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Abstract Many recent studies of extinction risk have attempted to determine what dif-

ferences exist between threatened and non-threatened species. One potential problem in

such studies is that species-level data may contain phylogenetic non-independence.

However, the use of phylogenetic comparative methods (PCM) to account for non-inde-

pendence remains controversial, and some recent studies of extinction have recommended

other methods that do not account for phylogenetic non-independence, notably decision

trees (DTs). Here we perform a systematic comparison of techniques, comparing the

performance of PCM regression models with corresponding non-phylogenetic regressions

and DTs over different clades and response variables. We found that predictions were

broadly consistent among techniques, but that predictive precision varied across techniques

with PCM regression and DTs performing best. Additionally, despite their inability to

account for phylogenetic non-independence, DTs were useful in highlighting interaction

terms for inclusion in the PCM regression models. We discuss the implications of these

findings for future comparative studies of extinction risk.
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Abbreviations
DTs Decision trees

PCM Phylogenetic comparative methods

TIPS Comparative analyses using species (the ‘tips’ of phylogenetic tree branches) as

independent data-points

Introduction

Given ongoing rates of biodiversity loss, there is a real need for ecology and conservation

to become more predictive in order to make predictions that practitioners or policy-makers

can use (Sutherland 2006). One area in which predictive models have become more

common in recent years is in the examination of species’ susceptibility to the processes

causing increased levels of extinction risk. In particular, there has been an increased

interest in how inherent traits, such as species life-history and ecology, and external

factors, such as human population pressure, interact to produce the current pattern of

species risk. As a result the number of studies testing proposed correlates of extinction risk

has grown considerably, incorporating a wide range of taxonomic groups (Cardillo et al.

2005a; Cooper et al. 2008; Koh et al. 2004; Laurance 1991; Owens and Bennett 2000;

Reed and Shine 2002; Sullivan et al. 2000) at a range of scales (Fisher and Owens 2004;

Purvis et al. 2005). Such studies have two main aims. First, they can discriminate among

competing hypotheses about which intrinsic traits of species’ biology predispose species to

decline in the face of anthropogenic impacts. Second, quantitative models linking bio-

logical traits to extinction risk can be used to predict which species may face a high risk of

extinction in the future, and therefore inform conservation management options (Cardillo

et al. 2006, 2004; Jones et al. 2006; Sullivan et al. 2006).

How should comparative data on threatened and non-threatened species be analysed?

Although extinction risk itself is not an evolved trait (Cardillo et al. 2005b; Putland 2005),

it often has a phylogenetic signal (Bennett and Owens 1997; Bielby et al. 2006; McKinney

1997; Purvis et al. 2000a; Russell et al. 1998) as do many of the proposed predictor

variables (Freckleton et al. 2002; Purvis et al. 2005). Ignoring this phylogenetic signal and

treating species as independent is likely to result in pseudoreplication (Felsenstein 1985)

which may render subsequent analyses statistically invalid, with an elevated Type I error

rate (Harvey and Pagel 1991; although Type II errors may also occur, Gittleman and Luh

1992). In order to avoid such errors, the use of phylogenetically independent contrasts

(Felsenstein 1985) has become widespread when testing proposed correlates of extinction

risk (Fisher and Owens 2004; Purvis 2008), while other similar methods such as gener-

alised estimating equations (Paradis and Claude 2002) have also been advocated.

Although their use is widespread, there are questions about the suitability of phyloge-

netic comparative methods (PCM) in studies of extinction risk. The phylogenetic signal in

extinction risk is not necessarily as strong as assumed by the most commonly used

approach, the independent contrasts method which generates contrasts as differences

between sister clades and uses these as the basis for analysis (e.g. Collen et al. 2006; Purvis

et al. 2005; see also Cardillo et al. 2005a, b). The correction for non-independence may

therefore be too severe, potentially leading to ‘over-correction’ (Ricklefs and Starck 1996),

with comparisons between very closely related species having undue influence on sub-

sequent analyses (Purvis 2008). While some studies have incorporated data-led branch
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length adjustments in order to ameliorate over-correction (e.g. Cardillo et al. 2005a; Halsey

et al. 2006; Stuart-Fox et al. 2007) these may not remove the problem entirely. Further

error may be introduced into PCM analyses as a result of inaccuracies in the phylogenetic

tree, branch lengths, and violations of assumptions made regarding the mode of evolution

