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Abstract The South China Sea in the Central Indo-Pacific is a large semi-enclosed

marine region that supports an extraordinary diversity of coral reef organisms (including

stony corals), which varies spatially across the region. While one-third of the world’s reef

corals are known to face heightened extinction risk from global climate and local impacts,

prospects for the coral fauna in the South China Sea region amidst these threats remain

poorly understood. In this study, we analyse coral species richness, rarity, and phylogenetic
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diversity among 16 reef areas in the region to estimate changes in species and evolutionary

diversity during projected anthropogenic extinctions. Our results show that richness, rarity,

and phylogenetic diversity differ considerably among reef areas in the region, and that their

outcomes following projected extinctions cannot be predicted by species diversity alone.

Although relative rarity and threat levels are high in species-rich areas such as West

Malaysia and the Philippines, areas with fewer species such as northern Vietnam and

Paracel Islands stand to lose disproportionately large amounts of phylogenetic diversity.

Our study quantifies various biodiversity components of each reef area to inform con-

servation planners and better direct sparse resources to areas where they are needed most.

It also provides a critical biological foundation for targeting reefs that should be included

in a regional network of marine protected areas in the South China Sea.

Keywords IUCN Red List � Marine biodiversity � Phylogenetic diversity � Rarity �
Scleractinia � Species richness

Introduction

The South China Sea (SCS) is a large and species-rich marine region in the Central Indo-

Pacific (Fig. 1). Despite being situated adjacent to the Coral Triangle and hosting com-

parable levels of biodiversity, including 571 species of scleractinian reef corals (Huang

et al. 2015) and over 3000 species of fish (Randall and Lim 2000), this region has received

much less research attention. The shortfall in biodiversity research on the SCS needs to be

addressed as coral reefs are being destroyed at an alarming rate (Madin 2015).

Besides exhibiting high species diversity, scleractinian corals in the SCS display a

remarkable degree of spatial variability in species composition (Huang et al. 2015). The

most coral-rich areas of the SCS include western Luzon and southern Vietnam, which

contain more than 400 species (n = 433 and n = 406 respectively; Vo et al. 2014; Huang

et al. 2015), but most other areas have less than 300 species. More specious areas stand to

lose more species (Roberts et al. 2002), ultimately putting the entire ecosystem at risk by

reducing functional redundancy and jeopardising key ecological functions (Jones et al.

2011; Hooper et al. 2012).

However, species richness is not the sole determining factor of ecosystem functioning;

other components of biodiversity such as relative abundance and functional diversity are

also key determinants that should be considered for conservation (Hooper et al. 2005;

Bellwood et al. 2006; D’agata et al. 2014). For complex ecosystems, despite a wealth of

literature linking greater diversity to increased resilience to disturbance, work is emerging

that demonstrates the contrary (Bellwood et al. 2006; Cadotte et al. 2011; Mouillot et al.

2014). Indeed, reefs with more coral species have lower resistance to crown-of-thorns

seastar (Acanthaster planci) outbreaks, coral bleaching and storm impacts, and furthermore
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do not recover faster (Zhang et al. 2014). Better understanding of the links between

diversity, functional redundancy and resilience is therefore critical for predicting the future

of reefs.

For instance, important ecosystem contributions are made by species that are rare, both

in terms of local abundance (Lyons et al. 2005) and geographic range (Mouillot et al. 2013;

Jain et al. 2014), yet these species tend to have the highest extinction risk (Harnik et al.

2012). While over 10 % of coral species are considered to have restricted or highly

fragmented ranges (Carpenter et al. 2008), aspects like their distribution in diverse areas,

the overall extinction risk they face, and how their contributions to reef diversity will

change in the future remain poorly known. Our study aims to fill this gap by characterising

the degree of rarity contained within each SCS area.

