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Abstract We review agricultural impacts on biodiversity and the potential of conser-

vation agriculture in developing productive and environment-friendly cropping systems.

We then analyse experiences from two African landscapes of global importance for con-

servation: the Mid Zambezi Valley in Southern Africa and the periphery of the ‘‘W-Arly-

Penjari’’ complex in West Africa. In both areas, expansion of cotton farming, considered as

one of the most polluting forms of agriculture in the world, drives major land use change

and loss of biodiversity. In both areas, various forms of conservation agriculture have been

developed and tested. We highlight the potential benefit of conservation agriculture in

controlling negative environmental effects traditionally associated with agriculture and

reducing the need for land conversion through increased biophysical resource use effi-

ciency, turning agriculture from a threat to an opportunity for conservation. Finally, we

raise a number of issues that constitute challenges for the widespread adoption of these

technologies by resource-poor farmers, and formulate recommendations for the develop-

ment, evaluation and diffusion of conservation agriculture technologies for smallholders in

semi-arid Africa.
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Introduction

Agriculture is widely perceived as the greatest threat to biodiversity, particularly in

developing countries where the growing human population requires increasing quantities

of food and cash crops (Main et al. 1999; Sala et al. 2000; Heywood and Watson 1995).

Conventional agricultural practises of smallholder farmers lead to rapid decline of soil

organic matter and fertility of the land (Zingore et al. 2005) that may fuel expansion of

agriculture. Development of cash crop farming, such as cotton, may drive significant

habitat conversion (Girdis 1993). Cotton has a particularly negative image, as it is con-

sidered one of the most polluting annual crops (EJF 2007; WWF 2007) and is said to have

a significant impact on freshwater resources. Chapagain et al. (2006) estimated that cotton

production worldwide requires 256 Gm3 year-1 of water, of which 42% is used for irri-

gation and processing, 39% is evaporated, and 19% is used to dilute pesticides to

acceptable concentrations. To mitigate agricultural expansion and agricultural pollution in

areas hosting important biodiversity, the most common strategy has been to increase the

land surface under protected areas. More recently, attempts have also been made to offer

farming communities alternative land use options that are compatible with biodiversity

conservation (e.g. ecotourism, bee keeping, sustainable use of non-timber forest products),

but these options are often not economically competitive with agriculture. The interest of

conservation agencies in agriculture has often focused on the promotion of low external

input systems, some giving encouraging results (Pretty et al. 2003). However, these sys-

tems are based on transfer of biomass (manure or plant material) and therefore require

important land and labour, both of which are limited resources for smallholders (Gowing

and Palmer 2008). Moreover, these systems do not reduce soil nutrient mining compared

with conventional systems (de Jager et al. 2001). Conservation agriculture, by increasing

water and nutrient use efficiency, appears to offer an alternative practise in which high

agricultural productivity can be compatible with reduced environmental impact. Taking

two case studies in sub-Saharan Africa based on cotton production, one in West Africa, and

one in Southern Africa, the objective of this paper is to address potential pitfalls in the

development, evaluation and diffusion of these alternative technologies based on conser-

vation agriculture. The bulk of information used in this article was collected during a case

study funded by ACT,1 CIRAD,2 FAO3 and RELMA,4 and an EU5-funded collaboration in

the frame of the ECOPAS programme.

The impacts of agriculture on biodiversity

Agriculture is defined in its broad sense by the Merriam-Webster dictionary as ‘‘the sci-

ence, art or practise of cultivating the soil, producing crops and raising livestock and in

varying degrees the preparation and marketing of the resulting products’’ (www.merriam-

webster.com). Authors from the eco-agriculture school put emphasis in their definition on

1 African Conservation Tillage network.
2 Centre de cooperation International en Recherche Agronomique pour le Développement.
3 United Nations Food and Agriculture Organization.
4 RELMA: Regional Land Management Unit of the Swedish International Development Cooperation
Agency.
5 European Union.
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the ‘‘modification of natural ecosystems to provide more goods and services’’ (McNeely

and Scherr 2003). This modification causes a drastic simplification of natural ecosystems,

through direct removal of plant species and a ‘‘chain reaction’’ of extinction of organisms

at higher trophic levels. It also modifies biomass abundance, quality and distribution and

may impoverish the soil ecosystem (Giller et al. 1997). Even when fields are abandoned,

important functional groups may have been lost from the soil ecosystem (e.g. loss of

symbiotic mycorrhizal fungi) and regeneration of the original biodiversity may be

impossible (McNeely and Scherr 2003, p. 31).

Furthermore, the impact of agriculture and biodiversity loss is not confined spatially to

the newly opened agricultural fields, but extends to adjacent landscapes that may be

protected areas. Indeed, protected areas interact in various ways with their peripheral lands,

outside of their administrative boundaries, through ecological flows of energy, materials

and organisms. Some authors use the terminology ‘greater ecosystems’ to designate such

functional units made up of protected areas connected to their non-protected surroundings

(DeFries et al. 2007). For instance, habitat conversion of non-protected areas included in

greater ecosystems leads to progressive fragmentation and isolation of remaining frag-

ments, and increases the probability of extinction of certain species, mainly due to small

population sizes (Cowlishaw 1999). Unprotected areas may also play a fundamental role in

biodiversity maintenance, for example through providing food and water sources or

breeding grounds during part of the year for animal species.

