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Abstract The South China Sea in the Central Indo-Pacific is a large semi-enclosed
marine region that supports an extraordinary diversity of coral reef organisms (including
stony corals), which varies spatially across the region. While one-third of the world’s reef
corals are known to face heightened extinction risk from global climate and local impacts,
prospects for the coral fauna in the South China Sea region amidst these threats remain
poorly understood. In this study, we analyse coral species richness, rarity, and phylogenetic
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diversity among 16 reef areas in the region to estimate changes in species and evolutionary
diversity during projected anthropogenic extinctions. Our results show that richness, rarity,
and phylogenetic diversity differ considerably among reef areas in the region, and that their
outcomes following projected extinctions cannot be predicted by species diversity alone.
Although relative rarity and threat levels are high in species-rich areas such as West
Malaysia and the Philippines, areas with fewer species such as northern Vietnam and
Paracel Islands stand to lose disproportionately large amounts of phylogenetic diversity.
Our study quantifies various biodiversity components of each reef area to inform con-
servation planners and better direct sparse resources to areas where they are needed most.
It also provides a critical biological foundation for targeting reefs that should be included
in a regional network of marine protected areas in the South China Sea.

Keywords IUCN Red List - Marine biodiversity - Phylogenetic diversity - Rarity -
Scleractinia - Species richness

Introduction

The South China Sea (SCS) is a large and species-rich marine region in the Central Indo-
Pacific (Fig. 1). Despite being situated adjacent to the Coral Triangle and hosting com-
parable levels of biodiversity, including 571 species of scleractinian reef corals (Huang
et al. 2015) and over 3000 species of fish (Randall and Lim 2000), this region has received
much less research attention. The shortfall in biodiversity research on the SCS needs to be
addressed as coral reefs are being destroyed at an alarming rate (Madin 2015).

Besides exhibiting high species diversity, scleractinian corals in the SCS display a
remarkable degree of spatial variability in species composition (Huang et al. 2015). The
most coral-rich areas of the SCS include western Luzon and southern Vietnam, which
contain more than 400 species (n = 433 and n = 406 respectively; Vo et al. 2014; Huang
et al. 2015), but most other areas have less than 300 species. More specious areas stand to
lose more species (Roberts et al. 2002), ultimately putting the entire ecosystem at risk by
reducing functional redundancy and jeopardising key ecological functions (Jones et al.
2011; Hooper et al. 2012).

However, species richness is not the sole determining factor of ecosystem functioning;
other components of biodiversity such as relative abundance and functional diversity are
also key determinants that should be considered for conservation (Hooper et al. 2005;
Bellwood et al. 2006; D’agata et al. 2014). For complex ecosystems, despite a wealth of
literature linking greater diversity to increased resilience to disturbance, work is emerging
that demonstrates the contrary (Bellwood et al. 2006; Cadotte et al. 2011; Mouillot et al.
2014). Indeed, reefs with more coral species have lower resistance to crown-of-thorns
seastar (Acanthaster planci) outbreaks, coral bleaching and storm impacts, and furthermore
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Fig. 1 South China Sea reef areas examined in this study, indicating the respective species richness of
stony corals

do not recover faster (Zhang et al. 2014). Better understanding of the links between
diversity, functional redundancy and resilience is therefore critical for predicting the future
of reefs.

For instance, important ecosystem contributions are made by species that are rare, both
in terms of local abundance (Lyons et al. 2005) and geographic range (Mouillot et al. 2013;
Jain et al. 2014), yet these species tend to have the highest extinction risk (Harnik et al.
2012). While over 10 % of coral species are considered to have restricted or highly
fragmented ranges (Carpenter et al. 2008), aspects like their distribution in diverse areas,
the overall extinction risk they face, and how their contributions to reef diversity will
change in the future remain poorly known. Our study aims to fill this gap by characterising
the degree of rarity contained within each SCS area.