For more than two decades, evolutionary diversity has become a major component of

conservation research (Vane-Wright et al. 1991; Nee and May 1997; Faith et al. 2010;

Curnick et al. 2015). Preservation of the tree of life is now often set as a goal in itself

(Posadas et al. 2001; Rodrigues and Gaston 2002; Forest et al. 2007), or as a proxy for the
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Fig. 1 South China Sea reef areas examined in this study, indicating the respective species richness of
stony corals
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protection of ecosystem functioning (Maherali and Klironomos 2007; Cadotte et al. 2008;

Flynn et al. 2011). Although biodiversity has been interpreted primarily in terms of species

richness, it can also be quantified as evolutionary lineages (Altschul and Lipman 1990;

May 1990; Faith 1992), which in turn can be used to examine phyloecological trends in

distribution patterns (Hoeksema 2012) and other features relevant to species communities,

such as coloniality and associated fauna in scleractinian corals (Barbeitos et al. 2010;

Gittenberger et al. 2011; Hoeksema et al. 2012). In conserving biodiversity, a broader and

more representative goal could be approached by prioritising species or areas that most

likely protects the diversity of the tree of life (Witting and Loeschcke 1995; Isaac et al.

2007; Rosauer and Mooers 2013). Recent studies have shown that anthropogenic extinction

threats against corals are not distributed randomly on a species phylogeny (Huang 2012).

Rather, many risk factors such as mass bleaching, disease and crown-of-thorns seastar

outbreaks have the potential to devastate evolutionary diversity of coral reefs on a global

scale (Huang and Roy 2013). The future of evolutionary diversity at local and regional

levels remains uncertain, but given the availability of species distributional data in the

region (Huang et al. 2015), this now becomes possible to predict for the SCS.

The primary objective of this study is to quantify and project changes in species and

evolutionary diversity of 16 reef areas in the SCS region to better understand and prioritise

conservation resources. We update coral distribution records compiled recently by Huang

et al. (2015) and compare species richness, rarity and phylogenetic diversity among 16 reef

areas in the SCS (Fig. 1; Table 1). Rarity is defined based on geographic range limitation

(Gaston 1994), and the level of rarity in each area is determined by averaging species

weights assigned based on their range restrictedness. We then integrate conservation status

data from the IUCN Red List of Threatened Species (IUCN 2001; Carpenter et al. 2008)

and perform extinction simulations to predict changes in phylogenetic diversity (Faith

1992) of reef areas caused by species loss. Our findings underscore the conservation value

of particular SCS areas whose immense biodiversity is threatened by impending extinction.

Materials and methods

The SCS is a large marine region with a surface area of 3.4 million km2 (Fig. 1; Morton

and Blackmore 2001), including about 12,000 km2 or 4.7 % of the world’s total coral reef

area (Huang et al. 2015), and is surrounded by the coastlines of ten Asian nation states.

Species distributional data of scleractinian reef corals in the SCS were previously

consolidated by Huang et al. (2015). The dataset comprised occurrences for a total of 571

species (see Online Resource 1) recorded among 16 reef areas in the region (Table 1).

Records for southern Vietnam (VN2) were updated (Vo et al. 2014).

To determine the relationship between regional and global patterns of coral diversity,

we supplemented the SCS distributional data with geographic range information from the

Coral Geographic database (Veron et al. 2009, 2011, 2015). This database of 798 species

divided the seas containing reef corals into 141 ecoregions. Data for SCS species not

available in the Coral Geographic were obtained from the IUCN Red List of Threatened

Species (IUCN 2001; Carpenter et al. 2008) and the Global Biodiversity Information

Facility (GBIF; http://data.gbif.org). A total of 547 (out of 571) species were covered by

these global databases. For each species, we computed ecoregion (global) and area (SCS)

occupancies for each species by summing the number of the respective geographic units

that contain it. The predictive capacity of the SCS data on global ecoregion occupancy was

