 1 km2 is considered the finest

resolution.

Presence/absence information is thought to be preferred to presence-only information in

SDMs. However, presence/absence information is more difficult or impossible to obtain

than presence-only information (Kent et al. 2011; Pearce and Boyce 2006; Tsoar et al.

2007). At the same time, presence-only data may be subject to large errors due to small

sample size and biased samples (Graham et al. 2004; Phillips and Elith 2013). A systematic

data-collection survey, designed to collect data at precise locations should largely reduce

these biases.

Indirect observations, and in particular dung surveys, are common non-invasive

approaches for obtaining information about the presence of species and habitat selection.
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They are particularly useful when the studied species is hard to find due to its elusive

behavior, rarity, or inaccessible habitat (Fernandez et al. 2006; Vina et al. 2010). The use

of indirect observations in SDMs requires a clear connection between the presence of the

species and the feces (Gallant et al. 2007; Kays et al. 2008; Perinchery et al. 2011).

Systematic dung surveys, conducted in sites selected to represent the entire range of

environmental conditions in a region, can be an appropriate solution to sampling-bias

problems (Fernandez et al. 2006; Norris 2014; Vina et al. 2010).

Here, we developed a SDM for the population of the Asiatic wild ass (Equus hemionus),

a rare and elusive species that was reintroduced into the Negev Desert in Israel. We

combined three elements in order to overcome the obstacles in developing SDMs: a

database of spatial layers of explanatory variables, mapped at a very fine resolution; a

systematic sampling scheme; and an intensive survey of indirect observations, through the

detection of feces mounds. This approach led to important insights regarding the habitat

preferences of this species.

Methods

Study species

The Asiatic wild ass is an endangered species (Moehlman et al. 2008). In the past, the

Syrian wild ass (E. h. hemippus) subspecies was found in the Middle East, and became

extinct in the wild at the beginning of the 20th century (Groves 1986; Saltz et al. 2000;

Schulz and Kaiser 2013). In 1968, a breeding core was established in Israel, using indi-

viduals from the subspecies E. h. onager and E. h. kulan, which were brought from Iran

and Turkmenistan, respectively. In 1982, the Israel Nature and Parks Authority initiated a

reintroduction program of the Asiatic wild ass (from the breeding core of these two

subspecies, Saltz et al. 2000). The first individuals were released near Ein-Saharonim in

Makhtesh Ramon (Fig. 1). By 1993, three additional releases were conducted at this site

and two more in the Paran streambed (Saltz and Rubenstein 1995). A total of 38 indi-

viduals were released. The wild ass population expanded its range in the Negev Desert and

the Arava valley (Saltz and Rubenstein 1995), and the current population is estimated at

more than 250 individuals (Renan et al. 2015).

Study area

The study area extends over approximately 3000 km2 in the central part of the Negev

Desert (Fig. 1). The area is arid and characterized by high daytime temperatures (on

average 33 �C) and relatively low night-time temperatures (on average 12 �C). The mean

annual precipitation ranges between 30 and 150 mm (Stern et al. 1986). Elevation ranges

between 50 and 1033 m, and the area has a complex geomorphological structure. The

bedrock is mainly hard limestone, resulting in a cliffy landscape and leveled floodplains.

The majority of the area is drained by two main ephemeral streambeds (wadis)—Nekarot

and Paran. There are several latitudinal geological faults in the region that create a steep

terraced landscape. Flash floods are a common phenomenon after rain events. The flash

floods fill water holes in the streambeds, which may hold for a few months. There are very

few natural water sources that provide water year round. Vegetation is mostly limited to

streams and their surroundings and generally located on the banks. Vegetation in the
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streams is mostly of a Saharo-Arabian origin, with a Sudanian component in the Arava

(Danin 1999). It is dominated by three native Acacia tree species, Acacia raddiana, A.

tortilis, and A. pachyceras.