(Ives et al. 2007; Ricklefs and Starck 1996; Symonds 2002) limiting the benefits of using

PCM. Additionally, the sheer number of candidate predictor variables included in models

of extinction risk may potentially remove the need to account for phylogeny: if a model

contains most of the important variables that produce non-independence in the error term

of the model, the need to correct for phylogenetic relationships can be greatly reduced

(Grafen 1989). In reality, however, most models explain less than 50% of the variation in

extinction risk.

Although categorical explanatory and response variables are frequently included in

analyses (Fisher and Owens 2004), most PCM approaches are designed to deal with

continuous traits. Some methods (e.g. Grafen 1989) permit both continuous and discrete

explanatory variables but very few approaches, aside from the one used in the analyses

presented here (e.g. Paradis and Claude 2002), are intended for binary response variables

(e.g., threatened vs. not threatened) that may be important in studies of extinction risk.

The early focus in PCM was testing whether an association between two variables was

significant when pseudoreplication was removed (Felsenstein 1985; Ridley 1983), more

than investigating the form of any relationship (e.g. nonlinearity) or estimating parameters.

Extinction risk models are often complex, with many hypothesised predictors potentially

interacting, and parameter estimation is now more commonly of interest as PCM are being

used to build predictive models with the aim of, for example, prioritising conservation

actions (Cardillo et al. 2006). Although phylogenetic and nonphylogenetic approaches

estimate the same underlying parameters (Pagel 1993), measurement error of the traits used

has a greater effect on phylogenetic than nonphylogenetic comparative studies (Harmon

and Losos 2005; Purvis and Webster 1999; Ricklefs and Starck 1996). Additionally, most

implementations of PCM assume linearity of relationships and do not lend themselves to

straightforward testing or relaxation of this assumption. Although complexities such as

non-linearities and interactions between explanatory variables can be included in the

environment of a model incorporating PCM (e.g. Cardillo et al. 2005a; Cooper et al. 2008),

more commonly they are not (Quader et al. 2004). Visualising such complexities when

using contrasts is more difficult than with raw species data, which may partly explain why

they are not more often included in analyses. The addition of non-linearities and interaction

terms alongside numerous predictor variables may also lead to ‘parameter proliferation’

and further reduce the power of the analyses in question (Crawley 2002).

Decision trees (hereafter DTs) provide an alternative approach for building complex

predictive models that may be more capable of dealing with some of these obstacles

(Breiman et al. 1984; Crawley 2002; De’ath and Fabricius 2000). DTs are statistical

models that highlight which explanatory variables (continuous or categorical) are the most

important in explaining variation in a specified response variable (continuous or categor-

ical). DTs are built by repeatedly splitting the data into two subsets. At each split, or

branch, the data is partitioned on the basis of whether it falls above or below a threshold

value of a selected predictor variable. The predictor variable and threshold value are

selected that explain most deviance in the response variable, making the two subsets each

as homogenous as possible. The process is continued until further splits explain no further

deviance or the terminal node reaches a minimum size (i.e., number of cases). In

explaining variation in the response, each variable may be used once, more than once, or

not at all; this allows identification of variables that interact, have nonlinear effects, or are
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not included in the model. In recent years the utility of DTs has been reflected in the

number of publications using them for a range of purposes, such as modelling climatic

niches (e.g. Araujo et al. 2005) and species distributions (e.g. Elith et al. 2006). It has

recently been argued that DTs are an ideal way to model extinction risk (Sullivan et al.

2006) and conservation status (Jones et al. 2006; Koh et al. 2004) but, while they are able

to highlight important interactions, they do not account for the phylogenetic structure in

comparative data. Additionally, the structure of DTs may sometimes be unstable with the

importance of variables and the order of those variables changing as a result of small

changes in the available data. Such changes can make it difficult to identify which traits are

most important in terms of predicting a species’ risk of extinction, although predictive

accuracy and precision may not be negatively affected.