334 Biodivers Conserv (2016) 25:331–344
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estimated by fitting a linear model through the origin. We then used the global distribu-

tional data to assign species rarity weights for the characterisation of relative rarity among

the 16 SCS assemblages. Gaston’s (1994) quartile definition was set as the rarity threshold,

being the number of ecoregions at which 25 % of all species with the lowest global

occurrence were considered rare (Leroy et al. 2012). These rare species were assigned

weights that increased exponentially with the difference between their occurrences and the

rarity cutoff. Finally, using the R (R Core Team 2013) package Rarity (Leroy et al. 2013),

we computed the Index of Relative Rarity (IRR), given by the average weight of rarity for

all species in each assemblage. The index was also calculated for the SCS as a whole.

We derived coral conservation status data from the IUCN Red List of Threatened

Species that included 827 reef-building scleractinian species assessed by many of the

world’s leading coral experts in 2006 and 2007 (IUCN 2001; Carpenter et al. 2008). The

assessment concluded that one-third of the 688 species not deemed data deficient (DD)

faced heightened extinction risk (i.e., CR critically endangered, EN endangered, VU
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Fig. 2 Strict consensus phylogenetic tree of reef corals in the South China Sea. The number of reef areas
recorded for each species is shown using a coloured circle, with IUCN Red List threat status denoted as red
(threatened) or blue (non-threatened) tip label
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vulnerable). Of the 571 coral species recorded in the SCS, 543 were characterised based on

the IUCN Red List categories. The remaining 28 species not assessed previously were

categorised as DD. We note that the lack of information for DD species may be related to

inadequate taxonomic study, or to their possible rarity and restricted distribution range, in

which case the number of threatened species may be underestimated (see below).

Based on the threat levels for species, we carried out a simulation study to predict

regional changes in evolutionary diversity arising from projected extinctions. To quantify

the pre- and post-extinction diversity of each SCS area and the region as a whole, we

employed the phylogenetic diversity (PD) measure (Faith 1992), computed in R (R Core

Team 2013) packages caper (Orme et al. 2013) and Picante (Kembel et al. 2010) as the

total branch length in the phylogeny of species present in an area (Davies et al. 2008; Fritz

and Purvis 2010). For this computation, we pruned the 1000 time-calibrated posterior

supertrees of reef scleractinian corals reconstructed recently (Huang 2012; Huang and Roy

2013) to a taxon subset corresponding to the species complement of each area (Fig. 2).

Species loss was simulated by assuming that all threatened (CR, EN or VU) corals in an

area would go extinct, with the results compared to a null model of random extinction

repeated 1000 times with the same extinction rate (Purvis et al. 2000; Sechrest et al. 2002;

Fritz and Purvis 2010). We then calculated the excess loss of PD as the extra loss of actual

PD over the null result, expressed as a proportion of the latter (Parhar and Mooers 2011),

and assessed for statistical significance using the Student’s t test. The analysis was carried

out for each of the 1000 posterior trees, with results summarised as means and 95 %

confidence intervals.

Results and discussion

Our study brings together species and phylogenetic diversity data at the regional scale with

global distribution and extinction risk information of the 571 reef coral species in the SCS

(see Online Resource 1). Species occurring in the SCS include geographically-restricted

species such as Physophyllia ayleni in the Macclesfield Bank (Paracel Islands reef area)

and Pseudosiderastrea formosa in Taiwan, as well as widespread species such as Pocil-

lopora damicornis that inhabits every SCS area and are present in nearly all (118) of the

reef ecoregions in the Indo-Pacific marine realm (Veron et al. 2009).

There is a statistically significant positive linear relationship between SCS area occu-

pancy and global ecoregional distribution (slope = 6.39, p\ 10-15, R2 = 0.942; Online

Resource 2). As expected, species that are rare in the SCS region tend to be less widespread

at the global level. Therefore, focusing on reef conservation efforts at the regional level,

like an implementation of a regional network of marine protected areas, or MPAs (Clifton

2009; Walton et al. 2014; White et al. 2014), will help preserve a good representation of

global species diversity.

