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Does habitat loss affect the communities of plants and
insects equally in plant–pollinator interactions?
Preliminary findings
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Abstract Habitat loss is a major threat to biodiversity and ecosystem function. As

habitats are lost, one factor affecting their community structures is the niche-width demand

of species, which ranges from specialist to generalist. This study focused on specialist and

generalist species in plant–pollinator interactions and tested the hypothesis that plant and

pollinator communities become more generalized as habitat loss increases. The study was

made in seven selected sites in southern Ontario, Canada, at the level of landscape that is

characterized by distributed forests within intensively managed agricultural fields. We

quantified both the degree of habitat loss and the degree of specialization/generalization for

each of the plant and insect communities using a sampling method of hexagonal transects.

Regression analysis indicated a significant relationship between the increase of habitat loss

and the shift to generalization in insect, but not in plant, communities. Our results suggest

that, in plant–pollinator interactions, insect communities are more sensitive and/or quicker

than plant communities to respond to the effects of habitat loss.

Keywords Asymmetry � Forest loss � Generalist � Habitat degradation �
Habitat fragmentation � Mutualism � Specialist

Introduction

Habitat loss is currently a major threat to biodiversity (e.g., Findlay and Houlahan 1997;

Debinski and Holt 2000; Gurd et al. 2001; Steffan-Dewenter et al. 2002). Losses occurring

within landscapes could result in habitat fragmentation (Fahrig 2003; Ewers and Didham

2006). Such landscape changes lead to perturbations in community structures and inter-

specific interactions within the communities (Steffan-Dewenter and Tscharntke 2002;

Tscharntke and Brandl 2004). As habitats are lost, one factor affecting interspecific
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interactions is niche-width demand for both specialists and generalists (Wilson and

Yoshimura 1994; Kassen 2002). Specialists have narrower niches than do generalists.

Some specialists have been shown to be more vulnerable than generalists to habitat

degradation (Kitahara and Fujii 1994; Kitahara et al. 2000).

Plant–pollinator networks are excellent examples of mutualistic interspecific interac-

tions (Kevan and Baker 1983, 1999; Waser and Ollerton 2006). Pollen transfer by animals

is essential for reproduction in most angiosperm species, and therefore pollinators provide

a critical service in terrestrial ecosystems (Buchmann and Nabhan 1996; Allen-Wardell

et al. 1998; Kearns et al. 1998; Kevan 2001). Such plant–pollinator interactions are also

strongly dependant upon niche-width demands of both plant and pollinator species, both

ranging from specialists to generalists (Rathcke and Jules 1993; Johnson and Steiner 2000;

Olesen and Jordano 2002). Consequently, habitat loss certainly is expected to affect the

relative composition of specialists and generalists comprising a community linked through

plant–pollinator interactions (Fortuna and Bascompte 2006).

The debate on specialization and generalization in plant–pollinator interactions are still

active (Waser and Ollerton 2006). It is widely accepted that the most stable pollination

network evolve toward increasingly specialized interactions (Baker and Hurd 1968;

Stebbins 1970). However, a certain mix of generalist and specialist mutualistic interactions

co-exists in most ecosystems and it has been posited that stable pollination networks

include evolution toward specialization and toward generalization (Kevan and Baker 1983,

1999). In general, pollinator/plant networks in ecosystems seem to include rather more

generalized than specialized relationships (Proctor 1978; Herrera 1988; Waser et al. 1996;

Johnson and Steiner 2000).

Our primary aim is to analyze the effects of habitat loss on communities of plants and

their insect pollinators at the landscape level. In particular, we evaluate the changes in the

relative representation of specialization and generalization in plant–pollinator interactions.

Our specific hypothesis is that plant and pollinator communities become more generalized

with increased loss of habitat.

Materials and methods

Study sites and hexagonal transect

Our study was done in Norfolk County of Ontario, Canada (428370–428480N, 808250–
808390W). The region is located in southern Ontario’s deciduous Carolinian forest zone,

where the warm and dry southern climate is ideal for such an ecosystem that is not found

elsewhere in Canada. Many plant species with high priority for conservation occur in the

Carolinian forest zone (Allen et al. 1990; Waldron 2003). The landscape is flat, charac-

terized by distributed fragments (patches) of forest within intensively managed agricultural

fields of crops, such as corn, soybean, and tobacco.