If PCMs and DTs are both considered as useful tools in modelling extinction risk, it is

important to clarify how the two approaches perform relative to each other and more

traditional cross-species (hereafter TIPS) regression models when analysing trait associ-

ations with extinction risk. Although Sullivan et al. (2006) advocated the use of DTs, they

did not perform suitable comparable analyses using independent contrasts or an alternative

PCM. Here, we analyse extinction risk in both amphibians and mammals, and Rapid

Decline (a binary response variable) in amphibians, using PCM, TIPS regression models

and DTs. The use of different clades, kinds of response variable, and phylogenetic

hypotheses of differing certainty allow us to compare how the modelling techniques

perform under a range of conditions with the aim of evaluating the strengths of each in

building predictive models of extinction risk. Specifically we aimed to address the fol-

lowing four questions:

1. Do DTs identify interactions and non-linearities of explanatory variables?

2. Are the results of DTs and TIPS regressions affected by the possible non-independence

of species level data?

3. Are the predictions made regarding species’ susceptibility to extinction risk consistent

across modelling techniques?

4. How precise are the predictions made by the different techniques?

By highlighting strengths and weaknesses of all three approaches and evaluating how

similar their results are, we hope to be able to make recommendations for future analyses

of extinction risk.

Methods

Analyses

We took PCM analyses of extinction risk from three recent completed studies and applied

TIPS and DT to them. Following the original analyses (Cardillo et al. 2008; Cooper et al.

2008), we modelled extinction risk in two clades (mammals and frogs) and four separate

orders within mammals, using both PCM and TIPS regression models, and DTs. In both

mammalian and anuran analyses our measure of extinction risk were the IUCN Red List

categories (IUCN 2004) converted to a continuous index ranging from 0 to 5, 0 corre-

sponding to ‘‘Least Concern’’, 5 to ‘‘Extinct in the Wild’’ or ‘‘Extinct’’ (Cardillo et al.

2005a; Cooper et al. 2008; Purvis et al. 2005). We excluded threatened species not listed

under criterion A of the Red List from our analyses of extinction risk to avoid circularity

(Purvis et al. 2000b).

116 Biodivers Conserv (2010) 19:113–127

123



Additionally, we modelled a binary variable, Rapid Decline (hereafter ‘‘RD’’), in

anurans. RD species are those that have experienced a genuine increase in IUCN Red list

category since 1980. In addition to comparing all RD species with non-RD threatened

species, we analysed susceptibility to RD as a result of different threatening processes:

‘‘enigmatic’’ threats (Stuart et al. 2004), chytridiomycosis, and infection by the pathogen

Batrachochytrium dendrobatidis (hereafter ‘‘Bd’’) among RD species. The range of

comparisons made allowed us to evaluate the utility of DTs, phylogenetic comparative

method (PCM), and TIPS regression models in a number of different clades, using phy-

logenetic trees of different resolution, with different types of response variables (i.e. binary

and continuous). The exact details of the analyses performed are described in Table 1.

Predictor variables

Anurans

Biological data on frogs species came from the dataset underlying two previous analyses

(Bielby et al. 2008; Cooper et al. 2008). Full details of data collection, and variables

examined are provided in those papers. Appendix A contains further details of variables,

variable transformation, method of collection and sources used.

The final anuran dataset (available in Appendix B) contained 553 frog species, repre-

senting 32 of 33 families from all six continents on which amphibians are present. The

number of species in the dataset was restricted largely by the lack of biological and life

history data available.