Despite the strong positive relationship between global and regional occupancies, there

are considerable variations in the global distribution of species (Online Resource 2). For

example, Cycloseris distorta is recorded in 89 reef ecoregions according to the Coral

Geographic (Veron et al. 2009, 2011), yet it is only present in two SCS areas (Fig. 2)—

Thailand and southern Vietnam—which could also be related to differences in species

identifications among studies as seen in the Great Barrier Reef (Hoeksema 2015). There are

also regionally widespread species such as Montipora florida, Pleuractis gravis and

Turbinaria bifrons that are present in as many as half of the SCS reef areas (Hoeksema
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1993; Veron et al. 2009), but are in fewer of the world’s ecoregions (15–20) than expected

(*50). These variations in global occupancy are useful in helping to determine the relative

rarity of species hosted by each SCS area. The globally widespread Cycloseris distorta (for

locality records, see Hoeksema 1989), for instance, receives a weight of zero and is not in

the quartile of species with the lowest global occurrence to be considered rare (Leroy et al.

2012). By contrast, Montipora florida, Pleuractis gravis and Turbinaria bifrons meet the

threshold of rarity and have weights of 0.163, 0.285 and 0.205, respectively.

The index of relative rarity (IRR), calculated by averaging these weights for all species in

an area, gives an indication of the relative proportion of globally geographically-restricted

corals present in the area (Leroy et al. 2013). The SCS reef areas with the highest IRR are

the east coast of West Malaysia and northern Palawan (Table 1), which contain globally

and regionally rare species such as Euphyllia paradivisa and E. paraglabrescens. In par-

ticular, West Malaysia’s east coast harbours 70 species, or 17.6 % of its total species

richness, that meet the rarity threshold of B29 ecoregion occupancy. Northern Palawan has

far fewer rare species (50), but these include extremely rare corals such as Plerogyra

cauliformis and P. multilobata. Each of these species is present in only one ecoregion,

although both of them have been recorded in nearby eastern Sabah (Waheed and Hoek-

sema 2013). Other noteworthy areas in terms of relative rarity are western Luzon and

Brunei, which have slightly lower IRR but contain more rare species overall (66 and 51

respectively) than northern Palawan. While the richness component cannot be completely

isolated from our rarity statistics, this set of reef areas does not include southern Vietnam,

the second most species-rich area in the SCS, with greater richness than even West

Malaysia. Consequently, the choice to focus on either component of biodiversity—richness

or rarity—can affect regional priorities of conservation considerably (Prendergast et al.

2002; Lennon et al. 2004; Orme et al. 2005). Note that this set of results is robust to

variations in rarity thresholds; the use of 15 and 35 % rather than Gaston’s (1994) quartile

definition gives rank contrasts of only 1.75 and 1.00 respectively, with IRR values that are

ranked identically among many reef areas.

Almost one-third of the SCS species (29.9 %) are threatened according to the IUCN

Red List of Threatened Species (Carpenter et al. 2008), including 11 and 160 in EN and

VU categories respectively (Table 1). While there are no CR species in the SCS, the

proportion of non-DD species facing elevated extinction risk is nearly identical regionally

and globally (*33 %). Interestingly, areas with the largest proportions of threatened

species—West Malaysia (26.4 %), northern Palawan (24.9 %) and western Luzon

(26.6 %)—are also those with the highest relative rarity. This should hardly be surprising

given that at the global scale, a greater proportion of range-restricted species (44.7 %) are

threatened as compared to those that are more widespread (31.0 %) (Carpenter et al. 2008).

That is, the greater the number of threatened species in an area, the more likely it will

contain geographically-restricted species.

