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Abstract The combined effects of habitat fragmentation and climate change on biodi-

versity and biotic interactions are poorly understood. In the context of ongoing defores-

tation and agricultural intensification in the tropics secondary rainforest fragments might

contribute to biodiversity conservation and mitigation of climate warming. This study

investigated the interactive effects of habitat fragmentation and microclimate on the

abundance and biotic interactions of trap-nesting bees and wasps in secondary forest

fragments in the northwestern lowlands of Costa Rica. Fragment size did not affect

hymenopteran abundance, parasitism and mortality rates, but all variables differed between

edge and interior locations in the forest fragments. Interactive effects between size and

location indicate higher mortality rates at interior locations in larger fragments. Micro-

climatic differences at edge and interior locations led to significant effects on all tested

response variables. Abundance at interior locations was significantly higher with

increasing temperatures. Mortality rates at interior location increased at lower mean

temperatures, whereas higher temperatures at edges marginally increased mortality rates.

Our results indicate that edge effects, mediated by altered microclimatic conditions, sig-

nificantly change biotic interactions of trap-nesting hymenopterans in small secondary

fragments.
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Introduction

Different aspects of global environmental change endanger species persistence, alter

species distributions and lead to changes in antagonistic and mutualistic interactions

(Barlow et al. 2007), whereas logging of rainforests results in landscapes consisting of

patchily distributed forest fragments in a matrix of pastures and plantations (Vitousek et al.

1997; Tilman et al. 2001). Deforestation and resulting fragmentation are regarded as a

major threat to biodiversity (Davies et al. 2000; Fahrig 2003) due to habitat loss and edge

effects and can result in reduced species richness, population declines (Donovan and

Flather 2002), loss of genetic diversity (Gibbs 2001) and disruption of trophic interactions

such as predation and parasitism (Turner 1996; Kruess and Tscharntke 2000; Laurance

et al. 2002; Klein et al. 2006). Moreover regional estimates of extinctions from defores-

tation are probably worse than previously thought, because studies neglected extinction

debts and assumed that persisting forest was contiguous (Hanski et al. 2013; Kuussaari

et al. 2009).

In addition to fragmentation, climate change and consequent changes in microclimatic

conditions can also affect insect communities. Species adapted to forest conditions and

living in constant shade cannot easily adapt to higher temperatures and lower air moisture

in open habitats and do not have many options to escape from rising temperatures (Deutsch

et al. 2008; Ruibal 1961). This is especially true for lowland forest species of bees and

wasps with narrow thermal optima (Deutsch et al. 2008; van Berkum 1988). The situation

for them becomes even harsher when they are additionally confronted with habitat loss and

fragmentation (Tewksbury et al. 2008). Until now only a few studies have investigated the

influences and interactions of more than one threat (e.g. Gibson et al. 2013; Hill et al. 2006;

Opdam and Wascher 2004).

Solitary bees and wasps colonizing trap nests have been used as bio-indicators, because

they are sensitive to land use change and habitat fragmentation (Tscharntke et al. 1998;

Klein et al. 2006; Tylianakis et al. 2006). Bees and wasps fulfill important tasks in eco-

system functions. Bees are the most important pollinator group of plants (Didham et al.

1996; Kremen et al. 2007) and wasps are important predators and parasitoids, with con-

siderable economic and agricultural relevance (Penagos and Williams 1995; Tylianakis

et al. 2005). Their variety of functional niches makes insects and other invertebrates

important for the maintenance of vital ecosystem processes (Didham et al. 1996). In studies

conducted in native Neotropical forests trap-nesting bees are considered more sensitive to

habitat fragmentation, preferring continuous forest and natural gaps, whereas wasps seem

to prefer small forest remnants and cleared areas (Morato and Campos 2000). Both groups

depend on nesting sites (Potts et al. 2005), materials for nest constructions (Taki et al.

2008) and pollen or arthropod food resources (Tscharntke et al. 1998). The nesting fre-

quencies of trap-nesting Hymenoptera are also known to respond to climate factors such as

temperature, precipitation, humidity and sun-exposure (Thiele 2005).

Information on biodiversity of Hymenoptera in tropical rainforests is scarce, but there is

even less knowledge of species interactions (Godfray et al. 1999). Trap nests are a valuable

system to obtain information on biodiversity and abundance, but also on community
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parameters such as mortality and parasitism rates (Tscharntke et al. 1998). Higher trophic

levels, for example parasitoids, are more affected by drivers such as climate warming and

higher temperatures or habitat modification (Thomson et al. 2001; Valladares et al. 2006;

Fenoglio et al. 2012), due to a higher susceptibility of interactions to phenological de-

synchronization and host population dynamics (Suttle et al. 2007).