Loss of particular species that have key functions may also produce far-reaching neg-

ative environmental effects on distant ecosystems and biodiversity (Fig. 1). Primary pro-

duction is one of the major ecosystem functions usually, but not always affected by

agriculture (e.g. conversion to pasture in Amazonia: Koutika et al. 1997; Desjardins et al.

2004). It generally translates into altered, sparse ground cover within cultivated ecosystems

(Vitousek et al. 1997), which usually generates important water losses compared with their

corresponding natural ecosystems: surface run-off, deep percolation and evaporation

typically consume 70–85% of rainfall under rainfed agriculture in semi-arid sub-Saharan
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Fig. 1 Direct and indirect impacts of agriculture on biodiversity
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Africa (Rockström et al. 2002). Runoff transports sediments, nutrients and possibly ero-

sion-related pollutants to streams, lakes, estuaries and coral reefs (Farella et al. 2001).

Moreover, the conversion from a large to a small standing-biomass ecosystem leads to a

release of organic carbon to the atmosphere, particularly under tropical conditions (Cor-

beels et al. 2006). This release can be an important contribution to global climate change

(Vitousek et al. 1997; Corbeels et al. 2006). Thus, agriculture may alter regional and even

global hydrological and biogeochemical cycles and affect distant biodiversity.

Pollution and siltation of water bodies from field runoff is probably the most common

negative environmental effect associated with agriculture worldwide (Arias-Estévez et al.

2008), whilst water is a limiting factor in many crop production systems, particularly in

dryland agriculture (Rockström et al. 2002). In semi-arid areas, increasing water infiltration

would have the dual benefit of increasing production and reducing unwanted losses of

sediments, nutrients and agrochemicals. The same applies to mobile nutrients, such as

nitrogen, that are essential and often limiting elements for crop growth, whilst they rep-

resent a potential source of off-site pollution. For instance, excessive addition of animal

manures and fertilisers may cause contamination of groundwater in Western countries

(Giller et al. 2001), necessitating legislation to prevent their overuse.

For a particular biophysical resource (e.g. light, water, nutrients), resource use effi-

ciency can be defined as the product of capture efficiency (capture by the plant of a certain

portion of the total available resource) and conversion efficiency (conversion of the

resource into organic products, biomass in particular; Giller et al. 2006). Increasing water

and nutrient use efficiency by the crop increases production with the collateral benefit of

reducing unwanted losses of these elements. Depending on the quantity of residues

returned to the soil and the rate of fertilisation, greater nutrient use efficiency may imply a

greater retention of nutrients in the system. To illustrate this point, a comparison under

similar soil and climate of smallholder practises (i.e. limited amounts of fertiliser or no

fertiliser used and extraction of virtually all residues) with commercial farmers’ practises

(i.e. large amounts of fertiliser used and residues returned to the soil) in Zimbabwe

revealed a much sharper decline of organic carbon and nitrogen in the first case, with on

average 15 t C ha-1 and 1.7 t N ha-1 less at soil organic matter equilibrium (Zingore et al.

2005). Negative environmental effects (e.g. erosion, leaching), and reduced productivity

and sustainability may all be consequences of processes dependent on the efficiency with

which biophysical resources are used (Fig. 2).

Therefore, increasing water and nutrient use efficiency is expected to contribute directly

to the mitigation of biodiversity loss, through reduced negative environmental effects, and

indirectly through reduced need for land conversion, due to higher productivity and sus-

tainability of cropping systems.

Conservation agriculture as an example to improve water and nutrient use efficiency

The fundamental principle of conservation agriculture is the retention of a mulch of crop

residues on the soil surface. Research has shown that runoff decreases exponentially with

the proportion of soil surface effectively covered by residues, a 30% cover of soil surface

usually implying a reduction of runoff by more than 50% (Findeling et al. 2003; Scopel

et al. 2004). Surface residues also limit the energy reaching the soil surface, decreasing

evaporation of soil water (Scopel et al. 2004). Reduced runoff and evaporation mean that

more water is available to the crop (giving increased water use efficiency). Residue

retention also results in better maintenance of land productive capacity in situ (e.g. topsoil,
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water, nutrients) and a reduction of adverse off-site impacts such as eroded sediments and

erosion-related pollutants. Erosion is controlled through increased surface resistance

against overland flow and enhanced surface aggregate stability and permeability (Erenstein

2002). Less erosion means that more nutrients are available to the crop. On the other hand,

increased infiltration may translate into increased deep drainage and increased leaching of

mobile nutrients, which may counterbalance advantages of retaining them in situ (Eren-

stein 2003; Scopel et al. 2004), though ‘‘by-pass flow’’ may occur so that most supplied

nitrogen is retained in the topsoil and nitrogen leaching is limited (e.g. south-western

Kenya, Smaling and Bouma 1992).