Mammals

Biological data on mammalian species came from the ‘‘PanTheria’’ database, a dataset of

ecological and life-history traits for 4,030 mammalian species, from over 3,300 pub-

lished literature sources. Full details of data collection and quality checking are provided

Table 1 Description of the comparisons made and optimal tree size (defined by the number of terminal
nodes) for each as determined by tenfold cross validation

Comparison
reference

Comparison Type of variable Species included/total
data available

Optimal
tree size

A Extinction risk in frogs Continuous 125/367 2

B RD vs. non-RD threatened frogs Binary 112/359 3

C Enigmatic RD vs. non-Enigmatic
RD threatened frogs

Binary 327/359 4

D Bd? RD species vs. Bd? non-RD
species of frogs

Binary 101/102 3

E Bd? RD species vs. Bd- RD
species frogs

Binary 84/227 4

F Extinction risk in mammals Continuous 400/3,989 10

G Extinction risk in bats Continuous 268/837 12

H Extinction risk in marsupials Continuous 48/231 5

I Extinction risk in primates Continuous 98/206 13

J Extinction risk in rodents Continuous 1,213/1,775 11
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in Jones et al. (2009). Mammalian geographic distributions were used to calculate range

size and for summarizing human impact and environmental conditions within each

species’ range. Details of the predictor variables included in the mammalian analyses are

in Cardillo et al. (2008).

Phylogenetic and non-phylogenetic regression models

Modelling extinction risk in anurans (comparison A)

In frogs, the relationship between extinction risk and the predictor variables outlined in

Appendix A were explored using phylogenetically independent contrasts as outlined in

Cooper et al. (2008). A minimum adequate model (MAM) was built by including all

variables in the model and deleting those with the highest P-value until all remaining terms

were significant at P B 0.05.

Modelling RD in anurans (comparisons B–E)

Phylogenetic models of frog susceptibility to Rapid Decline were built using generalised

estimating equations (GEEs; Paradis and Claude 2002), as described in Bielby et al.

(2008).

For all of the frog analyses, we used a recently published genus-level amphibian

phylogeny (Frost et al. 2006) with taxonomy as a surrogate for phylogeny below the genus

level. As we did not have branch lengths for all species, we set branch lengths to equal 1

unit.

Modelling extinction risk in mammals and mammalian orders (comparisons F–J)

In mammals as a whole (comparison F) and each of four clades (comparisons G–J)

extinction risk was modelled using phylogenetically independent contrasts using a dated,

composite supertree phylogeny of 4,510 mammalian species (Bininda-Emonds et al. 2007),

and following the protocol of Cardillo et al. (2008). MAMs were built by starting with a

full set of predictor variables, including additive linear effects only and followed the model

building procedures described in Cardillo et al. (2004) and Purvis et al. (2000b). For all

analyses using PCM, equivalent TIPS models were built using the same model-building

algorithms. Contrasts were calculated after transforming phylogenetic branch lengths by

raising them to a power (j), with the value of j optimized for each variable to minimize

the correlation between absolute scaled contrasts and their standard deviations (Garland

et al. 1992).

Tree models

DTs were first of all grown to a maximal size, that is, until further splits result in no

decrease in the residual deviance or terminal nodes reach a minimum size (n = 5), and

then pruned to an optimum that is determined by cross-validation techniques. However, as

a result of the high occurrence and the uneven distribution of missing values of predictor

variables among cases, we first needed to reduce the impact of missing values on the tree-

building process and the results obtained. One possibility for reducing the number of

missing values would be to use multiple imputation methods (Little and Rubin 2002).
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However, using such methods on species-level comparative datasets may result in a loss of

phylogenetic structure in the dataset (see Cardillo et al. 2008). For the purposes of these

analyses, which aimed to compare results of DTs and PCMs, with specific focus on the

impact of phylogenetic structure within the data, we felt that inputting data would risk

further complicating the comparisons we made. The default setting is for DTs is to leave

out any cases with missing values, which may result in a tree built on a subset of the data

that is limited in size by an unimportant predictor variable (i.e. one that does not explain

variance in the response variable). We maximised the sample size of cases included in the

DT by adopting the following procedure. A maximal tree was grown from the full set of

predictor variables. Of the predictor variables not included in the maximal tree, the sample-

limiting variable was removed from the dataset. This reduced the number of cases with

missing values, and increased the number of cases entering the tree building process. The

full-sized tree was then rebuilt with the new, reduced data subset. Once again the unim-

portant predictor most limiting sample size was dropped from the tree building subset. This

process was continued until no further changes to the full tree occurred. Although the

method used to minimize the number of missing values may under some circumstances

affect the constituent variables, it should not affect the predictive accuracy of the model.