There is much uncertainty about the combined effects of climate change (with resulting

microclimatic changes) and habitat fragmentation on tropical forest organisms and their

trophic interactions (Laurance et al. 2011; González-Varo et al. 2013; Wimp et al. 2011).

Secondary forest fragments and tree plantations can be important for biodiversity

(Turner and Corlett 1996), as their coverage is rapidly expanding and protected areas are

limited (Barlow et al. 2007). They can enhance landscape connectivity, but they are much

more vulnerable than previously thought (Gibson et al. 2013). There is a lack of studies

done inside tropical forests, since most studies have investigated influences of tropical

forests in adjacent agro-ecosystems (Klein et al. 2002, 2006) or along land-use gradients

(Tylianakis et al. 2005, 2006). There are very few reference studies conducted in tropical

forest, such as those done in a dry forest in Costa Rica (Frankie et al. 1988) or in forest

remnants in Brazil (Morato and Campos 2000). The conservation value of secondary forest

fragments has rarely been addressed despite the probability that in many regions only these

will remain for biodiversity conservation and maintenance of ecosystem services for

agricultural areas.

In conclusion, there is a lack of studies investigating the possible interactive effects of

habitat fragmentation and climate change on solitary hymenopterans and their trophic

interactions in tropical secondary forest fragments. Therefore, we assessed the abundance

and trophic interactions of trap-nesting Hymenoptera at three tree locations in different

sized secondary forests in the Sarapiquı́ region of Costa Rica. This was done in order to

answer the following questions:

(1) Does the abundance of solitary bees and wasps differ with the interactive effects of

fragment size, tree location and temperature?

(2) How do parasitism- and mortality rates change with fragment size, tree location and

temperature?

(3) What is the conservation value of secondary forest fragments for above-ground

nesting Hymenoptera?

Materials and methods

Study region and study sites

This study was carried out during a 12 months period between February 2011 and February

2012 in the Sarapiquı́ region in Heredia province, Costa Rica in the vicinity of La Vı́rgen.

The average annual temperature was 25.3 �C with an average annual precipitation of

3,777 mm. According to Holdridge life zone system, Sarapiquı́ belongs to the ‘‘tropical

moist forest’’ (Holdridge 1967). The landscape consists mostly of forest remnants, cattle

pastures and farmlands producing pineapple, ornamental plants and banana. In a region of

ca 30 9 40 km, we selected twelve different sized forest fragments (average

5.4 ha ± 4.86; range 0.9–16.62 ha), at least 2 km between each, and a similar amount of

forest (ap. 30 %) in a 2 km circle. The forest fragments consisted of secondary forest with

no recent management activities and were located between 49 and 413 m above sea level.
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Study design and sampling

In each of the 12 study sites 27 trap nests were placed. Three trees were selected along a

transect line, one tree in the forest center, one at an intermediate distance and the last one at

the forest edge. A package of three trap nests was installed at each of the three heights (2,

10, 20 m) on each tree. In total 324 trap nests were analyzed. Each trap nests consisted of a

PVC tube filled with different diameters of about 120 reed internodes (Phragmites aus-

tralis) cut to 20 cm length (Tscharntke et al. 1998). At 10 m height on every tree a

temperature logger (iButton DS1921G-F5) was installed to measure the temperature every

hour for the total sampling period. The mean temperature per tree was calculated for

statistical analyses.

Occupied internodes, defined as those that were closed with soil or plant materials

indicating completed nest construction (Krombein 1967), were replaced during regular

inspections (1–2 months).

Occupied internodes were opened in the lab, nests were identified, brood cells were

counted and parasitized and dead cells were noted to calculate parasitism and mortality

rates. Nests were then placed in pieces of transparent plastic tube and closed with cotton at

both ends. When the adults emerged, they were killed for later identification. All wasps,

bees and parasitoids were at least identified to genus level.

Statistics

For every response variable (number of brood cells, mortality rate, parasitism rate) linear

mixed effects models containing all interactions of fragment size, tree location and tem-

perature were calculated with the statistical program R (R Development Core Team VS R

3.0.3). All models contained the random terms ‘‘fragment’’ and ‘‘height’’ to account for the

nested design. The model, which explained most of the variance, was chosen according to

the lowest AIC. A correction term for overdispersion was included in all final models.