For more than two decades, evolutionary diversity has become a major component of
conservation research (Vane-Wright et al. 1991; Nee and May 1997; Faith et al. 2010;
Curnick et al. 2015). Preservation of the tree of life is now often set as a goal in itself
(Posadas et al. 2001; Rodrigues and Gaston 2002; Forest et al. 2007), or as a proxy for the
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protection of ecosystem functioning (Maherali and Klironomos 2007; Cadotte et al. 2008;
Flynn et al. 2011). Although biodiversity has been interpreted primarily in terms of species
richness, it can also be quantified as evolutionary lineages (Altschul and Lipman 1990;
May 1990; Faith 1992), which in turn can be used to examine phyloecological trends in
distribution patterns (Hoeksema 2012) and other features relevant to species communities,
such as coloniality and associated fauna in scleractinian corals (Barbeitos et al. 2010;
Gittenberger et al. 2011; Hoeksema et al. 2012). In conserving biodiversity, a broader and
more representative goal could be approached by prioritising species or areas that most
likely protects the diversity of the tree of life (Witting and Loeschcke 1995; Isaac et al.
2007; Rosauer and Mooers 2013). Recent studies have shown that anthropogenic extinction
threats against corals are not distributed randomly on a species phylogeny (Huang 2012).
Rather, many risk factors such as mass bleaching, disease and crown-of-thorns seastar
outbreaks have the potential to devastate evolutionary diversity of coral reefs on a global
scale (Huang and Roy 2013). The future of evolutionary diversity at local and regional
levels remains uncertain, but given the availability of species distributional data in the
region (Huang et al. 2015), this now becomes possible to predict for the SCS.

The primary objective of this study is to quantify and project changes in species and
evolutionary diversity of 16 reef areas in the SCS region to better understand and prioritise
conservation resources. We update coral distribution records compiled recently by Huang
et al. (2015) and compare species richness, rarity and phylogenetic diversity among 16 reef
areas in the SCS (Fig. 1; Table 1). Rarity is defined based on geographic range limitation
(Gaston 1994), and the level of rarity in each area is determined by averaging species
weights assigned based on their range restrictedness. We then integrate conservation status
data from the IUCN Red List of Threatened Species IUCN 2001; Carpenter et al. 2008)
and perform extinction simulations to predict changes in phylogenetic diversity (Faith
1992) of reef areas caused by species loss. Our findings underscore the conservation value
of particular SCS areas whose immense biodiversity is threatened by impending extinction.

Materials and methods

The SCS is a large marine region with a surface area of 3.4 million km? (Fig. 1; Morton
and Blackmore 2001), including about 12,000 km? or 4.7 % of the world’s total coral reef
area (Huang et al. 2015), and is surrounded by the coastlines of ten Asian nation states.

Species distributional data of scleractinian reef corals in the SCS were previously
consolidated by Huang et al. (2015). The dataset comprised occurrences for a total of 571
species (see Online Resource 1) recorded among 16 reef areas in the region (Table 1).
Records for southern Vietnam (VN2) were updated (Vo et al. 2014).

To determine the relationship between regional and global patterns of coral diversity,
we supplemented the SCS distributional data with geographic range information from the
Coral Geographic database (Veron et al. 2009, 2011, 2015). This database of 798 species
divided the seas containing reef corals into 141 ecoregions. Data for SCS species not
available in the Coral Geographic were obtained from the IUCN Red List of Threatened
Species (IUCN 2001; Carpenter et al. 2008) and the Global Biodiversity Information
Facility (GBIF; http://data.gbif.org). A total of 547 (out of 571) species were covered by
these global databases. For each species, we computed ecoregion (global) and area (SCS)
occupancies for each species by summing the number of the respective geographic units
that contain it. The predictive capacity of the SCS data on global ecoregion occupancy was