As the focus of these analyses was to assess predictive accuracy and consistency among

methods, we felt that the methods used were suited to the task.

The tree size (i.e. the number of terminal nodes) was then optimised using tenfold cross-

validation conducted on each tree size from the maximum to the minimum number of

terminal nodes. For each of 500 iterations, the dataset was split into 10 subsets, each of

which in turn was excluded from the tree-building process, while the remaining nine were

used to model the data. The excluded subset was then used to validate the model by

comparing the predicted fitted values with observed values of the response, yielding an

estimated error (i.e. squared errors; SE) for that subset. The 500 iterations of the tenfold

validation process therefore led to 5,000 values of SE for a tree of the specified size, which

were used to calculate a mean squared error (MSE) and associated standard error. The

optimal tree size was the smallest tree within one standard error of the tree size with the

lowest MSE. Once the optimal tree size was known, a tree of that size was built using the

dataset obtained in the sample size maximising process (De’ath and Fabricius 2000). All

DTs were built using the tree function (package = tree) of the statistical language R (R

Development Core Team 2009), and all cross-validation was performed using scripting

written in R.

Consistency of model predictions

The fitted values obtained via each technique were not constrained to the integers that

formed the response variables for that comparison (e.g. 0 or 1 in comparisons B–E) but

could take the form of any decimal value within the limit of that comparison. To assess the

consistency of the predictions made by different modelling techniques, we performed

pairwise Pearson’s correlations of fitted values obtained using each technique. The cor-

relations were limited to those species that were common to the two techniques being

compared.

Precision of model predictions

Although strong correlations between fitted values may indicate that predictions are con-

sistent across techniques, they do not indicate how precise these predictions were. In order
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to determine whether the prediction precision varied significantly among techniques the

residual values obtained from the models were squared and compared using Kruskal–

Wallis tests with modelling technique as a factor, the null hypothesis being that no sig-

nificant differences existed. In the case of a significant difference among techniques, post-

hoc non-parametric multiple comparison tests were conducting to determine where those

differences lay. Squared residual values (squared error) were a suitable measure of pre-

dictive precision as they quantify the difference between the predicted and observed

extinction risk of a given species. All Kruskal–Wallis and subsequent post-hoc tests were

conducted using the kruskal.test and npmc (library = npmc) functions of the statistical

language R (R Development Core Team 2009).

Phylogenetic structure in model residuals

The squared residual values obtained from each model were analysed using ANOVA with

taxonomic Family as a factor, as a simple test of whether a phylogenetic structure was

present. The presence of phylogenetic structure in the model residuals suggests that the

predictions made varied in precision among sub-clades at or below the Family level.

Complexities in the data

In order to determine whether DTs were useful in outlining complexities in the data we

compared interactions and non-linearities included as significant predictors in the regres-

sion models to those outlined in the DTs. This allowed a qualitative comparison of

complexities in the data. Additionally, any important interactions or non-linearities high-

lighted by DT models were added as terms in the relevant PCM regression model, with the

aim of seeing whether they were significant predictors of extinction risk, and whether they

improved the predictive precision judged by the MSE. In order to fit interaction terms, the

single predictors within the term were also included in the model.

Results

Optimal tree size

The optimal DT size obtained through tenfold cross-validation for each comparison is

given in Table 1. The size of optimum trees varied greatly ranging from only two terminal

nodes for comparison A to 13 terminal nodes for comparison I. The proportion of species

included in each tree also varied for both amphibian and mammalian models as a result of

missing values in the dataset. Details of each optimal DT model in terms of number of

nodes and number of constituent species are included in Table 1; the total data available

highlighted in the table is the number of species meeting the criteria for inclusion in that

analysis (e.g. after all non-RD species were removed from the dataset there were a total of

227 species for inclusion in comparison E).