As the response variable ‘‘number of brood cells’’ consisted of count data, a Poisson

distribution was used. In the case of the parasitism and mortality rate linear models with

binomial distribution were used (Crawley 2002).

We did not separate the data into functional groups, for example bees and wasps, as we

were interested into the response of the trap-nesting community. However the separate

analyses can be found in the supplementary material.

Results

Bees, wasps and natural enemies

During 12 months 22,101 brood cells were constructed by solitary bees and wasps. The

community consisted of 38 hymenopteran genera comprising seven nonparasitic and two

parasitic bee genera and 15 nonparasitic and 14 parasitic wasp genera (Table 1). The

majority of brood cells (89.3 %) were constructed by wasps, whereas only 10.7 % were

constructed by bees. In total 3,714 cells were attacked by natural enemies, and of these,

332 were bee cells (8.9 %) and 3,382 were wasp cells (91.1 %). In total 3,480 cells showed

mortality due to other causes, and of these, 459 were bee cells (13.1 %) and 3,025 were

wasp cells (86.9 %).
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Table 1 Number of brood cells
per location (tree 1 at the forest
border, tree 2 at intermediate
distance and tree 3 in the forest
center) of all genera or morpho-
species

Species Tree 1 Tree 2 Tree 3

Anthophoridae

Centris labrosa 120 311 206

Centris analis 148 57 43

Aglaomelissa duckei 1 5 26

Megachilidae

Megachile sp. 1 27 0 9

Megachile sp. 2 4 7 67

Megachile sp. 3 7 0 0

Megachile sp. 4 7 0 7

Duckeanthidium thielei 0 0 4

Anthodioctes gualanense 23 0 31

Coelioxys sp. 1 3 11 27

Coelioxys sp. 2 0 0 1

Coelioxys sp. 3 1 0 0

Coelioxys sp. 4 0 0 1

Coelioxys sp. 5 0 0 2

Colletidae

Hylaeus sp. 1 20 9 89

Apidae

Tetrapedia maura 107 4 17

Sphecidae

Ampulex 2 6 8

Liris 3 47 78

Nitela 2 9 13

Penepodium 1 0 0

Pison 53 121 145

Podium 442 549 852

Trigonopsis 1 0 4

Trypoxylon 6,493 3,185 4,000

Pompilidae

Ageniella 2 0 0

Auplopus 650 237 588

Dipogon 3 0 4

Priocnemella 49 28 35

Eumenidae

Montezumia 14 0 2

Pachodynerus 40 50 105

Zethus 18 40 75

Chalcidoidae

Brachymeria sp. 1 0 0 3

Leucospis sp. 1 15 5 23

Melittobia 179 48 40

Perilampidae sp. 1 1 1 0
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Fragments and microclimate

We tested the effects of fragment size and tree location on the mean temperature. Mean site

temperature did not vary with fragment size (p = 0.654), but did vary with tree location.

At the inner trees, we found a significantly lower temperature (tree 2: p \ 0.001, tree 3:

p \ 0.001) compared to trees at the edge.

Fragment size, tree location and temperature effects on abundances

Contrary to our expectations, fragment size alone had no influence on the abundance of

bees and wasps (p = 0.25). However, fragment size did influence the number of brood

cells in interaction with tree location (tree 2: p \ 0.001, Fig. 1a; Table 2). The abundance

at the intermediate tree was significantly lower in larger fragments compared to smaller

ones, whereas abundance at the forest center and the edge increased slightly with larger

fragment sizes. Furthermore, independent of fragment size, inner trees showed a lower

Table 1 continued
Species Tree 1 Tree 2 Tree 3

Chrysididae

Caenochrysis 133 35 57

Chrysis 5 0 4

Exochrysis 22 22 33

Ipsiura 1 3 5

Neochrysis 15 0 3

Pleurochrysis 2 1 10

Ichneumonidae

Ichneumonidae sp. 1 1 0 0

Ichneumonidae sp. 2 0 6 2

Ichneumonidae sp. 3 2 1 2

Ichneumonidae sp. 4 2 0 0

Ichneumonidae sp. 5 1 0 0

Mutillidae

Spaeropthalmina 18 16 9

Coleoptera

Tetraonyx sexguttata 12 7 8

Bruchidae 1 0 0

Dermestidae 16 1 0

Nitidulidae 0 0 1

Diptera

Anthrax 15 5 11

Dolichopodidae 550 575 680

Sarcophagidae 37 9 13

Arachnida

Acari 28 13 9

Lepidoptera

Lepidoptera 14 5 9
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abundance of hymenopterans (tree 2: p = 0.0132, tree 3: p = 0.0042) compared to the

forest edge with a higher abundance.