@ Springer


http://data.gbif.org

335

Biodivers Conserv (2016) 25:331-344

(€20 °TI°0) LT'0 (6'L) v (89¢) 01T SO S¥1 (0°87) 091 61 11 8%80°0 LS seare [y
(8L°0— ‘98°0—) 780— T L (L'6v) LST (L0g) L6 (TrLn ¥s €01 €520°0 91¢ (ML) uemref,
(96'0— 90'1—) 10'1— (818 (F'ev) 881 (T'820) Tl (6'S0) TI1 Lo ¢ 9620°0 (5% (Z1) uozNJ uIISIM
(S#'0— ‘sS0—) 0S°0— €06 (T'Sy) 081 ©Lo o1t (6°€7) S6 (0N 7 €€€0°0 86¢ ("1d) uemered UIOYIION
OT1— “6T1-) ¥T1— L6 (509) 891 (162 L6 (L1 6 00 0 80100 €€€ (dS) spues] Apeidg
(80— “¢6'0—) L80— (OXIRS (8'29) 1€1 (8'L2) 69 (691) ¥ o)1 71200 81T (VS) yeqes uro)som
O11= ‘LTI 1T1— oDt (8'¥1) SLI (L'60) 911 ($€0) 6 (OROR% SLTO0 16€ (Ng) teunig

(99°0 '85°0) 290 ani W'Ly) Sy (68¢) LE (9D Tl 000 01200 S6 (ZND) euUIy) UISEAYINOS
(80— ‘16'0—) 88°0— L8 009 1§ 19 € (80D TI 000 1L20°0 701 (IND) euly) UIYINOS

(Le1 9T 1€°1 SeL (T09) 101 #'80) LS (691) ¥¢ one 6v20°0 10T (Vd) spue[s] [eoeled

(STTSI'D 0TI Qo1 (I'19) 06 (1€ 09 (44984 000 #€00°0 9LI (PNA) WEWSIA UIYLION
@1—"1L1-) L9T— o)1 FvS) LET 60 vL (6°SD) o 000 85000 [4Y4 (ENA) WERmaIA [enud)
(€€T— “Tr1—) 81— ) ¥1 (I 6L1 (8'80) LIT (6°T0) €6 Lo ¢ 82200 90% (TNA) WEWIIA URYINOS

(LS0 *8%°0) €50 (kXY (0°69) 8¢€1 ($'60) ¥L (SeD) v¢ 000 €L00°0 1T (INA) WeUjoIA uIo)somyinog
(#8°0— ‘€6'0—) 88°0— o)1 (S+9) v71 (6'62) 6L (TsD oy 000 $T00°0 9T (HL) puefrey,

LT YT D 1€T O%) 91 Loy 291 (6'80) ST1 (1's) 001 €ns 00S0°0 86¢ (XIN) ersAe[eIN 1SoM
01— "01'1-) SO'T— (80 ¢ 019 0€1 ($Te) €8 (€51 6¢ o)1 £900°0 SsT (DS) e10de3urg

(%) ssOI ad $s9oXH aa o1 IN NA Nd iy SSoUYIRY eary

(1107 SI900IA pue Jeyred) ((qd) ANSIoAIp o1ouado[Ayd Jo SSOJ $S90Xa ([BAIIUI QUIPYUOD 9, G6 pue) jusdiad uesw pue ‘(8007 '[e 12 1uadie))

(JUATOYAP BIBP (F( ‘UIDIUOD IS )7 ‘PAULILAIY) Jeal JN ‘9[qEIdU[NA )A ‘Pa1afuepud N7) A103a1e) ISTT Py NDNI Yoo ur sarads jo (afejuaorad pue) roquunu (€107
2107 T8 10 Koxo) (¥¥]) Ajirey] 9ATIB[OY JO XApU] 9y} ‘SSQuydLI sa1oads Surmoys ‘Apnis SIy) ur paurwexa (10 '[e 32 Sueny o) SUIpI0od.) Seale JooI BAS BUIYD YINOS | d[qel,