Crop residue retention contributes to soil fertility by maintaining fertile topsoil in situ,

and by acting as a soil amendment. Residue retention can increase the stock of soil organic

matter (Corbeels et al. 2006), particularly in fine-textured soils offering protection through

aggregation (‘structural protection’). Sandy soils, however, have limited capacity to protect

soil organic matter and their soil organic matter content is generally small, even under

native vegetation (Zingore et al. 2005; Chivenge et al. 2006). In such soils, significant

carbon sequestration through conservation agriculture or other biomass-enhancing tech-

nologies might not be possible. A soil can hold organic matter only up to a saturation point

mainly determined by its texture (Six et al. 2002).

Residue retention requires reduced or no-tillage, since land preparation directly affects

the quantity of biomass remaining on the soil surface. Reduced soil disturbance also

stabilises soil organic matter, particularly in fine-textured soils where it may be protected

in microaggregates (Chivenge et al. 2006). Residue retention also requires control of

grazing, and suppression of fire before planting. Communal grazing is often important in

the tropics and sub-tropics and is often perceived to be a factor that limits widespread

Fig. 2 Relationship between productivity (production per land and/or labour unit), sustainability (nutrient
cycle sustained) and environmental externalities (erosion and leaching) in the case of nitrogen (N)
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adoption of conservation agriculture (Giller et al. submitted). On the other hand, even

small amounts of surface residues (\1.5 t ha-1) can be effective in reducing water loss,

soil erosion and increasing yield (Scopel et al. 2004, 2005). Maintaining a mulch of crop

residues through the growing season also makes rotation necessary as residues may carry

diseases or pests from the previous crop. In the case of cotton production, rotation with

another crop, a cereal crop for instance, is critical, as destruction/burning of cotton residues

is compulsory in many countries for phytosanitary reasons. In this case, the cereal pro-

duction phase is required for mulch production, cotton being subsequently planted directly

through this mulch.

Association of a main crop with a deep-rooted, secondary crop may prevent nutrient

losses through leaching (Fig. 3). Moreover, such secondary crops may increase significantly

primary production and carbon input to the soil (Corbeels et al. 2006). A suitable mulch is

required to achieve both soil protection and soil fertility enhancement. Slowly decompos-

able crop residues, such as cereal residues, have a wide C:N ratio and may exacerbate

nitrogen-stress by causing temporary nitrogen immobilisation. Thus, intercropping of

cereals with legumes, which have residues with a narrow C:N ratio, may improve nitrogen

availability, and thus improve the composition of the residue biomass produced. Most crop

associations used in conservation agriculture include two crops: a main crop (often a cereal)

and a secondary crop (often a legume with deep root system). However, more complex

associations combining various plant functional groups can be beneficial, especially when

the climate is erratic. For instance, resistance and resilience of grasslands to drought have

been found to be enhanced by plant diversity (Tilman and Downing 1994).

The simultaneous adoption of the above principles i.e. a soil covered permanently or at

least during critical stages, reduced soil disturbance, and crop associations and rotations (in

Fig. 3 Association of a deep-rooted crop (‘‘cover crop’’) to the main crop in a conservation agriculture
system, to recycle nutrients and increase biomass production
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particular with legumes) forms what the FAO defines as conservation agriculture (www.

fao.org/ag/ca). Conservation agriculture is expected to increase productivity and to miti-

gate negative environmental impacts traditionally associated to agriculture, through

increased water and nutrient use efficiency. For this reason, conservation agriculture is

sometimes described as a win–win strategy for agriculture and the environment (Lal et al.

1998).

Two case studies in sub-Saharan Africa: the Mid Zambezi Valley and the periphery
of the ‘‘W-Arly-Penjary’’ complex

The Mid Zambezi Valley is a low-land area along the Zambezi River, encompassing the

Zimbabwe-Zambia border and part of north-western Mozambique (Fig. 4). The W Park is

a transfrontier Park including western Burkina Faso, northern Benin and eastern Niger,

connected to Arly and Penjari Parks to form the ‘‘WAP complex’’ (Fig. 5). These two areas

are characterised by a semi-arid climate with savannah as the dominant vegetation. Both

these areas have long been deprived of infrastructure and any significant investment in

rural development, are considered ‘‘marginal’’ and host a well-preserved biodiversity. In

the Mid Zambezi Valley, there are probably 1500–2000 plant species, which reflects its

wide range of habitats, the mammal fauna is relatively intact and diverse, including pre-

dators, major populations of elephant, hippopotamus and buffalo, as well as a small

concentration of black rhinoceros, and over 400 bird species (Gumbo et al. 2003). The

biodiversity of the WAP complex is equally rich as it hosts at least 670 plant species and a

significant representation of large mammal fauna, with more than 3,800 elephants, the

largest population in West Africa, abundant dwarf buffalo, kob, roan antelope, giraffe,

hippopotamus, lion and several species of monkeys (Clerici et al. 2007). It represents the

biggest continuum of terrestrial and aquatic ecosystems in the West African savannah belt.