A rise in temperature negatively affected the abundance of trap nesting hymenopterans

(p \ 0.001), but the influence of temperature also depended on tree location. The high

abundance at the edge was negatively affected by a rise in temperature, whereas higher

temperatures at the inner trees led to similar or slightly higher abundances (tree 2:

p = 0.014, tree 3: p = 0.005, Fig. 1b).

Fragment size, tree location and temperature effects on mortality rates

Fragment size alone had no influence on mortality rates (Table 2). However, it was

interesting that larger fragments had higher mortality rates inside the forest (tree 2:

p = 0.00317, tree 3: p = 0.00868, Fig. 2a) compared to the forest border.

The mortality rates responded differently at edge and center locations. The negative

slope of the mortality rates at both inner locations (tree 2 9 temperature: p = 0.025, tree

3 9 temperature: p = 0.036) with increasing temperature was significantly different from

the slightly positive increase at edge trees (Fig. 2b).

Fragment size, tree location and temperature effects on parasitism rates

Parasitism rates varied between 2 and 28 % and did not increase with fragment size.

However the parasitism rates depended on tree location since parasitism was higher at the

intermediate locations compared to the forest edge and center (tree 2: p \ 0.001, Table 2).

Moreover, we found that temperature affects parasitism rates differently at the tree

locations. At the edge and the center the parasitism rates were not influenced by tem-

perature, but increasing temperatures led to lower parasitism at intermediate trees (Fig. 3).

Fig. 1 Effects of a the interaction between size and location respectively b temperature and location on the
abundance of trap-nesting hymenopterans (location: tree 1 at the forest border, tree 2 at intermediate
distance and tree 3 in the forest center)
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In addition we found interactive effects of size, location and temperature on parasitism

rates (Fig. 4). Temperature did not influence the response of the parasitism rates to size at

the edge and the forest center, but did so at the intermediate tree (p = 0.002). There,

temperature changed the response direction of the parasitism rates to fragment sizes. With

increasing fragment sizes parasitism rates decreased with temperatures in the lower and

middle range, but increased strongly with higher temperatures.

Discussion

Bees, wasps and natural enemies

In this study the abundance and diversity of wasps in small secondary forest remnants was

much higher than that of bees. Previous studies in the Central Amazon and Northern Brazil

Table 2 Results of generalized linear mixed effects models relating hymenopteran abundance, mortality
rate and parasitism rate to the explanatory variables fragment size, location (tree 1 at the forest border, tree 2
at intermediate distance and tree 3 in the forest center) and temperature respectively their interactions

Explanatory variables z value p value

Abundance Size 1.163 0.244945

Tree 2 -2.475 0.013331*

Tree 3 -2.845 0.004439**

Temperature -3.439 0.000585***

Size 9 tree 2 -4.64 3.48e206***

Size 9 tree 3 -0.364 0.716166

Tree 2 9 temperature 2.464 0.013736*

Tree 3 9 temperature 2.774 0.005535**

Mortality rate Size -0.87 0.38408

Tree 2 2.126 0.03351*

Tree 3 1.993 0.04629*

Temperature 0.754 0.45097

Size 9 tree 2 2.95 0.00318**

Size 9 tree 3 2.625 0.00867**

Tree 2 9 temperature -2.249 0.02450*

Tree 3 9 temperature -2.099 0.03582*

Parasitism rate Size -0.393 0.694632

Tree 2 3.354 0.000796***

Tree 3 0.213 0.8312

Temperature -1.153 0.248861

Size 9 tree 2 -3.117 0.001827**

Size 9 tree 3 -0.477 0.63337

Tree 2 9 temperature -3.37 0.000751***

Tree 3 9 temperature -0.248 0.803816

Size 9 temperature 0.385 0.700339

Tree 2 9 size 9 temperature 3.113 0.001854**

Tree 3 9 size 9 temperature 0.508 0.61126

Results of final models are shown *** p \ 0.001, ** p \ 0.01, * p \ 0.05
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(Batista Matos et al. 2013; Morato and Campos 2000) also found a higher abundance of

wasps compared to bees. Bees seem to be more vulnerable to habitat fragmentation

because they were more often found in continuous forests and natural gaps, whereas wasps