In May and June of 2003, eight sites were selected with the aid of a Geographical

Information System (GIS), ArcView (Version 3.3, ESRI, Redlands, CA, USA). At random,

eight geographical points that fell within the forest polygons in the study region of Norfolk

County were chosen. The criteria for accepting a randomly selected point included a

minimum distance of 40 m from all edges of the forest polygons and a minimum separation

distance of 4,500 m from any other chosen geographical points. All points selected in the

laboratory were visited, using a Global Position System (GPS) (Garmin International,

Olathe, KS, USA), and confirmed as to utility to be study sites. Selected points on or near a
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river, a pond or a path were rejected. The geospatial data of forest coverage was produced

using aerial photography (1:30,000 and 1:50,000) obtained from the Ontario Base Map

Series in 2003 (Ontario Ministry of Natural Resources, Peterborough, ON, Canada).

Each of the eight selected sites consisted of a hexagonal transect with 20 m sides with

the chosen geographical point marking the center. In constructing the hexagonal transects,

the direction of the first radial arm of each transect was randomly chosen by using a 1.5 m

stick thrown in the air. The axes were marked with bamboo poles and a 120 m piece of

rope demarcated the perimeter. Although a better choice for transect shape would be a

circle, hexagonal transects were more practical.

One of the eight sites chosen in 2003 was rejected at the beginning of sampling in April

2004 because of flooding by a vernal pond.

Insect and plant sampling

To investigate the species richness and abundance of the flower-visiting insects as well as

their plant interactions, a belt transect method (Banaszak 1980; Memmott 1999; Dicks

et al. 2002) was applied to the hexagonal transects. The same seven hexagons were used at

the start to the end of the sampling season in April and May, 2004. This period, before

canopy closure, was chosen because it is always the most active, but short, period of

flowering (Macior 1978; Schemske et al. 1978; Helenurm and Barrett 1987).

Each of the seven sites was sampled for insects on sunny days when the temperature

was at least 12 8C. Sampling walks started at either 11:30 or 14:30, the period of relatively

high-flower visitation by insects (H. Taki, personal observation). Thus, in most cases, two

sites were sampled on 1 day. The order in which the seven sites were sampled was

randomly selected by numbered chits in a bag and that order considered as one cycle. Four

sampling cycles were made to ensure that sampling was carried out twice at 11:30 and

twice at 14:30 for each of the seven sites (i.e., each site was observed on four different

days). All samplings were made from 24 April to 28 May in 2004.

At each sampling, the same two people walked the perimeter of the hexagons five times

at a slow pace; one person walking clockwise and the other walking anti-clockwise. Each

of these samplings took between 80 and 100 min to complete. Insects seen visiting flowers

within 2 m on either side of the perimeter rope were sampled with insect nets or aspirators.

Only insects in the orders Coleoptera, Diptera Hymenoptera, and Lepidoptera were col-

lected. The species of the flowering plant visited by each captured insect was recorded.

The species richness and abundance of all flowering plants in bloom at each site at each

site were recorded using a quadrate method (Knapp 1984) with 1 x 1 m quadrates placed

every meter along each side of the perimeter of each hexagon; 20 quadrates along the outer

perimeter of each side and 19 along the inner (234 quadrates in total for each recording).

The cataloguing and census of plants took place four times for each site, coinciding with

the first, second, third, and fourth insect sampling cycle (above). Most of plants observed

plant species were identified in situ, but after each sampling one specimen of each species

was brought back to the laboratory at the University of Guelph to confirm identification.

Degree of habitat loss

Circles of various radii from 120 to 2,020 m (100–2,000 m from the hexagonal transects)

with 100 m intervals were created, using ArcView, on maps around each of the hexagonal

transects to quantify the amount of forest coverage. The scale for these circles was chosen
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from known scale-dependent effects of, and foraging ranges of, flower-visiting insects,

such as bees (vanNieuwstadt and Iraheta 1996; Osborne et al. 1999; Steffan-Dewenter et al.

2001, 2002; Gathmann and Tscharntke 2002) and moths (Ricketts et al. 2001). The degree

of habitat loss was estimated by the amount of forest coverage (m2) within the circles.

Correlation coefficients between forest coverage at each of the radii and the number of

plant species found in each hexagonal transect were calculated. Then, the radius with the

highest correlation between the forest coverage and the plant species richness was selected

for the further analyses (Ricketts 2001; Pearman 2002). We use plant species richness,

rather than insect species richness, to avoid the intrinsic bias of actively sampling insects

from flowers (rather than passively through e.g., pan traps, malaise traps).