Fig. 1 The study region, reintroduction and sampling sites in the Negev Desert, Israel
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Data collection

We selected 122 sampling sites, using an approximate systematic sampling scheme (Fig. 1)

to capture the full range of conditions found in the study region. To ensure accurate

representation of the environmental conditions in the sampling sites, we stratified the

sampling locations according to three environmental parameters: distance from permanent

water sources, altitude, and mean temperature of the hottest month. Based on our prior

knowledge of the study species and a literature review (Henley and Ward 2006; Henley

et al. 2007; Saltz and Rubenstein 1995; Saltz et al. 1999), we considered these environ-

mental variables to have a high potential for explaining wild ass distribution. These

variables were represented by GIS layers and combined into a three-banded composite, on

which we performed K-means unsupervised classification using ERDAS IMAGINE V 9.1.

The objective of this classification was to divide the study region into polygons with

similar combinations of these variables (Carmel and Stoller-Cavari 2006). The 122 sam-

pling sites were systematically distributed among these polygons.

In each sampling site we conducted a feces survey. Fecal droppings of wild ass con-

stitute a straightforward indicator of species presence, because they are deposited fre-

quently, and remain visible in the desert environment for several months (up to about a

year). The survey in each site was composed of three 500 m belt transects arranged as an

equilateral triangle with a total length of 1500 m, and divided into 150 survey units of 10 9

10 m per site. One of the triangle sides was always laid on a dry river-bed nearest to the

point defined as the center of the sampling site. We recorded observations at a distance of

5 m on either side of the transect, where probability of feces detection was 100%. The

exact location of feces mounds (droppings as well as dung piles) observed on the transect

were recorded using a GPS at a spatial accuracy of 4 m. The number of feces mounds

within each 10 m pixel was recorded. Between January 2009 and June, 2009, we surveyed

122 sites and explored 150 units per site, with a total sampled area of 183 ha. For the

presence-only SDM, we classified a unit as present if one or more feces mounds were

found in that unit.

Data analysis

Explanatory variables

We devoted extensive efforts to create a high-resolution digital data set of environmental

variables. We generated 14 spatial layers (Table 1), from which the model predictors were

derived. These layers pertained to five main categories (Table 1): vegetation (one vari-

able), topography (4), climate (2), anthropogenic variables (5), and distance from water (2).

The vegetation layer was derived from a complex processing of an aerial photo (Appendix

1 in supplementary material). Topography was derived from a digital elevation model of

the area, at an original resolution of 10 m. Climate layers had an original resolution of

1 km, and were up-scaled to a 10 m resolution. Distance-to-layers was constructed using

Euclidean distance to specific elements on the map at an original resolution of 10 m. To

reduce multicollinearity, correlation coefficients were calculated between each pair of

variables; in pairs with a high correlation ([0.65 or\-0.65, Pearson correlation), one of

the variables was eliminated from the model. A map of each explanatory variable appears

in Appendix 2 in supplementary material.
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Statistical model

We used the ‘‘Maximum Entropy’’ model MAXENT V3.3.1 (Kumar et al. 2009; Phillips

et al. 2006; Phillips and Dudik 2008). We selected this model from a large pool of possible

models, because it was ranked in several comparative studies as one of the most effective

models for predicting species distribution on the basis of presence-only data (Elith et al.

2006, 2011; Jeschke and Strayer 2008; Phillips et al. 2006; Radosavljevic and Anderson

2014). We considered using presence/absence models; unfortunately, absence of feces

cannot be interpreted as true absence; hence, we decided to use a presence-only model. The

MAXENT algorithm operates on a set of constraints that describes what is known from the

sample of the target distribution (i.e., the presence data). Maxent characterizes the back-

ground environment with a set of background points from the study region. However,

unlike the case of presence/absence data, the species occurrence at these background points

is unknown. MAXENT predicts the probability distribution across all cells in the study

area based on the presence data and, to prevent over-fitting, employs maximum entropy

principles and regularization parameters (Phillips et al. 2006). MAXENT produces two

outputs: a probabilistic distribution map describing the establishment probability of the

species in a specific site and the relative weight of each explanatory variable. Distribution