Fig. 2 Effects of a the interaction between size and location respectively b temperature and location on the
mortality rate of trap-nesting hymenopterans (location: tree 1 at the forest border, tree 2 at intermediate
distance and tree 3 in the forest center)

Fig. 3 Effects of temperature and location on the parasitism rate of trap-nesting hymenopterans (location:
tree 1 at the forest border, tree 2 at intermediate distance and tree 3 in the forest center)

Biodivers Conserv (2015) 24:563–577 571

123



were more often found in small forest remnants and cleared areas (Morato and Campos

2000).

Fragments and microclimate

Temperatures were lower inside the forest when compared to the forest border and frag-

ment size had no influence on the temperature.

Tree locations are partly characterized by temperature differences, making it difficult to

strictly separate edge- and temperature effects. However other factors also characterize

edge and center locations, such as light conditions, humidity, wind speed and interactions

with other organisms (Ewers et al. 2007, 2009). Forest borders frequently have reduced

humidity, increased light and greater temperature variability (Hunter 2002; Laurance and

Williamson 2001; Saunders et al. 1991). But since temperature explained much of the

variability in the models, we decided to include this important factor.

Fragment size, tree location and temperature effects on abundances

Fragment size did not have a significant influence on the hymenopteran abundance. Some

studies have demonstrated that habitat loss leads to a loss of biodiversity (Debinski and

Holt 2000), whereas patterns for abundance-area relationships are more variable (Connor

et al. 2000). It could well be that more specialized and strict forest species have disap-

peared and have been replaced by species that profit from habitat edges (Connor et al.

2000; Laurance et al. 2002; Ewers et al. 2009). Species with small area requirements,

which tolerate matrix and edge habitats are the least vulnerable (Gascon et al. 1999;

Offerman et al. 1995), whereas forest-specialized bees and wasps are quite sensitive to

environmental changes (Batista Matos et al. 2013). Therefore, small secondary forest

remnants may already suffer from a reduction of forest specialists. For example, the vast

Fig. 4 Size effects on the parasitism rate for three different temperatures (mean, minimal and maximal
temperature at the forest border (tree 1) at intermediate distance (tree 2) in the forest center (tree 3)
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majority (approx. 50 %) of wasps belong to the genus Trypoxylon, a genus known to

occupy trap nests in more open areas with lower tree circumference (Morato and Campos

2000; Tylianakis et al. 2005) and nearly all bees belong to the genus Centris (see Table 1).

With a higher percentage of habitat generalists species interactions may already have

changed and could have led to reduced pollination and higher herbivory rates through

changes in the relative abundance of predators and parasitoids (Klein et al. 2006).

The abundance of bees and wasps was higher at the edge compared to the forest interior,

probably because they obtain access to complementary resources such as nesting materials

or nutrients (Ries and Sisk 2004) and probably profit from the higher light availability and

the resulting greater cover of understory plants at the edge (Fye 1972). The higher

hymenopteran abundance at the edge supports the hypothesis that species composition in

our fragments shifted in favor of disturbance adapted species. The higher humidity and

lower temperatures inside the forest can negatively influence the activity of bees and wasps

because of their limited ability to thermoregulate (Loyola and Martins 2006).

Temperature was included in our analysis in order to investigate the combined effects of

habitat fragmentation and climate change. Higher temperatures resulted in lower abun-

dances, which may give cause for concern, that solitary bees and wasps will not only be

harmed by habitat loss and fragmentation, but also by rising temperatures.

The influence of higher temperatures depended on the tree location. At the edge, where

we found the highest abundance, higher temperatures had a highly negative impact on bees

and wasps. Higher mean temperatures are correlated with higher fluctuations of temper-

atures at sites with direct sun expose, with temperature extremes above 40� and more

intensive radiation (Murcia 1995). More thermo-sensitive bee and wasps species pre-

sumably cannot further compensate for such steep temperature fluctuations (Fye 1972).

However, higher temperatures inside the forest led to an increased breeding activity of bees

and wasps, presumably because bees and wasps try to avoid the high temperatures at the

edge and nest inside the forest. At least wasps are known to markedly respond to relative

humidity, which is related to temperature (Batista Matos et al. 2013).