Degree of specialization/generalization

To quantify the degree of specialization/generalization in our study communities, two steps

were used. The first was to quantity the degree (G) of specialization/generalization for each

species of plant and insect by Medan et al.’s (2006) index. The second step was to quantify

the degree (C) of specialization/generalization for each of the communities represented by

the seven study sites by using the average index weighted for abundance of both insects

and plants.

Medan et al.’s (2006) index (G) is calculated from two aspects named resource usage

(R) and evenness (E). The resource usage of species i (Ri) is computed as:

Ri ¼
Si

N
;

where Si is the number of partner species (either plants or insects) interacting with species i
(either insects or plants), and N is the total number of species on the partners’ side (either

plants or insects) of the community. In our study, when species i was found in more than

one community, Si and N were obtained from all of the communities in which it was found.

The other aspect, evenness of species i (Ei), was calculated using the Shannon evenness

measure (Magurran 2004) as:

Ei ¼
�
P

j

pj � ln pj

ln Si
;

where Si is the number of partner species (either plants or insects) interacting with species i
(either insects or plants), and pj is the proportion of individuals corresponding to the jth
partner species of the given species i. When species i has only one partner species, Ei

cannot be computed because lnSi, = 0. In this case, Medan et al. (2006) assign a value of 1.

Using the calculated Ri and Ei, the specialization/generalization index for species i (Gi)

was obtained by:

Gi ¼ Ri � Ei;

where Gi takes a value from 0 to 1. Species i can be considered as a highly specialized

species when it approaches 0 and it can be considered as an extremely generalized species

when it reaches 1.
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For the second step, based on specialization/generalization index (G) for each species,

the degree of specialization/generalization for each of the seven study sites was quantified.

The degree of specialization/generalization in the community k (Ck) was calculated by the

following equation:

Ck ¼
XD

i

Gi � ti

tD
;

where D is the total number of species in community k. ti is the total number of individuals

of species i for insects or the total number of quadrates encompassing plant species i for

plants. tD is the total number of individuals in community k for insects or the total number

of quadrates encompassing the found plant species in the community k for plants. The

degrees of specialization/generalization for communities (C) were obtained for both plant

and insect communities, respectively.

Statistical analysis

Regression analyses, including linear, power [ln(x) and ln(y + 1)], semilog [ln(x) or

ln(y + 1)], reciprocal (1/x or 1/y) functions, were made. Here, the dependent variable (y) is

the degree of specialization/generalization for both plant and insect communities, and the

independent variable (x) is the degree of habitat loss, described by the amount of forest

coverage. The statistical computations were made by PROC GLM of SAS (Version 8.2,

SAS Institute, Cary, NC, USA). All hypotheses were tested using a Type I error rate of

0.05.

Results

Degree of habitat loss

In total, 27 plant species were in bloom during the study (Table 1). A correlation coeffi-

cient between the number of the plant species found and the amount of forest coverage in

the seven sites was calculated at each of the 20 radii from 120 to 2,020 m (Fig. 1). Because

the plant species richness was most strongly correlated with forest coverage at the 220 m

radius (0.70), the 220 m radius was used as the scale in all subsequent analyses.

Degree of specialization/generalization

In total, 394 individual insects in 89 species (including morphological taxonomic units),

representing 394 interactions, were found from 18 plant species (Tables 1, 2). Apart from

the 394 individual insects, there were four more insect individuals collected, two female

specimens of Anthomyiidae from the flowers of Alliaria petiolata (Brassicaceae) and Viola
pubescens (Violaceae) and two specimens of Syrphus (Syrphidae) from the flowers of A.

petiolata. However, because of difficulties in their identification, based on morphological

taxonomy, they were not included in the analyses.
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Any of the regression analyses for plant communities, including linear (F1,5 = 2.03,

P = 0.214), power (F1,5 = 3.05, P = 0.141), semilog [ln(x): F1,5 = 2.77, P = 0.157, and

ln(y + 1): F1,5 = 2.23, P = 0.196], reciprocal (1/x: F1,5 = 3.82, P = 0.108, and 1/y:

F1,5 = 3.92, P = 0.105) functions, indicated that there was no significant relationship

between the degree of habitat loss and degree of specialization/generalization in plants

(Fig. 2a).