Consistency of model predictions

The consistency of the predictions made by all the three techniques was strong and the

fitted values were always significantly positively correlated among methods (see Table 2
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for summary, Appendix C for full details). However, there was variation in the strength of

the correlations among comparisons. In two of the four analyses with a binary response

(comparisons C and E), there were marked differences in predictive consistency between

methods. In these comparisons the consistency was lower between PCM and the other

methods (see Table 2) than between TIPS regression and DTs, suggesting that non-phy-

logenetic approaches made more consistent predictions. However, when response variables

were continuous (A, F–J) there was generally a stronger correlation between PCM and

TIPS regression than between DTs and the other methods (Table 2).

Table 2 Summary of technique performance in terms of consistency, precision, and presence of a phy-
logenetic signal

Comparison Modelling
technique

Correlation coefficient
of fitted values

Mean
squared
error

Phylogenetic
signal
in residuals (F)

PCM TIPS Tree

A PCM – 0.96*** 0.78*** 0.17 (A) 5.03***

TIPS – – 0.84*** 0.83 (C) 2.47***

DT – – – 0.76 (B) 1.45

B PCM – 0.58*** 0.66*** 0.29 (B) 20.43***

TIPS – – 0.53*** 0.42 (C) 4.26***

DT – – – 0.22 (A) 3.39***

C PCM – 0.40*** 0.20* 0.26 (B) 6.84***

TIPS – – 0.77*** 0.37 (C) 4.66***

DT – – – 0.23 (A) 6.12***

D PCM – 0.97*** 0.87*** 0.06 (A) 1.52

TIPS – – 0.86*** 0.29 (B) 0.51

DT – – – 0.11 (A) 1.396

E PCM – 0.48*** 0.43*** 0.14 (A) 2.25***

TIPS – – 0.71*** 0.40 (B) 0.58

DT – – – 0.22 (A) 1.05

F PCM – 0.81*** 0.66*** 0.12 (A) 2.52***

TIPS – – 0.70*** 0.42 (B) 1.55***

DT – – – 0.24 (A) 1.89***

G PCM – 0.72*** 0.55*** 0.20 (A) 1.59a

TIPS – – 0.35*** 0.42 (C) 1.56a

DT – – – 0.21 (B) 1.19

H PCM – 0.67*** 0.63*** 0.01 (A) 3.53***

TIPS – – 0.75*** 0.22 (B) 1.209

DT – – – 0.13 (A) 1.52

I PCM – 0.90*** 0.75*** 0.17 (A) 3.38***

TIPS – – 0.75*** 0.66 (B) 1.65a

DT – – – 0.27 (A) 1.85

J PCM – 0.71*** 0.39*** 0.39 (B) 3.47***

TIPS – – 0.45*** 0.32 (B) 2.00a

DT – – – 0.28 (A) 2.99***

a P = 0.05–0.1; * P \ 0.05; ** P \ 0.01; *** P \ 0.001
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Precision of the model predictions

Kruskal–Wallis tests on the model residuals showed that there were significant differences

in the predictive abilities of modelling techniques within a comparison. Results of non-

parametric multiple comparison tests show where these differences lay (see Table 2 for

summary, Appendix D for full details). In three comparisons, DTs predicted level of risk

more precisely than PCM (comparisons B, C, and J), whereas PCM was more precise in

two comparisons (A and G). DTs and PCM performed equally well in five comparisons (D,

E, F, H, and I). In comparisons with a binary response (B–E) DT performed particularly

well, having a predictive precision that was better or on a par with PCM (Table 2). In two

of the six comparisons with a continuous response variable, PCM made predictions that

were more precise than DT (comparisons A and G, but not F, H, I or J), whereas DT was

more precise in one comparison (J). TIPS regressions had significantly higher residual

values, and therefore lower predictive precision, than PCM in all but one comparison

(comparison J).