Table 1 Predictors used in the distribution model of wild ass

# Category Description Retrieval information

1 Vegetation Percentage of woody vegetation cover (shrubs
and trees with a radius greater than 0.2 m).
Each 10 m cell represents an averaged
vegetation cover over a 100 m radius

Manual digitization from
orthophoto

2 Topography Altitude above sea level Generated from contour dataset
retrieved from Survey of Israel
(MAPI)

3 Slope (between 0� and 90�) Generated from Altitude using
ArcMap 10

4 Aspect (between 0� and 360�) Generated from Altitude using
ArcMap 10

5 Cumulative drainage Generated from slope using
ArcMap 10

6 Climate Mean annual precipitationa Retrieved from the GIS Lab at
the Hebrew University of
Jerusalem

7 Mean temperature in Augusta

8 Anthropogenic
factors

Distance from roadsa Generated in ArcMap 10

9 Distance from reintroduction sitesa Generated in ArcMap 10

10 Distance from military bases and settlements Generated in ArcMap 10

11 Military training sites (binary) Manual digitization from
orthophoto

12 Nature reserve (binary) Manual digitization from
orthophoto

13 Water Distance from all permanent water sources
including springs and leaking pipes

Generated in ArcMap 10

14 Distance from watering holesa Generated in ArcMap 10

a Variables eliminated from the model due to high correlation with other variables
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maps of the Asiatic wild ass were obtained by applying MAXENT models to all cells in the

study region, using a logistic link function to yield a habitat suitability index between zero

and one (Phillips and Dudik 2008). We ran the model in three spatial resolutions: 10 m,

100 m and 1 km, with 106, 105 and 104 background points, respectively. Recommended

values were used for the convergence threshold (10-5), maximum number of iterations

(500), and regularization multiplier (1). Response functions were constrained to only three

feature types: linear, threshold and hinge.

To calculate the contribution percentage of each environmental variable in each itera-

tion of the training algorithm, the increase in Regularized gain was added to the contri-

bution of the corresponding variable. To estimate the importance of each environmental

variable in turn, the values of the corresponding variable on training presence and back-

ground data were randomly permuted. The model was reevaluated using the permuted data,

and the resulting drop in Training Area Under the Curve (AUC) was normalized to per-

centages. AUC is the area under the curve of the receiver operating characteristic (ROC)

plot. ROC curves are widely used for validating SDMs and for comparing between models

(Elith et al. 2006; Hernandez et al. 2006; Marmion et al. 2009). To determine whether

occurrence data of wild ass were spatially autocorrelated, we calculated Moran’s I Index

(Moran 1950) for each spatial resolution separately (10 m, 100 m, and 1 km).

Model validation

We validated the model using: (1) MAXENT’s five performance measures and (2) a cross-

validation procedure. The MAXENT model generates three gain and two AUC measures.

Gain measures the goodness of fit of a model; it represents the likelihood of presence

records compared to background records (Phillips 2006). A gain of 1.6 means that an

average presence location has a relative probability of e1.6, which is five times higher than

an average background point. Regularized training gain accounts for the number of pre-

dictors in the model to address overfitting; Unregularized training gain has no compen-

sation for the number of predictors in the model; and Test gain is calculated from presence

records held out to test the model. The AUC values range between 0 and 1, where 1

represents perfect prediction ability of the model and 0.5 represents prediction that is no

better than random. Training AUC calculates AUC using the training data; and Test AUC

calculates AUC using the test data. A cross-validation procedure was used to estimate

errors around predictive performance on held-out data (Elith et al. 2011). Occurrence data

are randomly split into a number of equal-size groups (folds), and models are created

leaving out each fold in turn. The left-out folds are then used for evaluation. Cross-

validation uses all of the data for validation. A tenfold cross-validation procedure was used

for the 10 and 100 m models, and a fivefold cross-validation procedure was used for the

1 km model.