Both areas are emblematic in the world of conservation. Two Zimbabwean Rural

Districts of the Mid Zambezi Valley, Nyaminyami District and Mbire District (formally

part of Guruve District) were the first districts of the country to receive decentralised

authority to manage and benefit from their wildlife under the renowned CAMPFIRE6, one

of the first formal internationally recognised CBNRM7 programmes. The WAP complex,

became in 2002 the first biosphere reserve in Africa within the ‘‘Man And the Biosphere’’

programme of UNESCO.

After independence in Zimbabwe (1980), the land surface under crops and fallow

increased fourfold in less than 16 years in Mbire District (Poilecot 2002; Fig. 6), expansion

of cotton fields being a major contributor to this increase (Baudron et al. submitted).

Agricultural development in the Mid Zambezi Valley was driven by a strong political will

from the Zimbabwean Government and donors, and was assisted through tsetse eradication

campaigns and opening of cotton depots. Similarly, cotton production increased dramati-

cally at the periphery of the WAP complex, especially in the Diapaga Province in eastern

Burkina Faso (Fig. 7). In the commune of Tansargua alone, the area of land under cotton

increased by 70% between 2001 and 2005 (Doussa 2004). These land use changes not only

cause biodiversity directly, but lead to increased isolation of remaining habitat fragments.

For example, using species richness capacity (SRC), an indicator based on the empirical

species-area relationship, Clerici et al. (2007) estimated the impact of increased isolation of

6 Communal Area Management Program For Indigenous Resources.
7 Community-Based Natural Resource Management.

Biodivers Conserv (2009) 18:2625–2644 2631

123

http://www.fao.org/ag/ca
http://www.fao.org/ag/ca


the WAP complex due to habitat conversion of its periphery. For the period 1984–2004,

the SRC declined from 98 to 96%, and would be expected to further decrease to 83% if the

entire WAP periphery is converted to agriculture. Cotton production also requires large

doses of pesticides, including some potentially harmful for the environment, such as

endosulfan (EJF 2007). Endosulfan has a low solubility in water and has accumulated in

species of fish (Silurus and Tilapia) in the WAP complex (Issa 2004).

The success of cotton farming in African savannah ecosystems is explained by the crop’s

adaptation to climatic conditions that characterise savannah: a marked dry season essential

for a good opening of cotton bolls and hot temperatures close to the optimum (between 27

and 32�C) for vegetative growth (Parry 1986). Cotton does not tolerate excess water; on the

contrary, its deep root system makes cotton relatively tolerant to dry spells and rainfall

variations. Generally, 500–700 mm of rainfall is sufficient for normal crop development. In

addition, cotton is particularly attractive for farmers in drylands, as there is virtually no

alternative cash crop with a structured market that can compete with cotton. Credit schemes

and the assurance that farmers can sell their entire production explain the ready adoption of

the crop. In addition, market prices of seed cotton are generally known before the beginning

of the production campaign in West Africa. Credit schemes enable farmers to access

mineral fertilisers that benefit food crops included in the rotation. A variable proportion of

fertilisers destined to cotton may also be ‘‘diverted’’ to food crops (Baudron 2007).

In both areas, the need to intensify cotton-cereal systems and agriculture in general gave

birth to initiatives aiming at developing and diffusing cropping technologies based on the

principles of conservation agriculture, particularly in southern Zambia (part of the Mid

Zambezi Valley and its escarpment) and eastern Burkina Faso (the periphery of the WAP

Fig. 4 Location of southern Zambia within the Mid Zambezi Valley area

2632 Biodivers Conserv (2009) 18:2625–2644

123



complex). Efforts focused on reduced-tillage systems for both manual and mechanised

agriculture that allow residue retention and increase water infiltration close to the crop.

Indeed, in the two case study areas, water is the most limiting factor to crop production

(though nutrient-poor soils are also prevalent). Conventional land preparation is done by

ploughing, which incorporate residues, and manual direct planting (for farmers with no or

limited animal draught power).

For manual agriculture, permanent planting basins have been adopted by a number a

smallholders in southern Zambia. The CFU8 estimated that 78,000 smallholders adopted

this technology during the 2002–2003 growing season (Haggblade and Tembo 2003;

Baudron et al. 2007). Planting basins are permanent in the sense that they are re-dug every

year at the same place, during the dry season. Planting basins aim to ‘harvest’ rainwater.

They are structures roughly 20 cm deep in which seeds, manure and/or basal fertiliser are

placed. In essence, they are very similar to structures used in traditional farming, such as

the ‘‘zaı̈’’ system of Burkina Faso. In addition to these systems adapted to manual agri-

culture, animal-drawn implements were developed in these two countries. The Zambian

‘Magoye ripper’ developed in the MACO9 research station (Baudron et al. 2007) and the

IR12 and RS8 tillage tines tested and promoted by INERA10 in Burkina Faso (Barro et al.

Fig. 5 Location eastern Burkina Faso within the ‘‘W-Arly-Penjary’’ complex

8 Conservation Farming Union.
9 Ministry of Agriculture and Cooperatives.
10 Institut de l’Environnement et des Recherches Agricoles.
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2005) are the most common and well-documented implements used for minimum tillage

operations in the two case study regions. These implements open a furrow in the soil to a

depth of 15–20 cm and allow surface crop residue mulching.

