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Abstract. Predictive models of the spatial distribution and abundance of species based on habitat

characteristics are finding increasing use in management and conservation. The European badger

attracts interest as a model species both for conservation reasons and because of the important role

the species is playing in understanding carnivore sociality. We developed a statistical habitat model

based on presence/absence data on badger setts. Tomaximise the utility of themodel inmanagement,

we limited the choice of model variables to those that had a clear basis in badger ecology and that

could be obtained on a nation-wide digital format. We extrapolated the habitat model to a region in

Denmark and developed a threshold-independent sett distribution algorithm to estimate sett den-

sities. The habitat model was simpler than previously published models of badger sett habitat

selection, but nevertheless had a predictive ability in excess of 80% judged against independent data.

The sett distribution algorithm was able to simultaneously reproduce several observed patterns of

sett density and distribution over the probability gradient. It thus represents a significant improve-

ment over threshold-dependent methods used to discriminate between suitable and unsuitable

habitat predicted by presence/absence regression models. Our approach demonstrates that a model

of badger sett habitat suitability with high predictive power can be obtained using easily accessible

map-variables and presence/absence data. This is a prerequisite for using habitat models as predictive

tools over large areas. The use of a simple sett distribution algorithm circumvents the common

problem of subjectively fixing a threshold to discriminate between suitable and unsuitable habitat. In

conjunction the models presented here constitute an important contribution to the management of

the badger inDenmark and, upon further validation, possibly to similar regions in Northern Europe.

Introduction

The importance of landscape structure and habitat characteristics for the spatial
distribution of the European badger (Meles meles L.) has received considerable
attention in recent years (e.g. Clements et al. 1988; Thornton 1988; Macdonald
et al. 1996; Feore and Montgomery 1999; Virgos and Casanovas 1999;
Wright et al. 2000; Hammond et al. 2001; Good et al. 2001; Revilla et al. 2001;
Johnson et al. 2002; Revilla and Palomares 2002). From a management per-
spective the species attracts interest partly due to conservation concerns (e.g.
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van der Zee et al. 1992) and partly due to its possible role in transmitting wildlife
diseases to domestic animals (e.g. Nolan and Wilesmith 1994). From an eco-
logical perspective the badger is intriguing due to its flexible social behaviour
expressed through social group sizes in excess of 15 adult individuals in high-
density populations in the UK (Johnson et al. 2001) and strict pair-living in low-
density areas in Southern Europe (Rodrı́guez et al. 1996; Revilla et al. 1999).

The elusive behaviour of the badger renders direct censuses of population
sizes difficult even in limited areas. Therefore the density of breeding setts is
frequently used as a surrogate for badger population densities. As the badger’s
choice of sett habitat appears to be fairly consistent, predictive habitat models
are attractive and useful tools in extrapolating information from a limited
study area to larger regions. A number of statistical models are available
describing the choice of sett habitat by badgers across the species’ European
range (UK: Thornton 1988; Macdonald et al. 1996; Wright et al. 2000; Ireland:
Hammond et al. 2001; Switzerland: Good et al. 2001; Spain: Revilla et al.
2001). Some of these models (Thornton 1988; Macdonald et al. 1996; Ham-
mond et al. 2001) are developed from sett density data, but most are – like the
present – based on presence/absence data.

A statistical habitat model based on presence/absence data provides infor-
mation on the habitat preferences of the species and allows extrapolation and
prediction of the amount and location of suitable habitat in other areas. It
provides directly an estimate of the probability that a given area is used. But
the question how predicted probabilities of use relate to population densities
(or in the case of the badger: to sett densities) remains unanswered. An answer
requires that the modeller is able to judge, from the predicted continuous
suitability gradient, whether habitat can be considered ‘sufficiently suitable’ for
use. Only rarely can such a threshold be deduced from ecological knowledge
and far too often the solution to the dilemma is an arbitrary cut-off level
separating suitable from unsuitable habitat. We suggest a way to circumvent
this dilemma by employing a simple algorithm that determines minimum
acceptable distance between setts according to habitat suitability.