pringer

As



336 Biodivers Conserv (2016) 25:331-344

estimated by fitting a linear model through the origin. We then used the global distribu-
tional data to assign species rarity weights for the characterisation of relative rarity among
the 16 SCS assemblages. Gaston’s (1994) quartile definition was set as the rarity threshold,
being the number of ecoregions at which 25 % of all species with the lowest global
occurrence were considered rare (Leroy et al. 2012). These rare species were assigned
weights that increased exponentially with the difference between their occurrences and the
rarity cutoff. Finally, using the R (R Core Team 2013) package Rarity (Leroy et al. 2013),
we computed the Index of Relative Rarity (Igg), given by the average weight of rarity for
all species in each assemblage. The index was also calculated for the SCS as a whole.
We derived coral conservation status data from the IUCN Red List of Threatened
Species that included 827 reef-building scleractinian species assessed by many of the
world’s leading coral experts in 2006 and 2007 (IUCN 2001; Carpenter et al. 2008). The
assessment concluded that one-third of the 688 species not deemed data deficient (DD)
faced heightened extinction risk (i.e., CR critically endangered, EN endangered, VU

IUCN Red List Category
Vulnerable / Endangered

Least Concern / Near Threatened / Data Deficient

[ X X J
12 3

4 567 8 910111213141

Number of areas recorded

Fig. 2 Strict consensus phylogenetic tree of reef corals in the South China Sea. The number of reef areas
recorded for each species is shown using a coloured circle, with IUCN Red List threat status denoted as red
(threatened) or blue (non-threatened) tip label
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vulnerable). Of the 571 coral species recorded in the SCS, 543 were characterised based on
the IUCN Red List categories. The remaining 28 species not assessed previously were
categorised as DD. We note that the lack of information for DD species may be related to
inadequate taxonomic study, or to their possible rarity and restricted distribution range, in
which case the number of threatened species may be underestimated (see below).

Based on the threat levels for species, we carried out a simulation study to predict
regional changes in evolutionary diversity arising from projected extinctions. To quantify
the pre- and post-extinction diversity of each SCS area and the region as a whole, we
employed the phylogenetic diversity (PD) measure (Faith 1992), computed in R (R Core
Team 2013) packages caper (Orme et al. 2013) and Picante (Kembel et al. 2010) as the
total branch length in the phylogeny of species present in an area (Davies et al. 2008; Fritz
and Purvis 2010). For this computation, we pruned the 1000 time-calibrated posterior
supertrees of reef scleractinian corals reconstructed recently (Huang 2012; Huang and Roy
2013) to a taxon subset corresponding to the species complement of each area (Fig. 2).
Species loss was simulated by assuming that all threatened (CR, EN or VU) corals in an
area would go extinct, with the results compared to a null model of random extinction
repeated 1000 times with the same extinction rate (Purvis et al. 2000; Sechrest et al. 2002;
Fritz and Purvis 2010). We then calculated the excess loss of PD as the extra loss of actual
PD over the null result, expressed as a proportion of the latter (Parhar and Mooers 2011),
and assessed for statistical significance using the Student’s ¢ test. The analysis was carried
out for each of the 1000 posterior trees, with results summarised as means and 95 %
confidence intervals.

Results and discussion

Our study brings together species and phylogenetic diversity data at the regional scale with
global distribution and extinction risk information of the 571 reef coral species in the SCS
(see Online Resource 1). Species occurring in the SCS include geographically-restricted
species such as Physophyllia ayleni in the Macclesfield Bank (Paracel Islands reef area)
and Pseudosiderastrea formosa in Taiwan, as well as widespread species such as Pocil-
lopora damicornis that inhabits every SCS area and are present in nearly all (118) of the
reef ecoregions in the Indo-Pacific marine realm (Veron et al. 2009).

There is a statistically significant positive linear relationship between SCS area occu-
pancy and global ecoregional distribution (slope = 6.39, p < 10~"°, R* = 0.942; Online
Resource 2). As expected, species that are rare in the SCS region tend to be less widespread
at the global level. Therefore, focusing on reef conservation efforts at the regional level,
like an implementation of a regional network of marine protected areas, or MPAs (Clifton
2009; Walton et al. 2014; White et al. 2014), will help preserve a good representation of
global species diversity.