The quantity and quality of residues produced by the main crops alone are often too

poor to improve yields through conservation agriculture. Therefore, intercropping systems

Fig. 6 Expansion of cultivated land in Wards 2, 3 and 4 of Mbire District during the 20 years following
Zimbabwean independence (Source: Biodiversity Project 2002)
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combining cover crops, with the main crops was developed in many parts of the continent.

In West Africa, INERA worked mostly with Mucuna pruriens (L.) DC. var. utilis, the

velvet bean which quickly produces abundant biomass (Barro et al. 2005). SOCOMA,11 a

cotton company under the DAGRIS group, tested a wide-range of grain and forage cover

crops, ranging from the grass Brachiaria ruziziensis R. Germ. and C.M. Evrard (Congo

grass) to the grain legume Cajanus cajan (L.) Millsp. (pigeonpea; Baudron 2007). Within

this project, intercrops of a cereal and a cover crop were grown in rotation with cotton,

cotton being directly seeded in the mulch produced the previous year by the intercrop.

Technologies were actually imported from Northern Cameroon, an area of similar ag-

roecology (Raunet and Naudin 2006; Séguy 2003, 2004). Similarly, in southern Zambia,

ZARI12 and GART13 tested various grain legumes and cover crops, amongst which cowpea

(Vigna unguiculata (L.) Walp.), velvet bean, Dolichos lablab (L.) D.C., sunnhemp

(Crotalaria juncea L.) and jackbean (Canavalia ensiformis (L.) D.C.) gave the most

biomass (Golden Valley Agricultural Research Trust 2004).

In both southern Zambia and eastern Burkina Faso, stakeholders involved in the

development and diffusion of conservation agriculture also promoted the re-introduction of

trees in farmland, in particular of Faidherbia albida (Delite) A.Chev., an indigenous tree

that produces biomass in the dry season, fixes significant amounts of atmospheric nitrogen,

recycles nutrients and is recognised by a number of African communities (e.g. the Tonga in

the Mid Zambezi Valley) who retain the trees in their fields (Roupsard et al. 1999).

Furthermore, in the two areas, other projects aiming to produce organic cotton developed

systems in which cotton is intercropped with catch crops (i.e. ‘catching’ pests). In the Mid

Zambezi Valley, sweet sorghum (Sorghum bicolor (L.) Moench) and cowpea were the

most interesting catch crops (Wilson 2002), whilst okra (Abelmoschus esculentus (L.)

Moench) was used by farmers in eastern Burkina Faso (Baudron 2007; Helvétas Burkina

Faso 2006). Most of these catch crops also help to cover the soil (e.g. cowpea) as well as

producing biomass and are therefore compatible with conservation agriculture.

Limited yield data was available from conservation agriculture trials in eastern Burkina

Faso. However, in Northern Cameroon where promoted technologies were identical and

agroecological conditions similar, cotton yields under manual direct seeding in cereal-

cover crop residues were equivalent or slightly larger given a similar rate of fertilisation

(Raunet and Naudin 2006). Production gains, when observed, arose from improved water

infiltration and reduced soil evaporation. Inclusion of cover crops in the production system

is essential to achieve adequate soil cover. Whilst a sorghum crop in pure stand produce 2–

3 t ha-1 of dry biomass at best, its association with Brachiaria ruziziensis can add another

2–3 t ha-1, with no yield loss for sorghum (Séguy 2003, 2004). In the case of climbing

cover crops, keeping cereal stalks on the field after harvest actually increases the final

production of biomass, as the cereal stalks act as support for the cover crop. For example,

Barro et al. (2005) found that velvet bean produced 1 t ha-1 of biomass when cultivated in

pure stand, and 3–4 t ha-1 when associated with sorghum.

In southern Zambia, farmers using planting basins and hand-hoes produced on average

1.5 t ha-1 more maize and 460 kg ha-1 more cotton than farmers practising conventional

ox-plough farming (Haggblade and Tembo 2003). These differences in productivity are,

however, largely due to the fact that with the conservation agriculture practise, hybrid

seeds and fertilisers were used, whilst most farmers using the conventional ox-plough grew

11 Société Cotonnière du Gourma.
12 Zambian Agricultural Research Institute.
13 Golden Valley Agricultural Research Trust.
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crops without agricultural inputs. The use of fertiliser alone accounted for 700 kg ha-1 of

the extra yield for maize and 400–500 kg ha-1 for cotton. Nevertheless, planting basins

increase rainwater use efficiency compared with conventional tillage methods, mainly by

increasing water infiltration (Nolin and von Essen 2005; Rockström et al. 2009), but also

because it is possible to plant with the first rains. Similarly, the use of the Magoye ripper

increases productivity due to concentrated nutrients and soil moisture around the plant

(Golden Valley Agricultural Research Trust 2004). However, the gains in yield with the

Magoye ripper are smaller than those obtained with planting basins, probably due to loss in

precision in both plant spacing and fertiliser application (Haggblade and Tembo 2003;

Baudron et al. 2007).