With the highest abundance at the edge in small secondary fragments, a continued

temperature rise will negatively influence trap-nesting bees and wasps in high temperature

tropical lowland habitats, but it is not known to what extent even those hymenopterans

adapted to disturbed conditions can compensate for projected climate warming (Buckley

et al. 2013).

Fragment size, tree location and temperature effects on mortality rates

In addition to changes in abundance, changes in the mortality rate due to fragmentation or

temperature effects could affect the persistence of trap-nesting hymenopterans in a

changing environment. Our study showed that, within the range of our fragment sizes,

there was no influence of size on the mortality rate.

The higher mortality rate at both inner trees in larger fragments and the lower mor-

tality rate at the inner trees with higher temperatures could probably be explained

through the fact that small fragments are more likely to be inhabited by disturbance

adapted habitat generalists (Laurance et al. 2002). We found a high abundance at the

edge, where species prefer dry conditions with more sunlight and are less adapted to

humid and shady conditions, which are typically found in the center of larger fragments.

They therefore respond with higher mortality rates due to, for example, mold infestation

(personal observation).
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Fragment size, tree location and temperature effects on parasitism rates

Higher trophic levels, for example parasitoids, experience fragmentation more severely

than their hosts (Nouhuys 2005; Pimm and Lawton 1977; Ries and Sisk 2004; Tscharntke

et al. 2005) and trophic interactions may be more susceptible to, for example, species

abundances (Rand et al. 2006). Nevertheless there is a lack of studies investigating the

combined effects of fragmentation and temperature on higher trophic levels and multi-

trophic interactions (Wimp et al. 2011) in secondary rainforest fragments. With higher host

abundances at edges, one could expect that the parasitism rates rise at the forest border. But

curiously, parasitism rates were highest at the intermediate trees and highly variable when

comparing the range of rates with the edge and center. So the question is why parasitoids

cannot exploit the greater host abundance at the edge? Their high trophic position and

specialization, e.g. their narrower niche, are a couple of reasons for their vulnerability

(Holt et al. 1999). This could be a reason for the edge preference of hosts, since they find a

lower risk of being parasitized here. Little is known about parasitoids in general and even

less so in tropical rain forests, but it could well be, that they are less adaptable to the

steeper temperature and humidity fluctuations nearer to the forest edge. Field data support

this suggestion as parasitoids seem to be more sensitive to climatic variability than their

hosts (Thomson and Hoffmann 2009) and are less able to disperse (Cornell and Hawkins

1993). But obviously one would then expect parasitoids to prefer the conditions in the

forest center. A possible explanation for a higher parasitism rate at intermediate distances

could be that these locations provide a compromise between climatic conditions and host

abundance. This is further confirmed by our finding that at intermediate locations a rise in

temperature significantly lowered the parasitism rate, presumably since parasitoids respond

negatively to higher temperatures (Thomson et al. 2001). However, this pattern depended

on fragment size, since the parasitism rate was lower at the intermediate trees in larger

fragments compared to smaller ones. It was expected, that the parasitism rate would drop in

smaller, not in larger fragments (Valladares et al. 2006). But this decrease only takes place

at the intermediate locations, so that a probable explanation would be, that larger fragments

support a higher percentage of specialized species in the center. Those species do not shift

to the intermediate locations with more disturbed conditions, so that the parasitism rate in

larger fragments is lower at the intermediate location compared to the smaller ones.

Parasitoids probably respond to smaller habitat size up to a certain critical threshold as

shown by various studies (Nouhuys 2005; Pimm and Lawton 1977; Tscharntke et al. 2005).

However, in our size range, this is apparently no longer true, perhaps because most of the

more specialized parasitoids have already gone extinct. The results of our study are unable

to document this possibility, this would be an interesting topic for future studies, since

trophic interactions (such as parasitism) that involve negative feedbacks, are especially

important due to their strong linkage to biodiversity, productivity and stability of ecosys-

tems (Worm and Duffy 2003). Our results are quite worrying, because they imply that the

community structure of hymenopterans is already highly altered and ecosystem functions

could be harmed. This at least questions the conservation value of small secondary forest

fragments, by themselves, for forest species of trap-nesting hymenopterans. For conserva-

tion a landscape-wide plan with key areas of undisturbed forests, high habitat heterogeneity

and a permeable landscape (Opdam and Wascher 2004; Batista Matos et al. 2013) will

probably be more valuable than the sole presence of small forest fragments.
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