Although the east coast of West Malaysia has the highest number of DD species (16),

there is no clear pattern of how IUCN Red List data deficiency relates to the rarity of

species within an area. Southern Vietnam, for instance, contains numerous DD species (14)

as well, but it ranks eighth in terms of relative rarity. However, when species in the SCS

are pooled, DD species occupy only an average of 21 reef ecoregions globally, compared

to 36 ecoregions for threatened and 66 for non-threatened species. Indeed, our results

suggest that species deemed DD during the IUCN assessment are lacking in data mainly

because their global range restriction hinders understanding which is necessary for con-

servation evaluation (see Robbirt et al. 2006).
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Five reef areas stand to lose significantly more PD than expected by the extinction risk

of their coral assemblages, including the most species-poor area of southeastern China

(Table 1). Excess losses in the latter area and southwestern Vietnam are projected to be

0.62 and 0.53 % respectively, whereas Paracel Islands, West Malaysia’s east coast and

northern Vietnam could lose at least an extra 1.20 % of phylogenetic diversity compared to

a random extinction event. Threatened species in these areas are thus likely to be clustered

on the area phylogeny and/or consist of highly distinctive species (Purvis et al. 2000;

Vamosi and Wilson 2008; Huang and Roy 2013). In the Paracel Islands, for example, the

excess PD loss is caused mainly by the projected extinction of evolutionarily distinct

Vulnerable species Acropora echinata (sister to 42 other Acropora spp. in the area),

Isopora brueggemanni (sister to the rest of Isopora), Alveopora excelsa and Heliofungia

actiniformis (the only representatives of their genera in the area). The loss of the Vul-

nerable, monotypic Physogyra also leads to the depletion of a long phylogenetic branch.

By contrast, because West Malaysia’s east coast contains a much larger tree with nearly

twice the species richness, it is more likely to have taxa that are closely related to these

distinct species. Unfortunately, the clustering of threatened species in particular parts of the

tree, such as Isopora, Alveopora and Turbinaria results in imperilment of entire clades.

Southeastern China and southwestern Vietnam could also lose significantly more PD

than random species extinction, but are less likely than the Paracel Islands, east coast of

West Malaysia and northern Vietnam to lose deep lineages. Across the entire SCS, excess

PD loss is positive, indicating that the threatened unique lineages in these five reef areas

are not buffered from extinction by the rest of the region’s coral fauna. The remaining 11

reef areas stand to lose less PD than if extinction were by chance, suggesting that these

areas either contain proportionally fewer threatened long-branch species, or have more

instances of persistent species that are closely related to threatened species.

Species in an assemblage contribute differently to ecological functioning, but the actual

variation is difficult to establish (Cadotte 2013). Nevertheless, phylogenetic diversity has

been shown to correlate strongly with ecosystem productivity and stability (Maherali and

Klironomos 2007; Cadotte et al. 2008; Flynn et al. 2011). This relationship generally

results from the increase in trait diversity as more phylogenetically-diverse species are

included in an assemblage. The projected excess decline of PD in the five SCS reef areas

mentioned above could therefore spell the inordinate loss of coral traits that are important

for local ecosystem functioning. While the link between phylogenetic and functional

diversity needs to be tested, trait information for a majority of corals remains scant (Dı́az

and Madin 2011; Darling et al. 2012, 2013). Moreover, high diversity systems like coral

reefs have historically been expected to possess a certain level of functional redundancy

(McCann 2000; Bellwood et al. 2004; Nyström 2006), but more recent research on reef

fishes shows that only a limited number of functional groups are actually buffered against

species loss (Bellwood et al. 2003, 2006; Mouillot et al. 2014). This dire pattern and lack of

coral data suggest that conservation of PD specifically by minimising excess loss over

random extinction is a prudent strategy for preserving ecosystem functioning. Furthermore,

an enhanced conservation focus on the tree of life is ultimately key to protecting evolu-

tionary heritage, a critical biodiversity component (Purvis and Hector 2000; Mace et al.

2003; Rosauer and Mooers 2013).

Overall, our results highlight the need to go beyond the conventional emphasis on

species richness when planning for conservation in the SCS (see Devictor et al. 2010).