In INERA trials in Burkina Faso sorghum produced 5 t ha-1 of stalks with reduced

tillage using the IR12 and RS8 tillage tines, a practise locally known as ‘mechanical zaı̈’,

against 3 t ha-1 with manual zaı̈ and 1.5 t ha-1 with ‘scarification’, a conventional

practise of reduced-tillage used by cotton farmers in West Africa, that tills the soil to a

depth of about 5 cm, with an animal drawn implement such as the ‘houe Manga’ (Barro

et al. 2005). Similar to the Zambian experience, the yield benefits arose from an

improvement of soil structure and increased water infiltration. Indeed, after 2 years of

manual or mechanical zaı̈, penetration resistance was halved. Higher yields are achieved

with the mechanical zaı̈ as compared with the manual zaı̈, since the soil can be de-

compacted deeper with animal traction than with hand tillage.

Benefits at plot level as a result of conservation agriculture are encouraging, often

giving increased yield due to increased water and nutrient use efficiency. Even in cases

where yield increases are small, conservation agriculture advocates argue that the concept

remains attractive to farmers, as it enables a quick and easy establishment of crops. This is

particularly true with planting basins that can be dug throughout the dry season (Fig. 8).

With an adequate soil cover, weeds are also smothered, adding to labour savings during

land preparation. As a result, during the 2004 campaign in North Cameroon, net returns to

land were calculated to be on average 76 € ha-1 more with cotton produced under
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conservation agriculture than with cotton produced conventionally, which yielded an

average of 225 € ha-1 (Raunet and Naudin 2006).

However, the small proportion of farmers adopting these technologies, and the slow

rates of adoption in sub-Saharan Africa are striking. Of the 16,835 smallholders exposed to

conservation agriculture between 1996 and 1999 in Zambia, most of them in southern

Zambia, only 5,220 adopted some form of conservation agriculture (Bwalya and Mulenga

2002). Adoption by farmers who were not directly targeted by a donor-funded project was

rare in Zambia. ‘‘Dis-adoption’’ (abandon of the technology after few seasons of adoption)

was recorded once incentives of input packages were stopped (Baudron et al. 2007). In

West Africa, the wide majority of adoption of conservation agriculture technologies was

also driven by development projects (Djamen et al. 2005). When adoption occured, it was

only on small areas of land, representing a limited proportion of the total farm surface, and

farmers continued to manage most of their land using their conventional practises

(Haggblade and Tembo 2003; Baudron et al. 2007).

It appears that the limited adoption of conservation agriculture systems, despite reported

benefits at plot level, is explained by a number of constraints at farm level. We see non-

adoption as a rational decision rather than the expression of what Hobbs et al. (2008)

disparagingly refer to as a ‘‘traditional mindset’’. Firstly, conservation agriculture practises

generally require an increase in investment, either in the form of purchased inputs or of

labour, compared with conventional practises. In particular, not ploughing generally leads

to increased weed pressure. To face this, the CFU in Zambia recommends an early and

continuous weeding regime, which translates into six weeding operations per year for a

maize crop, including post-harvest operations (Baudron et al. 2007). Farmers following

such practises, even amongst those farmers who adopt conservation agriculture, are

extremely rare. Ploughing remains the single most cost-effective weed control method, and

extension agents in southern Zambia confirmed that conservation agriculture using per-

manent planting basins almost doubles the required weeding effort compared with con-

ventional ploughing (Baudron et al. 2007). Even if the marginal return is high for these

extra investments, most smallholders may not be able to undertake them due to limited

resources and labour constraints (Erenstein 2002; Giller et al. 2001). Likewise, the pur-

chase of specialised equipment (e.g. ripper, direct-seeder) is critical for successful adoption

of conservation agriculture (Hobbs et al. 2008), but represents an almost impossible

investment for resource-poor farmers. Rental schemes and the emergence of service pro-

viders could potentially reduce investment needs: for example the Zambian CFU argue that

the Magoye ripper, being a dry season land preparation tool in contrast with the plough

which must be used on moist soils, would benefit farmers who do not own neither the tool

nor animal draught power, as they would have the entire dry season to borrow or hire it.

However, in practise the Magoye ripper is rarely used during the dry season (Baudron et al.

2007).

Labour is an important constraint, not only in terms of total labour throughout the

season, but also in terms of the segregation of tasks between gender and/or age groups and

labour calendars, issues often hidden in the simplistic calculations of labour-demand

commonly used by those who promote conservation agriculture. For example, conservation

agriculture may result in a transfer of the labour burden from men, traditionally in charge

of land preparation, to women, traditionally in charge of weeding, whilst changes in total

labour demand may be small (Baudron et al. 2007). The peak labour of land preparation

may be spread out by the possibility of digging planting basins throughout the dry season

(Fig. 8), but such a practise may only be accepted when there are strong incentives such as

‘‘food for work’’. Figure 8 shows that most farmers use the Magoye ripper at the onset of
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the rainy season, with a peak labour almost as pronounced as that for plough users, thus

losing the benefit of early planting (CFU 2003). Farmers are indeed reluctant to use oxen in

the dry season, when they are in poor condition due to low forage availability and when the

soil is very dry and hard (Baudron et al. 2007).