Among the regression analyses, the model of best fit for insect communities was the

reciprocal of the forest coverage (R2 = 0.570), which indicated a significant relationship

between the degree of habitat loss and degree of specialization/generalization in insects

(F1,5 = 6.62, P = 0.0498) (Fig. 2b). The other functions, linear (F1,5 = 4.64, P = 0.084,

R2 = 0.481), power (F1,5 = 5.48, P = 0.066, R2 = 0.523), semilogs [ln(x): F1,5 = 5.66,

P = 0.063, R2 = 0.531, and ln(y + 1): F1,5 = 4.58, P = 0.085, R2 = 0.478] and reciprocal of

the degree of specialization/generalization (F1,5 = 3.53, P = 0.119, R2 = 0.414), showed no

significances.

Discussion

Our results indicate no relationship between degree of habitat loss and degree of spe-

cialization/generalization in the plant communities, but a significant relationship between

the reciprocal of degree of habitat loss and degree of specialization/generalization

exhibited by the communities of insects was found. That implies that pollinators do tend to

be more generalized as habitat loss increases although the relationship is not linear.

Insects associated with plant–pollinator interactions appear to be more vulnerable to

habitat loss than do the partner plants. The flowers of our study plants had anywhere from 0

to 44 species of insect visitor, but the insects were more fastidious, interacting with 1 to 7

species of plant (Tables 1, 2). That result probably reflects only that there are far more

insect species than plant species (Wilson 1992) but suggests that the insects involved in

pollination interactions generally have narrower niches than do the partner plants. That, in

turn implies the greater vulnerability of insects in the system. The much greater longevity,

and persistence, of plants following habitat loss further emphasizes the lesser vulnerability
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Fig. 1 Correlation coefficients between the percentage of forest coverage at each radius from 120 to
2,020 m (100–2,000 m from the hexagonal transects) and ln(the number of plant species) among the seven
study sites. The highest correlation coefficient (0.70) was found at the radius of 220 m
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Table 2 Insect species collected from the seven study sites in Norfolk County of Ontario, Canada, used in
the regression analyses between degree of specialization/generalization and forest coverage

Order/family Species Total number
of interactions

Number of
interacted
plant species

G R E

Coleoptera

Byturidae Byturus unicolor 10 3 0.112 0.130 0.859

Cantharidae Silis sp. 1 1 0.091 0.091 1

Rhagonycha sp. 1 1 0.091 0.091 1

Cerambycidae Analeptura lineola 1 1 0.091 0.091 1

Pidonia ruficollis 3 1 0.067 0.067 1

Curculionidae Phyllobius oblongus 6 3 0.132 0.143 0.921

Nitidulidae Meligethes nigrescens 6 2 0.054 0.083 0.650

Boreades abdominalis 4 1 0.056 0.056 1

Oedemeridae Oxycopis thoracica 10 2 0.149 0.154 0.971

Pyrochroidae Pedilus lugubris 4 2 0.090 0.111 0.811

Scarabaeidae Hoplia trifasciata 7 1 0.077 0.077 1

Diptera

Anthomyiidae Delia sp. 1 5 3 0.131 0.136 0.960

Delia sp. 2 1 1 0.077 0.077 1

Chironomidae Chironomidae sp. 1 1 0.091 0.091 1

Mycetophilidae Anatella sp. 1 1 0.077 0.077 1

Docosia sp. 5 1 0.043 0.043 1

Mycetophila sp. 4 1 0.045 0.045 1

Phronia sp. 1 1 0.077 0.077 1

Mycetophilidae sp. 5 1 1 0.077 0.077 1

Phoridae Megaselia sp. 1 1 0.111 0.111 1

Rhagionidae Rhagio plumbeus 1 1 0.111 0.111 1

Rhagio mystaceus 1 1 0.125 0.125 1

Sciaridae Sciara sp. 2 1 0.077 0.077 1

Sciaridae sp. 2 1 1 0.077 0.077 1

Sciaridae sp. 3 1 1 0.111 0.111 1

Sciaridae sp. 4 1 1 0.111 0.111 1

Sciaridae sp. 5 5 1 0.091 0.091 1

Syrphidae Brachyopa ferruginea 2 1 0.077 0.077 1

Brachypalpus oarus 1 1 0.091 0.091 1

Criorhina sp. 1 1 0.167 0.167 1

Helophilus fasciatus 5 2 0.121 0.125 0.971

Melanostoma
mellinum

3 2 0.102 0.111 0.918

Platycheirus sp. 1 1 0.077 0.077 1

Shaerophoria sp. 2 1 0.167 0.167 1

Syrphus rectus 1 1 0.077 0.077 1

Syrphus ribesii 14 3 0.060 0.130 0.463

Toxomerus
geminatus

7 3 0.114 0.158 0.725
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Table 2 continued