Coral richness, rarity, and phylogenetic diversity differ considerably among reef areas in

the region, and their outcomes from projected extinctions due to anthropogenic distur-

bances are not predicted simply by species numbers. On the one hand, rare species in terms
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of global ecoregion occupancy are more likely to be threatened with extinction and should

be prioritised for conservation (Arponen 2012). West Malaysia’s east coast and the

Philippine reef areas harbour the greatest levels of rarity and threat, so clearly, they are of

potential conservation interest, yet species-poor areas such as southern China and the

Paracel Islands also contain many rare species. On the other hand, areas that stand to lose

more-than-expected levels of PD, such as the Paracel Islands, east coast of West Malaysia

and southeastern China, are also critical for biodiversity conservation. Taken together,

while a few areas with moderate to high species richness (e.g., West Malaysia and the

Paracel Islands) feature prominently on the basis of various measures used here, areas

containing the fewest species (e.g., China and northern Vietnam) also need to be protected

for their contributions to rarity and evolutionary diversity. Given that rare species are

known to contribute disproportionately more to the functioning of coral reef ecosystems

(Mouillot et al. 2013), it may be more cost effective to target these areas. Ultimately,

priorities to be developed must take into account conservation financing and potential

returns on investment (Murdoch et al. 2007), as well as diverging socioeconomic costs

associated with the protection of large marine regions (Klein et al. 2010). This may require

a multilateral framework that prioritises investment at the national level based on com-

plementary sets of objectives for achieving regional conservation goals (Beger et al. 2015).

Anthropogenic threats to the coral reefs of the SCS include overfishing, destructive

fishing, coral mining, the aquarium trade, coastal development, sedimentation and pollu-

tion (McManus 1997; Kimura et al. 2008; Tun et al. 2008), all of which have led to an

estimated 16 % regional loss of live coral cover between 1994 and 2004 (UNEP 2007).

Many reef areas bordering the SCS are under some form of management but conservation

effectiveness remains weak for much of the region (UNEP 2007; Vo et al. 2013). Apart

from the need to improve management effectiveness, recommendations have been pro-

posed for the development of a network of MPAs as a regional strategy to conserve coral

reefs globally (MOE Japan 2010; see also McManus 1994; McManus and Meñez 1997;

McManus et al. 2010). Our results show that such a network can help preserve a con-

siderable portion and representation of global coral diversity, as well as enhance spatial

links for maintaining ecosystem connectivity and resilience (Walton et al. 2014; White

et al. 2014). The findings here will also aid conservation planners in efficiently directing

different resources to the most suitable reef areas, depending on the goal of individual

MPAs (see Bennett et al. 2014), and will provide a foundation for identifying reefs that

should be included in an MPA network. For example, an MPA designed to give equal

consideration to species richness, rare species and evolutionary diversity ought to include

the east coast of West Malaysia as it has the highest IRR (0.0500) and is one of the top two

reef areas in projected rate of extinction (26.4 %) and excess PD loss (1.31 %) from a

diverse assemblage (398 species). More broadly, the practical tools used here can be

applied to areas and taxa in the SCS not covered by our study to attain a more compre-

hensive understanding of various reef diversity components and extinction risk.

Corals are hosts to a large array of associated fauna and the loss of any particular coral

could lead to the demise of other species, especially if these are host-specific (Hoeksema

et al. 2012). In the SCS, extinctions of large proportions of threatened corals (Table 1)

could compromise the complex three-dimensional architecture of coral reefs, putting at risk

the existence of reef inhabitants such as fish (Graham et al. 2006; Wilson et al. 2006;

Chong-Seng et al. 2012) and invertebrates (Idjadi and Edmunds 2006; Pratchett et al. 2009;

Fabricius et al. 2014). Therefore, comprehensive protection of coral species and evolu-

tionary diversity via the formation of an MPA network in the SCS will go a long way

towards securing the future of reef faunal assemblages in the region.
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