Despite the strong positive relationship between global and regional occupancies, there
are considerable variations in the global distribution of species (Online Resource 2). For
example, Cycloseris distorta is recorded in 89 reef ecoregions according to the Coral
Geographic (Veron et al. 2009, 2011), yet it is only present in two SCS areas (Fig. 2)—
Thailand and southern Vietnam—which could also be related to differences in species
identifications among studies as seen in the Great Barrier Reef (Hoeksema 2015). There are
also regionally widespread species such as Montipora florida, Pleuractis gravis and
Turbinaria bifrons that are present in as many as half of the SCS reef areas (Hoeksema
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1993; Veron et al. 2009), but are in fewer of the world’s ecoregions (15-20) than expected
(~50). These variations in global occupancy are useful in helping to determine the relative
rarity of species hosted by each SCS area. The globally widespread Cycloseris distorta (for
locality records, see Hoeksema 1989), for instance, receives a weight of zero and is not in
the quartile of species with the lowest global occurrence to be considered rare (Leroy et al.
2012). By contrast, Montipora florida, Pleuractis gravis and Turbinaria bifrons meet the
threshold of rarity and have weights of 0.163, 0.285 and 0.205, respectively.

The index of relative rarity (Igg), calculated by averaging these weights for all species in
an area, gives an indication of the relative proportion of globally geographically-restricted
corals present in the area (Leroy et al. 2013). The SCS reef areas with the highest Iz are
the east coast of West Malaysia and northern Palawan (Table 1), which contain globally
and regionally rare species such as Euphyllia paradivisa and E. paraglabrescens. In par-
ticular, West Malaysia’s east coast harbours 70 species, or 17.6 % of its total species
richness, that meet the rarity threshold of <29 ecoregion occupancy. Northern Palawan has
far fewer rare species (50), but these include extremely rare corals such as Plerogyra
cauliformis and P. multilobata. Each of these species is present in only one ecoregion,
although both of them have been recorded in nearby eastern Sabah (Waheed and Hoek-
sema 2013). Other noteworthy areas in terms of relative rarity are western Luzon and
Brunei, which have slightly lower Izg but contain more rare species overall (66 and 51
respectively) than northern Palawan. While the richness component cannot be completely
isolated from our rarity statistics, this set of reef areas does not include southern Vietnam,
the second most species-rich area in the SCS, with greater richness than even West
Malaysia. Consequently, the choice to focus on either component of biodiversity—richness
or rarity—can affect regional priorities of conservation considerably (Prendergast et al.
2002; Lennon et al. 2004; Orme et al. 2005). Note that this set of results is robust to
variations in rarity thresholds; the use of 15 and 35 % rather than Gaston’s (1994) quartile
definition gives rank contrasts of only 1.75 and 1.00 respectively, with Iz values that are
ranked identically among many reef areas.

Almost one-third of the SCS species (29.9 %) are threatened according to the IUCN
Red List of Threatened Species (Carpenter et al. 2008), including 11 and 160 in EN and
VU categories respectively (Table 1). While there are no CR species in the SCS, the
proportion of non-DD species facing elevated extinction risk is nearly identical regionally
and globally (~33 %). Interestingly, areas with the largest proportions of threatened
species—West Malaysia (26.4 %), northern Palawan (24.9 %) and western Luzon
(26.6 %)—are also those with the highest relative rarity. This should hardly be surprising
given that at the global scale, a greater proportion of range-restricted species (44.7 %) are
threatened as compared to those that are more widespread (31.0 %) (Carpenter et al. 2008).
That is, the greater the number of threatened species in an area, the more likely it will
contain geographically-restricted species.