Results

We recorded a total of 3232 feces mounds in 18,300 survey units (10 m cells). Feces

mounds were found in 115 of the 122 sampling sites. The number of mounds per site

ranged from 0 to 124. Five potential explanatory variables were eliminated from the model

(Table 1), due to high correlation coefficient ([0.65 or\-0.65, Pearson correlation, see

Appendix 3 in supplementary material), leaving nine variables in the model (Table 2).
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Three of these spatial data layers, namely vegetation, slope, and altitude, were considered

as the most influential explanatory variables by the MAXENT algorithm, accounting

together for *85% of the cumulative relative contribution (Table 2). Woody vegetation

density was found to have the strongest effect on the Asiatic wild ass distribution (Table 2;

Appendix 4 in supplementary material). The response curve of woody vegetation cover

(Appendix 5 in supplementary material) showed an increasing presence of the animals with

increasing vegetation cover, leveling off sharply at the saturation point ([72% coverage).

Slope was the second most important variable (Table 2) and was inversely related to wild

ass distribution (Appendix 5 in supplementary material). In slopes steeper than 20�, no
feces mounds were found. Altitude was the third most important variable, with 12%

relative contribution. The other six explanatory variables that were included in the model

had a lower effect on the distribution of wild ass, together accounting for *15% of the

relative contribution to the model (Table 2).

The performance of the three models (10, 100 m, and 1 km) differed markedly. The

10 m model yielded the highest averaged values in all five performance measures

(Table 3), indicating a high predictive capacity. The 1 km model yielded the lowest values

in all measures, with extremely low values for Test gain (-0.02) and Test AUC (0.67),

suggesting poor predictive capacity at this scale. The cross-validation procedure revealed

high consistency between the different runs, since standard deviation values were relatively

low (Table 2, 3).

Occurrence data at a 10 m resolution had a relatively low spatial autocorrelation

(Moran’s I Index of 0.13), while the 100 m and 1 km resolutions had higher values (0.38

and 0.22 respectively).

The probabilistic distribution map was heterogeneous and informative at the very fine

scale of 10 m, and the fine scale of 100 m (Fig. 2a, b), and much less informative at the

scale of 1 km (Fig. 2c). The strong effect of streambeds on the species distribution was

apparent at the two finer scales: areas of high probability of presence were in streambeds

(wadis) characterized by woody vegetation and moderate terrain. The high resolution

allowed detection of various site-related trends and phenomena: (a) Possible convenient

Table 2 Percent contribution and permutation importance of the predictor variables for the 10 m resolution
MAXENT model for wild ass

Explanatory variable Relative contribution in %
(±SD)

Permutation importance in %
(±SD)

Vegetation 54.5 (0.44) 47.83 (0.93)

Slope 18.04 (0.41) 28.83 (1.31)

Altitude (digital elevation model) 11.97 (0.41) 9.45 (0.73)

Distance from all permanent and temporary
water sources

6.76 (0.26) 6.44 (0.32)

Distance from military bases and settlements 5 (0.21) 4.43 (0.36)

Cumulative drainage 1.66 (0.14) 1.24 (0.15)

Nature reserve 1.39 (0.13) 0.95 (0.18)

Aspect 0.36 (0.07) 0.49 (0.08)

Military training sites 0.33 (0.06) 0.33 (0.09)

See ‘‘Statistical model’’ section in the methods for an explanation. Standard deviation is shown
in parentheses
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movement corridors in a matrix of unsuitable environmental conditions, which enable

landscape connectivity among sites (Fig. 4a). (b) Isolated local sites/areas of high suit-

ability for the wild ass (high-quality habitat ‘‘islands’’) situated within broad areas of low

quality habitat (Fig. 4b). (c) Important geomorphologic features that affect the distribution,

e.g., streambeds (Fig. 4c). (d) Human-induced local entities that affect the distribution,

e.g., the influence of roads on the quality of proximate habitats (Fig. 4d, see ‘‘Discussion’’

for details).