Phylogenetic signal in model residual values

Analysis of residuals from PCM models suggest the presence of a strong phylogenetic

effect at the Family level in eight of the ten comparisons made (A, B, C, E, F, H, I, and J;

see Table 2 for summary, Appendix E for full details). In one further comparison (G),

model residuals had a phylogenetic signal with a P-value of between 0.05 and 0.1. The

residuals of four TIPS regression models (comparisons A, B, C, and F) contained a sig-

nificant phylogenetic signal at the Family level. Similarly, the residuals of the DTs in four

of the comparisons contained a phylogenetic signal (comparisons B, C, F, and J). In TIPS

regression, comparisons G, I and J had a phylogenetic signal that had a P-value of \0.1.

Model residuals from all three techniques of comparison D lacked a phylogenetic signal.

However, the small number of degrees of freedom in this and some other comparisons (e.g.

E, H, and I) means that these analyses may have very low power to detect a phylogenetic

pattern.

Non-linear relationships

In PCM regression models, 11 non-linear relationships were identified as significant pre-

dictors of extinction risk in five comparisons (Comparison A: geographic range2, geo-

graphic range3, temperature2 and temperature3; Comparison F: HPD2 and Population

density 2; Comparison G: adult body mass2, geographic range2, and HPD of the 5th

percentile2; Comparison H: geographic range2; Comparison I: HPD of the 5th percentile2).

Fewer (six) significant non-linear relationships were found in TIPS regression models

(Comparison A: geographic range2, geographic range3, temperature2, temperature3, snout-

vent length2 and snout-vent3). None of the non-linear relationships outlined in PCM or

TIPS regression models were obvious from the corresponding DTs.

Interactions between predictor variables in regression models

In the PCM regression models, four significant interaction terms in three comparisons were

found to be significant predictors of extinction risk (Comparison F: geographic range:HPD,

and population density:HPD; Comparison G: geographic range:Actual Evapotranspiration;
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Comparison I: adult body mass:absolute latitude). No significant interaction terms were

found in the TIPS regression models.

Inclusion of interactions from DTs

The interaction terms added to the PCM regression model on the basis of the DTs are

presented in Table 3. None of the interaction terms added to models of extinction risk/RD

in anurans were significant predictors, although in comparison B the predictive precision of

the model was improved by the addition of the term. In contrast, the interaction terms

added to three of the four mammalian clade models (comparisons F, G, I, but not J) were

significant predictors of extinction risk and improved the predictive precision of the

models.

Discussion

The analyses of extinction risk and RD presented here were used to assess the utility of

three different approaches: PCM, TIPS regression, and DTs. Although there has been

discussion surrounding the use of these three techniques (Harvey and Rambaut 1998;

Putland 2005; Sullivan et al. 2006), these analyses represent the first systematic compar-

ison of the methods, and have important implications for future studies.

Generally, both PCM and DTs performed well in terms of the precision of the pre-

dictions of a species’ extinction risk. DTs were more precise than PCM in three of the ten

comparisons, while PCM were more precise in two. TIPS analyses clearly performed less

well than the other techniques: in addition to their inability to account for phylogenetic

non-independence, and higher rate of type I and type II error (Harvey and Rambaut 1998)

Table 3 Interaction terms added to the PCM regression models based on the corresponding DT

Comparison Interaction term Significant
as a term?

Original
predictive
accuracy (MSE)

Predictive accuracy
(MSE) after the addition
of interaction term

A NA NA NA NA

B Aquatic lifestage and NPP No 0.29 0.22

C HPD and isothermality No 0.23 0.262

C Isothermality and Temp No 0.23 0.247

D Geographic range and altitude No 0.06 0.07

E Clutch size and HPD No 0.14 0.21

E Clutch size and altitude No 0.14 0.22

F Neonatal body mass and
litters per year

Yes 0.12 0.02

G Adult body mass and
geographic range

Yes 0.2 0.08

H NA NA NA NA

I Adult body mass and
geographic range

Yes 0.17 0.07

J Geographic range and AET No 0.09 0.23

In comparison A and H there were no informative interactions in the optimal tree to add to the PCM model
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TIPS regression methods are less precise in their predictions than alternative modelling

techniques (either PCM or DT). We therefore cannot recommend the use of TIPS

regression models in modelling extinction risk.