Although the east coast of West Malaysia has the highest number of DD species (16),
there is no clear pattern of how IUCN Red List data deficiency relates to the rarity of
species within an area. Southern Vietnam, for instance, contains numerous DD species (14)
as well, but it ranks eighth in terms of relative rarity. However, when species in the SCS
are pooled, DD species occupy only an average of 21 reef ecoregions globally, compared
to 36 ecoregions for threatened and 66 for non-threatened species. Indeed, our results
suggest that species deemed DD during the IUCN assessment are lacking in data mainly
because their global range restriction hinders understanding which is necessary for con-
servation evaluation (see Robbirt et al. 2006).
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Five reef areas stand to lose significantly more PD than expected by the extinction risk
of their coral assemblages, including the most species-poor area of southeastern China
(Table 1). Excess losses in the latter area and southwestern Vietnam are projected to be
0.62 and 0.53 % respectively, whereas Paracel Islands, West Malaysia’s east coast and
northern Vietnam could lose at least an extra 1.20 % of phylogenetic diversity compared to
a random extinction event. Threatened species in these areas are thus likely to be clustered
on the area phylogeny and/or consist of highly distinctive species (Purvis et al. 2000;
Vamosi and Wilson 2008; Huang and Roy 2013). In the Paracel Islands, for example, the
excess PD loss is caused mainly by the projected extinction of evolutionarily distinct
Vulnerable species Acropora echinata (sister to 42 other Acropora spp. in the area),
Isopora brueggemanni (sister to the rest of Isopora), Alveopora excelsa and Heliofungia
actiniformis (the only representatives of their genera in the area). The loss of the Vul-
nerable, monotypic Physogyra also leads to the depletion of a long phylogenetic branch.
By contrast, because West Malaysia’s east coast contains a much larger tree with nearly
twice the species richness, it is more likely to have taxa that are closely related to these
distinct species. Unfortunately, the clustering of threatened species in particular parts of the
tree, such as Isopora, Alveopora and Turbinaria results in imperilment of entire clades.

Southeastern China and southwestern Vietnam could also lose significantly more PD
than random species extinction, but are less likely than the Paracel Islands, east coast of
West Malaysia and northern Vietnam to lose deep lineages. Across the entire SCS, excess
PD loss is positive, indicating that the threatened unique lineages in these five reef areas
are not buffered from extinction by the rest of the region’s coral fauna. The remaining 11
reef areas stand to lose less PD than if extinction were by chance, suggesting that these
areas either contain proportionally fewer threatened long-branch species, or have more
instances of persistent species that are closely related to threatened species.

Species in an assemblage contribute differently to ecological functioning, but the actual
variation is difficult to establish (Cadotte 2013). Nevertheless, phylogenetic diversity has
been shown to correlate strongly with ecosystem productivity and stability (Maherali and
Klironomos 2007; Cadotte et al. 2008; Flynn et al. 2011). This relationship generally
results from the increase in trait diversity as more phylogenetically-diverse species are
included in an assemblage. The projected excess decline of PD in the five SCS reef areas
mentioned above could therefore spell the inordinate loss of coral traits that are important
for local ecosystem functioning. While the link between phylogenetic and functional
diversity needs to be tested, trait information for a majority of corals remains scant (Diaz
and Madin 2011; Darling et al. 2012, 2013). Moreover, high diversity systems like coral
reefs have historically been expected to possess a certain level of functional redundancy
(McCann 2000; Bellwood et al. 2004; Nystrom 2006), but more recent research on reef
fishes shows that only a limited number of functional groups are actually buffered against
species loss (Bellwood et al. 2003, 2006; Mouillot et al. 2014). This dire pattern and lack of
coral data suggest that conservation of PD specifically by minimising excess loss over
random extinction is a prudent strategy for preserving ecosystem functioning. Furthermore,
an enhanced conservation focus on the tree of life is ultimately key to protecting evolu-
tionary heritage, a critical biodiversity component (Purvis and Hector 2000; Mace et al.
2003; Rosauer and Mooers 2013).