In contrast to the high variability visualized at fine scale, this map did not show regional

trends or gradients at the scale of the study area. Sites with very high and very low

probabilities of wild ass presence were found near each other throughout the entire study

area; however, in several areas, a spatial continuity of high value sites was noticeable:

Makhtesh Ramon (A), Paran streambed (B), the upper part of Nekarot streambed (C), and

the Lotz potholes (Borot Lotz) (D) (Fig. 3). These areas have the potential to serve as

activity centers for the population. A spatial continuum of sites with low suitability for the

Asiatic wild ass also was discernable (Fig. 3, points E–H).

Discussion

In this study we combined three elements in order to develop a predictive distribution

model for the wild ass, a rare and elusive animal: a database of spatial layers of explanatory

variables, mapped at a very fine resolution; a systematic sampling scheme; and an intensive

feces mound survey. The results indicate that this approach yields an accurate and infor-

mative model.

Factors affecting wild ass distribution

The most important variable in the model was the percentage of woody vegetation cover.

Its relative contribution (54.5%) was much higher than that of the other variables. The

importance of vegetation to the wild ass distribution is consistent with previous studies

(Davidson et al. 2013; Giotto et al. 2015; Henley et al. 2007). The strong vegetation effect

on the distribution is a result of its nutritional value (St-Louis and Côté 2014), the partial

shade it offers, its value for hiding, and in arid areas the vegetation is a favorable

microhabitat with reduced temperatures (Belsky et al. 1993).

Table 3 The averaged MAXENT performance measures calculated using a tenfolds or a fivefolds cross-
validation procedure

Model performance measures Models

10 m model 100 m model 1 km model

Regularized training gain 1.63 (0.01) 1.16 (0.01) 0.64 (0.03)

Unregularized training gain 1.94 (0.01) 1.43 (0.01) 0.97 (0.04)

Test gain 1.82 (0.06) 1.26 (0.12) -0.02 (0.07)

Training AUC 0.93 (0) 0.9 (0) 0.85 (0.01)

Test AUC 0.92 (0.01) 0.88 (0.01) 0.67 (0.02)

Standard deviation is shown in parentheses
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The second most important variable in the model was slope (relative contribution of

18.04%). The Asiatic wild ass prefers moderate over steep terrain, and avoids steep slopes.

This observation was supported by previous studies (Davidson et al. 2013; Giotto et al.

2015; Henley et al. 2007). The next variables in order of importance were altitude

(11.97%) and distance from water sources (6.76%). The positive effect of altitude on wild

Fig. 2 A comparison between the northern regions of the probabilistic distribution maps of the three
models. a 10 m resolution model, b 100 m resolution model, and c 1 km resolution model
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ass distribution is probably related to lower temperatures associated with higher elevations.

The Negev is a hyper-arid desert and we expected that distance from water sources would

be a major predictor of wild ass distribution. Indeed, the water sources themselves were

found to be centers of wild ass activity. However, the fact that the daily movement range of

wild ass can reach up to 20 km in each direction (Saltz et al. 2000), confirmed by the

finding of feces scattered across most of the study area, may explain why the distance from

water source was not a major determinant of wild ass distribution.

Resolution

Model performance

Constructing models at various spatial resolutions and comparing between them enabled us

to quantify the effect of resolution on SDM performance. Seemingly, model performance

increased with increasing model resolution (Table 3). This finding contradicts a previous

study (Guisan et al. 2007) of the effect of degrading model resolution on the performance

of SDMs, which demonstrated that using finer cell sizes (from 1 km to 100 m, and from

10 km to 1 km) did not have a major effect on model predictions. In contrast, our results

suggest that when the effective resolution of the predictors was 10 m (102 m2), the model

Fig. 3 Probabilistic distribution maps of a 10 m resolution model for the Asiatic wild ass in the Negev.
Potential wild ass activity centers: Makhtesh Ramon (A), Paran streambed (B), the upper part of Nekarot
streambed (C) and the Lotz potholes (Borot Lotz) (D). A spatial continuum of sites with low suitability: the
Paran Stream Estuary (E), the region south of Mount Karkom (F), Be’er Menuha (G), and the Eastern part of
Makhtesh Ramon (H). Stars indicate reintroduction sites
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provided useful insights regarding the species distribution that are not possible at coarser

scales, as is elaborated in the following section.