Although both PCM and DT performed well in terms of precision and consistency,

some of the differences between the results suggest that DTs are not well suited to

modelling continuous, rather than binary, response variables. The limited range of pre-

dictions available via the DT approach may explain some of the technique’s relatively poor

performance compared to PCM in comparisons with a continuous response variable. In

analyses of extinction risk, the observed values of the response variable ranged from 0 to 5,

as did the fitted values obtained via PCM and TIPS regression. However, with DT the fitted

values were restricted to a finite number of discrete values defined by the terminal nodes of

that DT. The lower consistency in predictions made by DTs versus the regression tech-

niques may in part be explained by the correlation of continuous and discrete fitted values

in these comparisons. Likewise, the limited number of fitted values obtained via DTs

compared to PCM reduced the precision with which DTs resulted in larger residual values

in comparisons with continuous response variables leading to a reduced precision com-

pared to PCM. Although in comparisons with a binary response variable DT fitted values

are also limited to a finite number of discrete values, the range of possible fitted values is

much lower, making this artefact less likely to dominate the differences in consistency and

precision among techniques. Furthermore, the continuous response used in our analyses

only ranges from 0 to 5; perhaps with a larger range there may be more of a discrepancy in

the predictive precision of DTs and PCM regressions.

In addition to their relatively strong predictive ability, on the basis of our results DTs

may be a useful tool in identifying informative interactions in datasets (De’ath and Fab-

ricius 2000; Jones et al. 2006; Sullivan et al. 2006). Non-linear relationships and inter-

actions among variables are rarely investigated in macroecological studies, and yet may be

particularly important in some instances, including analyses of extinction risk (e.g. Cardillo

et al. 2005a). Our results suggest that DTs could be a useful tool in identifying non-linear

relationships and interactions that should be included as terms in the PCM regression

model-building process. The inclusion of interaction terms in PCMs on the basis of their

appearance in DT resulted in interactions remaining as significant terms which improved

predictive ability in three of five of our analyses of mammalian extinction risk (compar-

isons F, G, and I). The inclusion and impact of these interactions, highlights how insightful

DT models may be in informing PCMs with regards complexities in the dataset. The fact

that DTs did not identify all significant interactions and nonlinearities suggests that they

should not be used as the sole method for finding such complexities, but that they could

usefully supplement existing model building algorithms.

One potential weakness that DT, or any other non-PCM, may have in modelling

extinction risk is their inability to account for phylogenetic non-independence, a subject

that has generated much discussion (Cardillo et al. 2005b; Harvey and Rambaut 1998;

Putland 2005; Sullivan et al. 2006). The strong performance of PCM in the analyses

presented here suggests that accounting for phylogeny does allow precise predictions of

species’ conservation status. Additionally, the residuals obtained from PCM analyses

suggest the presence of a phylogenetic signal among taxonomic Families within a com-

parison, a signal that was not obvious from the corresponding TIPS and DT analyses. The

existence of a phylogenetic signal in PCM analyses is perhaps not surprising. The strong

signal suggests that the relationships between explanatory and response variables varied

among subclades within a comparison. By design, PCM models reduce the influence of

clade-specific relationships when the overall model is fitted, which in the presence of
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strong among-clade differences would result in the observed structure in the residual

values (see Purvis et al. 2000b). Any variation in regression parameters among subtaxa

may be important in conservation planning as they highlight the importance and utility of

focussed taxonomic studies if predictive models are to be used for directing applied

management or policy (Cardillo et al. 2008; Fisher and Owens 2004).

So, in the context of modelling extinction risk, what implications do our results have?

They suggest that, although the predictions of all three methods are consistent, there are

important differences between them. The strong predictive ability of PCM and their ability

to reduce the influence of clade specific relationships in the data, provide support for the

use of PCM techniques as the mainstay of future efforts model extinction risk. However,

the strong predictive precision of DTs, in conjunction with their ability to highlight

important interactions within the data, suggests that they can also play an important role in

this field. We suggest that DTs may be used as a first step in identifying terms for inclusion

in a suitable method of PCM in future efforts to predict species susceptibility to extinction.
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