Overall, our results highlight the need to go beyond the conventional emphasis on
species richness when planning for conservation in the SCS (see Devictor et al. 2010).
Coral richness, rarity, and phylogenetic diversity differ considerably among reef areas in
the region, and their outcomes from projected extinctions due to anthropogenic distur-
bances are not predicted simply by species numbers. On the one hand, rare species in terms
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of global ecoregion occupancy are more likely to be threatened with extinction and should
be prioritised for conservation (Arponen 2012). West Malaysia’s east coast and the
Philippine reef areas harbour the greatest levels of rarity and threat, so clearly, they are of
potential conservation interest, yet species-poor areas such as southern China and the
Paracel Islands also contain many rare species. On the other hand, areas that stand to lose
more-than-expected levels of PD, such as the Paracel Islands, east coast of West Malaysia
and southeastern China, are also critical for biodiversity conservation. Taken together,
while a few areas with moderate to high species richness (e.g., West Malaysia and the
Paracel Islands) feature prominently on the basis of various measures used here, areas
containing the fewest species (e.g., China and northern Vietnam) also need to be protected
for their contributions to rarity and evolutionary diversity. Given that rare species are
known to contribute disproportionately more to the functioning of coral reef ecosystems
(Mouillot et al. 2013), it may be more cost effective to target these areas. Ultimately,
priorities to be developed must take into account conservation financing and potential
returns on investment (Murdoch et al. 2007), as well as diverging socioeconomic costs
associated with the protection of large marine regions (Klein et al. 2010). This may require
a multilateral framework that prioritises investment at the national level based on com-
plementary sets of objectives for achieving regional conservation goals (Beger et al. 2015).

Anthropogenic threats to the coral reefs of the SCS include overfishing, destructive
fishing, coral mining, the aquarium trade, coastal development, sedimentation and pollu-
tion (McManus 1997; Kimura et al. 2008; Tun et al. 2008), all of which have led to an
estimated 16 % regional loss of live coral cover between 1994 and 2004 (UNEP 2007).
Many reef areas bordering the SCS are under some form of management but conservation
effectiveness remains weak for much of the region (UNEP 2007; Vo et al. 2013). Apart
from the need to improve management effectiveness, recommendations have been pro-
posed for the development of a network of MPAs as a regional strategy to conserve coral
reefs globally (MOE Japan 2010; see also McManus 1994; McManus and Mefiez 1997,
McManus et al. 2010). Our results show that such a network can help preserve a con-
siderable portion and representation of global coral diversity, as well as enhance spatial
links for maintaining ecosystem connectivity and resilience (Walton et al. 2014; White
et al. 2014). The findings here will also aid conservation planners in efficiently directing
different resources to the most suitable reef areas, depending on the goal of individual
MPAs (see Bennett et al. 2014), and will provide a foundation for identifying reefs that
should be included in an MPA network. For example, an MPA designed to give equal
consideration to species richness, rare species and evolutionary diversity ought to include
the east coast of West Malaysia as it has the highest Izg (0.0500) and is one of the top two
reef areas in projected rate of extinction (26.4 %) and excess PD loss (1.31 %) from a
diverse assemblage (398 species). More broadly, the practical tools used here can be
applied to areas and taxa in the SCS not covered by our study to attain a more compre-
hensive understanding of various reef diversity components and extinction risk.

Corals are hosts to a large array of associated fauna and the loss of any particular coral
could lead to the demise of other species, especially if these are host-specific (Hoeksema
et al. 2012). In the SCS, extinctions of large proportions of threatened corals (Table 1)
could compromise the complex three-dimensional architecture of coral reefs, putting at risk
the existence of reef inhabitants such as fish (Graham et al. 2006; Wilson et al. 2006;
Chong-Seng et al. 2012) and invertebrates (Idjadi and Edmunds 2006; Pratchett et al. 2009;
Fabricius et al. 2014). Therefore, comprehensive protection of coral species and evolu-
tionary diversity via the formation of an MPA network in the SCS will go a long way
towards securing the future of reef faunal assemblages in the region.
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