Order/family Species Total number
of interactions

Number of
interacted
plant species

G R E

Tachinidae Epalpus sp. 2 1 0.167 0.167 1

Gonia sp. 1 1 0.167 0.167 1

Siphona sp. 5 1 0.056 0.056 1

Hymenoptera

Andrenidae Andrena sp. 2 1 0.167 0.167 1

Andrena carlini 16 5 0.177 0.200 0.884

Andrena crataegi 7 1 0.063 0.063 1

Andrena distans 6 1 0.053 0.053 1

Andrena erigeniae 24 2 0.038 0.154 0.250

Andrena erythronii 6 2 0.141 0.154 0.918

Andrena milwaukeensis 4 2 0.085 0.105 0.811

Andrena nivalis 1 1 0.077 0.077 1

Andrena rufosignata 1 1 0.077 0.077 1

Andrena rugosa 5 1 0.167 0.167 1

Andrena spiraeana 1 1 0.056 0.056 1

Andrena tridens 3 3 0.231 0.231 1

Andrena vicina 11 5 0.170 0.200 0.849

Apidae Apis mellifera 9 3 0.116 0.150 0.773

Bombus bimaculatus 8 3 0.112 0.167 0.670

Bombus impatiens 3 2 0.087 0.095 0.918

Bombus perplexus 4 2 0.071 0.087 0.811

Bombus vagans 3 2 0.080 0.087 0.918

Ceratina calcarata 9 7 0.329 0.350 0.941

Nomada cressonii 6 2 0.184 0.200 0.918

Nomada lepida 1 1 0.077 0.077 1

Nomada maculata 10 4 0.224 0.286 0.785

Nomada ovata 1 1 0.167 0.167 1

Nomada sayi 1 1 0.167 0.167 1

Halictidae Agapostemon sericeus 7 2 0.074 0.125 0.592

Augochlora pura 6 4 0.179 0.200 0.896

Halictus confusus 7 2 0.075 0.087 0.863

Halictus rubicundus 3 1 0.167 0.167 1

Lasioglossum (Dialictus) coeruleum 3 2 0.102 0.111 0.918

Lasioglossum (Dialictus) creberrimum 5 3 0.131 0.136 0.960

Lasioglossum (Dialictus) cressonii 16 6 0.201 0.231 0.871

Lasioglossum (Dialictus) laevissimum 1 1 0.167 0.167 1

Lasioglossum (Dialictus)
nigroviride

4 2 0.071 0.087 0.811

Lasioglossum (Dialictus) pilosum 1 1 0.167 0.167 1

Lasioglossum (Dialictus) versans 18 4 0.133 0.160 0.829

Lasioglossum (Dialictus) sp. 1 3 1 0.167 0.167 1
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of the plants, at least in the short-term. Moreover, insects, by comparison with plants, have

more specific, other needs, such as for food, mating, resting, nesting or oviposition, and

avoidance of death (Buchmann and Nabhan 1996; Kearns et al. 1998; Kevan 1999). All in

all, insects can be assumed to be more vulnerable to habitat loss than are plants in the case

of their mutualistic pollination interactions.

Other explanations for the lack of significant relationship between habitat loss and

degree of specialization/generalization in plant communities may be associated with their

reproductive systems. Some plants reproduce vegetatively (Abrahamson 1980), and many

plants have populations that differ in sexual reproductive strategy (Richards 1997). Aizen

et al. (2002) assessed 46 plant species and found that in fragmented habitats the pollination

and sexual reproductive success of specialist plants was not significantly different from

that of generalist plants, a finding that at least partially supports our conclusions.

We analyzed plant and insect communities separately. Although plant–pollinator net-

works which exhibit mutualistisms are thought to result from coevolution (Faegri and van

der Pijl 1979), recent studies note that asymmetric interactions between plants and poll-

inators are common (Johnson and Steiner 2000; Vázquez and Aizen 2004; Larsson 2005;

Bascompte et al. 2006; Waser and Ollerton 2006). In asymmetric interactions, specialist

plants do not always interact with specialist pollinators, as is also the case with generalist

plants and generalist pollinators (Ashworth et al. 2004). Our results from separated analyses

of plants and insects provide an example of asymmetric interactions at the community level.