AUC is one of the most commonly used statistics to characterize model performance

(Yackulic et al. 2013). However, its usage has been strongly criticized, particularly with

presence-only data (Gueta and Carmel 2016; Jiménez-Valverde et al. 2013; Lobo et al.

2008; Yackulic et al. 2013), since it ignores the predicted probability values and the

goodness-of-fit of the model (Yackulic et al. 2013). Corroborating these views, our 1 km

model had a high Training AUC value (0.85), whereas the Test gain showed near zero

predictive capability (Table 3). This gap reveals AUC’s low informative value and its

inadequacy as a performance index in a presence-only modelling framework. Gain indices

are more sensitive indicators of model performance (Gueta and Carmel 2016).

High-resolution spatial layers of explanatory variables

We invested considerable resources and effort to produce and obtain the layers of

explanatory variables at a spatial resolution of 10 m wherever possible. For climatic

variables, the original spatial resolution is 1 km. In contrast, the original resolution of the

vegetation and topography layers was 10 m. Indeed, these two variables were the most

important predictors in the 10 m model, somewhat less so in the 100 m model, and nearly

meaningless in the 1 km model.

Distribution models of large mammals with large home ranges are typically constructed

at resolutions of 100–10,000 m (e.g., Bellamy et al. 2013), 2–6 orders of magnitude lower

than the 10 m resolution of the present study. Apparently, the two predictors found to be

the most important, vegetation and slope, appeared nearly meaningless at a resolution of

1000 m. The distribution map constructed at this coarse scale was not very informative.

High-resolution distribution map

The distribution map obtained by the model enabled us to examine the relative habitat

suitability of each site for the wild ass at a fine resolution. The fine-grain image in Fig. 3

illustrates that low quality habitats are found within broad areas of suitable habitat, and

vice versa. The high resolution of the map allowed the detection of four habitat compo-

nents as important for the species’ use of space (Fig. 4): (a) Potential movement corridors

(Fig. 4a). Connectivity within the species’ range is essential for the spatial, demographic

and genetic dynamics of animal populations and their persistence over time (Colbert et al.

2001; Saccheri et al. 1998) and should be recognized as a high conservation priority (Beier

et al. 2006). Identifying connectivity corridors is highly important for the protection of the

species, since they may facilitate wild ass movements within a matrix of less suitable areas,

enabling connectivity between high-quality habitats (Fig. 2a–d). (b) Isolated habitat pat-

ches (Fig. 4b). Isolated ‘‘islands’’ or small fragments of high habitat quality within low

quality areas may constitute potential ‘‘stepping stones’’ sites that aid in connecting

between activity centers. (c) Important geomorphologic features (Fig. 4c). The high-res-

olution map indicated clearly the importance of streambeds, including first order streams,

in the distribution patterns of the wild ass. In coarser maps, the influence of the streambeds

cannot be detected. (d) Anthropogenic effect on distribution. Anthropogenic features may

influence distribution patterns of species and, therefore, it is important that they be iden-

tified (Valverde et al. 2008). For example, based on the high-resolution wild ass distri-

bution model, roads were found to considerably increase the quality of habitats in nearby

areas (Fig. 4d). However, in a specific case, the road effect led to high density of roadside
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Fig. 4 Detecting landscape features on the high-resolution map: a Potential movement corridors, b Isolated
habitat patches, c Important geomorphologic features, d Anthropogenic effects on habitat quality (roads
effect increased roadside vegetation). Colors represent predicted habitat suitability: from green, low
suitability, to red, high suitability. (Color figure online)

Biodivers Conserv (2017) 26:421–437 433

123



vegetation. The high vegetation quality, in turn, attracted wild asses to the proximity of the

road, and several road-kills of wild asses were reported in this area, calling for roadside

vegetation management (Asaf Tsoar, personal communication). This example illustrates

the importance of the model as a tool to identify such potential negative anthropogenic

effects.