As a response to the limited resources and labour of farmers, promoters of conservation

agriculture often advise smallholders to ‘‘focus their effort on conservation farming plots

as an insurance against drought and famine’’ (CFU 2003) managed at the ‘‘highest standard

possible’’ (Oldrieve 2005) and to abandon the rest of their land. This is based on simplistic

calculations using differences in crop yields from conservation agriculture trials and

average yields from conventional systems. These calculations show that a small acreage

managed with conservation agriculture largely outperforms extensive areas under con-

ventional management. Despite the fact that these calculations often compare data from

small-scale conservation agriculture trials with sub-regional or even national average

yields, such reasoning completely ignores the vulnerability of smallholders to climatic

variability or market price fluctuations. Smallholders, particularly in semi-arid areas, are

risk prone (Rockström et al. 2002). Having a number of fields, with different soils, planted

with different crops and managed differently (Tittonell et al. 2007) is an essential strategy

to mitigate these risks.

Promoters of conservation agriculture also often argue that increased investment in the

form of extra inputs and/or extra labour is required only in the first few years of adoption.

For example, CFU (2003) argued that early and continuous weeding would decrease the

weed seed bank over time and ultimately reduce the labour required in conservation

agriculture. Research at the GART station in Zambia supported this view, as it demon-

strated that labour for weeding is reduced by 50% after 6 years in trials during which

weeds were not allowed to grow beyond 5–6 cm. Similarly, physical, chemical and bio-

logical improvement of degraded soil may only occur after several years of conservation

agriculture practise. Improved soil fertility is seldom observable in the short-term. This

limits adoption by smallholders, whom main concerns are to fulfil their immediate needs.

We are convinced that only systems generating benefits in the short-term are likely to be

adopted by smallholders.

Inclusion of cover crops in the cropping systems aims to ‘boost’ primary production and

increase benefits in the short-term (e.g. soil protection, soil amendment, weed control).

However, plants deliberately grown to improve the soil condition but that offer no direct

benefit to farmers, as is e.g. the case with sunnhemp or velvet bean, have little chance of

spontaneous adoption by smallholders. Although conservation agriculture using ‘multipur-

pose’ cover crops is now generally promoted (i.e. cover crops producing grain and/or fodder

as well as having qualities to improve soil structure and fertility), the majority of these

remains unattractive for farmers at most. ‘Food cover crops’ (e.g. Eleusine coracana L. and

Dolichos lablab (L.) D.C.) are generally new and unfamiliar to farmers and their usual diet.

They also often have no local market. ‘Forage cover crops’ (e.g. Brachiaria ruziziensis and

Stylosanthes guianensis (Aubl.) Sw.) are attractive only in densely settled areas with limited

grazing land. Moreover, managing an association of two or more crops requires appropriate

knowledge and the learning period represents a risk of crop failure due to potential com-

petition for resources between the different species. For example, the majority of farmers in

the programme of conservation agriculture sponsored by SOCOMA had very poor cover

crop establishment in their trial plot, due to late planting (Baudron 2007).

Even in cases where substantial residual biomass may be produced during the rainy

season (from cereal and cover crops), biomass left on the field by the onset of the rainy

season may be insignificant. The question of access rights to this residual biomass after
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harvest is central in communal areas where cattle are grazing freely. Indeed, in semi-arid

areas, residual biomass is considered a public good as it represents the main source of

forage during the dry season (Schelcht et al. 2005). As a consequence, many conservation

agriculture promoters advocate fencing of fields and zero-grazing, with cattle fed from

forage produced on-farm. This practise might be possible in densely populated areas (e.g.

the highlands of Eastern Africa) and/or in agroecologies where livestock is relatively

unimportant (e.g. tsetse-infested equatorial Africa), but not in semi-arid areas where cattle

is a central component of rural livelihoods. In West Africa, fencing of the fields would add

another threat to the transhumance system. Soil macro-fauna, termites in particular, rep-

resent yet another threat to residue retention in African savannah ecosystem. In a study

carried out in southern Burkina Faso, Ouédraogo et al. (2004) found that 80% of sorghum

residue disappeared after 4 months in the presence of macro-fauna, whilst only 1% dis-

appeared when macrofauna was absent. Nevertheless, in a study carried out on a set of

conventional cotton, maize and sorghum fields representative of the diversity of practises

found in Mbire District, in the Mid Zambezi Valley, Baudron et al. (submitted) observed

on average total above-ground biomass of 1.7 t dry matter ha-1 at the onset of the rainy

season, despite the grazing by domestic livestock and wild mega-herbivores and despite

substantial termite activity. In the case of cotton fields, the residual biomass cannot be kept

but must be destroyed for phytosanitary reasons, only leaving biomass produced by weeds

that developed during the dry season as a potential mulch, which is about half of the total

above-ground biomass. This reinforces the importance of rotations in the set of recom-

mendations for conservation agriculture, particularly in the case of cotton production.

However, rotation is not a common practise in the two case study areas, firstly, because a

given crop is often better adapted to a given soil-type (e.g. maize on alluvial soils and

cotton in the interfluves of the Mid Zambezi Valley), and secondly, because a particular

crop may also be preferred and grown across most of the farm, making rotation with other,

minor crops impracticable (e.g. maize in southern Zambia, Nolin and von Essen 2005).