In our study, the degree of habitat loss was quantified using a landscape approach before

ensuing analyses of specialization/generalization were considered. Similarly, Vázquez and

Simberloff (2002) tested the effects of grazing by cattle on the weighed specialization and

Table 2 continued

Order/family Species Total number
of interactions

Number of
interacted
plant species

G R E

Lasioglossum (Dialictus) sp. 2 1 1 0.091 0.091 1

Lasioglossum
(Evylaeus) foxii

4 4 0.174 0.174 1

Lasioglossum
(Evylaeus) quebecense

27 6 0.195 0.240 0.812

Lasioglossum
(Lasioglossum) coriaceum

5 3 0.137 0.158 0.865

Lasioglossum
(Lasioglossum) paraforbesii

1 1 0.111 0.111 1

Sphecodes ranunculi 2 2 0.091 0.091 1

Megachilidae Osmia atriventris 1 1 0.125 0.125 1

Osmia caerulescens 1 1 0.167 0.167 1

Osmia sandhouseae 1 1 0.091 0.091 1

Eulophidae Eulophidae sp. 1 1 1 0.111 0.111 1

Pompilidae Priocnemis minorata 1 1 0.167 0.167 1

Vespidae Dolichovespula arenaria 2 1 0.077 0.077 1

Lepidoptera

Lycaenidae Celastrina ladon 1 1 0.167 0.167 1

Their collected numbers of interactions, numbers of interacted partner plant species, degrees of specialization/
generalization (G), resource usage (R), and evenness (E) are shown
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generalization of species in plant–pollinator interactions by comparing grazed habitats with

non-grazed ones. They found no relationship between disturbance and specialization/

generalization in either plants or pollinators. However, they note several reasons why they

obtained the results they did and we note that there are many kinds of degradation that vary

in degree and form even within grazing lands.

Quantification of the degree of a species’ specialization/generalization is most simply

done by using the number of its partner species, but an intrinsic bias results because

specialist interactions are expected to be observed less often than generalist ones (Vázquez

and Aizen 2003). Thus, adjusted or weighted degrees of specialization/generalization are

valid and essential. Medan et al.’s (2006) index partially addresses the problem bias. Even

so, the results of our study may still be insufficient to understand the impacts of habitat loss

on the full network of plant–pollinator interactions. Our sampling was made at only seven

sites on four occasions over 1 month in 1 year, for a total of about 6 h per site. One concern

is the possibility of undersampling, as this might affect the calculated degrees of spe-

cialization/generalization for any species (G). For example, Andrena crataegi (G = 0.063)

(a) Plant

0

0.1

0.2

0.3

0.4

30000 70000 110000 150000

Forest coverage

C

(b) Insect

0.05

0.1

0.15

0.2

30000 70000 110000 150000

Forest coverage

C

Fig. 2 Relationship between degree of specialization/generalization and forest coverage (m2) within a
220 m radius from the centers of the study transects for the communities of plants (a) and of potential insect
pollinators (b). C indicates the degrees of specialization/generalization for either plant or insect
communities. Higher C indicates lower specialization. Regression analyses for the plants (a) were not
significant (P > 0.05). The model of best fit for insects (b) was Y = 0.099–3060.797 (1/X), R2 = 0.570,
F1,5 = 6.62, n = 7, P = 0.0498
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and A. spiraeana (0.056) are indicated as relatively specialized species in our study

(Table 2), but Krombein et al. (1976) noted them to be polylectic (generalized). More

sampling in time and space could refine our conclusions.

In summary, we quantified both habitat loss and specialization/generalization of each of

plant and insect in our study sites and tested the hypothesis that plant and pollinator

communities become more generalized with increased loss of habitats. Although our

sampling may limit the scope of results, we found a significant relationship between habitat

loss and specialization/generalization in the communities of insects but not in plants. In

plant–pollinator networks, pollinators seem to be more sensitive and/or quicker to respond

than plants to habitat loss. Nonetheless, because it is expected that losses of pollinators

would eventually lead plant extinctions (Janzen 1974; Kevan 1975; Kevan and Baker

1999; Bond 1994; Memmott et al. 2004), we advocate that our hypotheses and methods be

tested with more extensive sampling in other places and over longer durations.
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