Sampling

Systematic sampling of presence data

Many distribution models that are based on presence-only data suffer from inaccuracies,

due to biased sampling (e.g., multiple observations near roads and accessible sites) and a

distribution of observations that is unrepresentative of the range of environmental condi-

tions in the study region (Barry and Elith 2006; Elith et al. 2011; Kramer-Schadt et al.

2013; Phillips and Elith 2013). In this study, we implemented an approximate systematic

sampling scheme based on the spatial pattern of major environmental conditions in the

study region, thus reducing the aforementioned errors. A common problem in sampling

rare species is a zero-inflated distribution of records. In order to reduce this problem, dry

river beds were over-represented based on a prior knowledge that wild asses are usually

found within riverbeds. Still, two-thirds of the samples were located off riverbeds. How-

ever, due to the dense network of riverbeds and the high density of sampling sites, only few

areas were out of the reach of this sampling scheme (Fig. 1), and the possible bias was

minimal.

Indirect observations for presence data

Predictive distribution models are usually based on direct observations. Creating a database

of direct observations of an elusive (Fernandez et al. 2006; Kays et al. 2008; Perinchery

et al. 2011; Vina et al. 2010). In this study, we relied on indirect observations using feces

mounds as the basis for presence data. The major advantage of surveying feces mounds is

that they remain in the field after the animal leaves, increasing the probability of recording

activity in sites visited by the species. These factors are enhanced in a desert environment,

since in arid regions the decomposition rate of the feces is slower, and mounds may last for

long periods, in the case of the wild asses in the Negev up to a year. The large number of

observations is a major component of the strength and reliability of a distribution model

(Barry and Elith 2006).The feces surveys in our study led to a large number of observa-

tions. Obtaining a similar sized database using direct observations would have required a

much greater, longer and costlier sampling effort.

Implications for conservation

SDMs can be useful when designing conservation policies (Guisan and Zimmermann

2000). The endangered Asiatic wild ass has become a focus of conservation interest due to

its impressive appearance, rarity, reintroduction process and its pivotal function in the

Negev ecosystem (Polak et al. 2014). The SDM constructed in this study can serve to

locate favorable high-quality patches, and potential future expansion directions of the

species in the Negev Desert. It can also be used to locate potential routes and corridors

among activity centers, which are important for maintaining connectivity within the
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population. Model predictions can then be validated by conducting field surveys (Davidson

et al. 2013). This information can serve as the basis for developing conservation and

management strategies for the wild ass. Specifically, the map enabled us to identify large

continuous geographic areas of suitable habitat, which constitute potential activity centers.

Three of the continuous areas identified in the map (central Makhtesh Ramon, Paran

streambed, and Borot Lotz; Fig. 3) were confirmed in the field as significant activity

centers, based on direct observations. Two of these sites—the Paran streambed and the

central part of Makhtesh Ramon—overlap with the reintroduction sites. However, distance

from the reintroduction sites was not found to be a significant factor affecting species

distribution in the statistical model. Each one of the three activity centers contains a

permanent water source. The model further enabled us, in a previous study, to identify

areas with low landscape connectivity among activity centers (Gueta et al. 2014). These

areas were suggested to limit gene flow, leading to the relative isolation of a subpopulation

and to the development of population genetic structure in the reintroduced wild ass pop-

ulation (Gueta et al. 2014). Limited gene flow among activity centers may further affect the

population’s genetic diversity (Renan et al. 2015), which is essential for the population’s

long-term viability (Hughes et al. 2008).