Agriculture is a politically guided management system (Campbell et al. 1997). There-

fore, gains in productivity generated by conservation agriculture may only lead to inten-

sification of cropping systems in supportive socio-political contexts (Pretty et al. 2003).

Under other conditions, it may have the opposite effect of fuelling further agricultural

expansion. For example, extensification may occur due to more rapid crop establishment

through conservation agriculture. Indeed, in marginal lands with low population density,

practises of intensification may not lead to reduction of unit costs of production, and may

prove uneconomic due to increasing costs of input procurement with increasing distance to

market (Erenstein 2006). In such areas, extensification may be a rational response. Con-

servation agriculture may improve the water budget at field level and reduce drought-spell

related risk of crop failure, therefore creating or reinforcing the rationale to invest in

external inputs (Rockström et al. 2002). However, the question of access to fertilisers and

herbicides remains central for resource-poor farmers (Gowing and Palmer 2008).

Recommendations for the development, evaluation and diffusion of conservation
agriculture

Evaluation at plot level of various technologies using conservation agriculture shows its

potential to increase crop productivity, reduce negative environmental effects and improve

sustainability. However, unless promoted by donors, adoption rates are modest. Devel-

oping the most productive conservation agriculture technologies on experimental fields and

Biodivers Conserv (2009) 18:2625–2644 2639

123



pushing these technologies onto smallholders’ farms is an approach bound to fail—but by

far the most commonly used approach. Parameters other than productivity explain adoption

of a particular innovation, and constraints at farm scale cannot be ignored. Labour-saving

and risk-mitigating technologies that have collateral benefits for the environment may have

a higher potential of being adopted by farmers than technologies purely targeting yield and

income.

Decisions whether or not to adopt particular conservation agriculture technologies are

made at farm-level and depends on farmers’ objectives and constraints. Thus, farm-level is

the appropriate scale to evaluate impact of conservation agriculture options and their

likelihood for adoption. Assessing how various technological options impact on overall

farming systems and how they modify resource and labour allocation at farm level is

paramount to understand which options ‘fit best’ the different categories of farms (Giller

et al. submitted). The use of bio-economic models including decision rules on the allo-

cation of resources and labour generated from observed farmers’ behaviour may be useful

for such complex evaluation (Affholder et al. 2008). Taking into account the notion of risk

will also require use of dynamic models, through which the effects of weather variability

and changes in market prices for example may be explored.

Farmers’ norms, culture and perceptions are also important factors to consider. Many

cover crops demonstrate a number of benefits, but simply prove too foreign to be accepted.

Dual-purpose varieties of legumes already known by farmers (e.g. leafy soyabean,

creeping leafy cowpeas), that offer good grain yield as well as producing much biomass,

might be the most likely cover crops to be adopted (Giller et al. 2001). This observation

suggests the need for selection of such dual-purpose varieties by plant breeders, moving

away from selection based solely on grain production, as it has often been the case. Many

local landraces are quite dual-purpose: their in situ conservation and use in conservation

agriculture systems may be interesting to explore. Nevertheless, the fate of the residual

biomass is influenced by other dynamics at the level of the village/community, in particular

through communal grazing. In areas where cattle population is important, large-scale

adoption of conservation agriculture will depend on negotiations at community-level,

probably facilitated by the design of innovative technical options and/or new institutional

arrangements.

It is important to understand farmers’ response to market, laws and policies in order to

target project interventions in areas where an enabling socio-political environment exists

(or to create such an environment). Gowing and Palmer (2008) highlight that adoption of

innovations is rarely spontaneous but often the consequence of an external priming agent.

External help, in financial and non-financial forms, is required for the farmer to face

transition costs (Pretty et al. 2003). Hobbs et al. (2008) advocate for sustained donor

support to achieve significant, large-scale adoption of conservation agriculture. Political

support is also required, but policies supportive to sustainable agriculture are at best patchy

in the majority of both developed and developing countries (Pretty et al. 2003). Finally,

access to and exchange of knowledge, through the creation and animation of innovation

networks, including agrochemical companies and equipment manufacturers, is of prime

importance (Gowing and Palmer 2008; Hobbs et al. 2008).

Conclusion

Integrated with other measures, such as effective policies, conservation agriculture may be

an effective strategy to release pressure on biodiversity without threatening human needs in
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landscapes of global importance for conservation. To increase its adoptability by small-

holders and propose technologies that would fit better into the farming systems, those

promoting conservation agriculture need to scale up their approach from plot to farm level

and ultimately to village and landscape. This will require a multi-disciplinary approach,

involving both social and biophysical disciplines, and the participation of farmers at each

stage of the development, evaluation and diffusion of conservation agriculture technolo-

gies. Utilisation of simulation models to explore alternatives and to facilitate negotiations

amongst stakeholders may be a promising approach to increase our understanding.
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Issa MY (2004) Contribution à l’étude de l’impact de l’utilisation des pesticides sur la faune terrestre

et aquatique: cas des grands mammifères et de quelques espèces de poissons dans les réserves de
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