The distribution model can also be used to locate a potential direction for expanding the

wild ass range, by projecting the model onto additional areas (Bar-David et al. 2008). It is

important to identify areas of potential spatial expansion, in order to ensure the protection

and maintenance of landscape connectivity, which is essential for the species’ distribution

and, hence, for its persistence in the wild.
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Lobo JM, Jiménez-Valverde A, Real R (2008) AUC: a misleading measure of the performance of predictive
distribution models. Glob Ecol Biogeogr 17:145–151

Manel S, Dias J, Buckton S, Ormerod S (1999) Alternative methods for predicting species distribution: an
illustration with himalayan river birds. J Appl Ecol 36:734–747

Manel S, Williams H, Ormerod S (2001) Evaluating presence-absence models in ecology: the need to
account for prevalence. J Appl Ecol 38:921–931

436 Biodivers Conserv (2017) 26:421–437

123

http://dx.doi.org/10.1111/1365-2664.12701
http://dx.doi.org/10.1111/ddi.12096


Marmion M, Parviainen M, Luoto M, Heikkinen R, Thuiller W (2009) Evaluation of consensus methods in
predictive species distribution modelling. Divers Distrib 15:59–69

Moehlman P, Shah N, Feh C (2008) Equus hemionus. IUCN. http://www.iucnredlist.org/details/full/7951/0.
Accessed Aug 2016

Moran PA (1950) Notes on continuous stochastic phenomena. Biometrika 37:17–23
Norris D (2014) Model thresholds are more important than presence location type: understanding the

distribution of lowland tapir (Tapirus terrestris) in a continuous Atlantic forest of southeast Brazil
tropical conservation. Science 7:529–547

Pearce J, Boyce M (2006) Modelling distribution and abundance with presence-only data. J Appl Ecol
43:405–412

Perinchery A, Jathanna D, Kumar A (2011) Factors determining occupancy and habitat use by Asian small-
clawed otters in the Western Ghats India. J Mamm 92:796–802

Peterson AT (2011) Ecological niches and geographic distributions (MPB-49), vol 49. Princeton University
Press, Princeton

Phillips S (2006) A brief tutorial on Maxent. AT & T Research. http://www.cs.princeton.edu/*schapire/
maxent/tutorial/tutorial.doc

Phillips S, Dudik M (2008) Modeling of species distributions with maxent: new extensions and a com-
prehensive evaluation. Ecography 31:161–175

Phillips SJ, Elith J (2013) On estimating probability of presence from use-availability or presence-back-
ground data. Ecology 94:1409–1419

Phillips S, Anderson R, Schapire R (2006) Maximum entropy modeling of species geographic distributions.
Ecol Model 190:231–259

Polak T, Gutterman Y, Hoffman I, Saltz D (2014) Redundancy in seed dispersal by three sympatric
ungulates: a reintroduction perspective. Anim Conserv 17:565

Radosavljevic A, Anderson RP (2014) Making better Maxent models of species distributions: complexity,
overfitting and evaluation. J Biogeogr 41:629–643. doi:10.1111/jbi.12227

Renan S, Greenbaum G, Shahar N, Templeton A, Bouskila A, Bar-David S (2015) Stochastic modelling of
shifts in allele frequencies reveals a strongly polygynous mating system in the re-introduced asiatic
wild ass. Mol Ecol 24:1433

Saccheri I, Kuussaari M, Kankare M, Vikman P, Fortelius W, Hanski I (1998) Inbreeding and extinction in a
butterfly metapopulation. Nature 392:491–494

Saltz D, Rubenstein D (1995) Population-dynamics of a reintroduced asiatic wild ass Equus hemionus herd.
Ecol Appl 5:327–335

Saltz D, Schmidt H, Rowen M, Karnieli A, Ward D, Schmidt I (1999) Assessing grazing impacts by remote
sensing in hyper-arid environments. J Range Manag 52:500–507

Saltz D, Rowen M, Rubenstein D (2000) The effect of space-use patterns of reintroduced asiatic wild ass on
effective population size. Conserv Biol 14:1852–1861

Schulz E, Kaiser TM (2013) Historical distribution, habitat requirements and feeding ecology of the genus
Equus (Perissodactyla). Mamm Review 43:111–123. doi:10.1111/j.1365-2907.2012.00210.x

Stauffer D, Best L (1986) Nest-site characteristics of open-nesting birds in riparian habitats in iowa. Wilson
Bull 98(2):231–242

Stern E, Gardus Y, Meir A, Krakover S, Tzoar H (1986) Atlas of the Negev. Keter Publishing House,
Jerusalem
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