The majority of existing habitat models of badger sett use include a combi-
nation of map- and field-measured variables. For a habitat model to be useful in
prediction in larger areas, however, the model parameters must be easy to ob-
tain. While field-measured variables such as ground cover, vegetation height or
areas of certain crops have in several cases been shown to be significant pre-
dictors for the location of badger setts (e.g. Macdonald et al. 1996; Good et al.
2001; Revilla et al. 2001), such variables can only rarely be determined for larger
areas. They therefore place a severe limitation on the utility of the habitat model
for predictive purposes. Moreover most such field characteristics change within
time spans much shorter than the ‘life span’ of a badger sett. While they might be
relevant for the activity around a given sett in a given year, they are unlikely to
represent the conditions at the site at the time the sett was first established.

The aim of the current study has been to develop estimates of densities of
European badger setts in a region of Denmark. It was done in a step-wise
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procedure. First, a statistical habitat model was developed based on presence–
absence data predicting the probability that a given area is used as badger sett
habitat. The habitat model was validated against independent field data. Sec-
ond, the predictions of the habitat model were translated into realistic esti-
mates of sett densities without using a pre-defined threshold for when a given
area was suitable for use. The resulting density estimates were compared to
observed patterns of sett distribution and densities in Denmark.

Methods

Study areas

The study areas were situated in the counties of Aarhus, Viborg and Vejle in
East Jutland, Denmark (Figure 1, Table 1). The Fussingø area (15 km2) was
used to develop the habitat model. The area consists of a flat plateau (50–65 m
above sea level) bordered by valleys (0–15 m above sea level) to the North and
South. Mixed deciduous woodland is mainly situated on slopes, while the
plateau is dominated by pasture and agricultural areas. The Bjerringbro study
area served as a validation area. It consisted of 32 squares each of 0.5 · 0.5 km
(in total 8 km2), distributed randomly within a 110 km2 area. The area is
similar to the Fussingø area with respect to terrain, with flat plateaus (40–75 m
above sea level) used for agriculture and a broad river valley (0–15 m above sea
level) covered by pasture and extensively used areas. Wooded areas consist of
mixed deciduous–coniferous stands and conifer plantations. Further validation
data was obtained from an extensive survey of a large number (N = 33; in

Figure 1. The location of the extrapolation area (55 · 55 km) in Denmark (a) and of the three

study areas within the extrapolation area (b). Legends for (b): white, open land (mainly agricul-

ture); grey, urban; black, forest; and hatched, water.
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total 15 km2) of smaller woodlots distributed across the southern part of
Aarhus county. It is referred to here as the Aarhus study area. The area consists
of primarily deciduous woodlots interspersed in agricultural land. The habitat
model was extrapolated to an area including all three study areas and covering
a total of 3025 km2 (2885 km2 land area) or approximately 10% of the area of
Jutland. The proportional area use in the extrapolation area is representative
for Denmark as a whole. We define the extent of the study as the size of the
extrapolation area (3025 km2). The grain of the study (20 · 20 m raster cells)
was determined by the resolution of the available spatial data.

Sett surveys

The surveys for setts in the Fussingø study area was carried out in the period
April–June 1997 as part of a larger monitoring and mapping of badger setts (A.
Prang unpublished data). Four surveyors went systematically through the area
on foot and recorded the presence of setts. The distance kept between the
surveyors depended on the density of the vegetation cover. The location (UTM
co-ordinates), size (number of entrances) and activity status (occupied/unoc-
cupied) were recorded for each sett. We assume that all setts within the
intensively searched area were found. The Bjerringbro area was surveyed for
setts during the period June–July 2001. It was not logistically possible to search
the whole study area. The intensively surveyed area was therefore chosen as 32
non-overlapping 0.25 km2 squares placed randomly along a gradient from
open land to total forest cover (8 squares with 0–25% forest cover, 8 squares
with 25–50% forest cover and so forth). The intensive survey followed the same
procedure as in the Fussingø surveys, but was done by only two surveyors.
Again we assume that all setts within the intensively searched squares were
found. The Aarhus area was surveyed extensively along transects. It can
therefore not be assumed that all setts within the area were found.

Table 1. Characteristics of the three study areas and the extrapolation area.

Fussingø Bjerringbro Aarhus Extrapolation

Total

(15 km2)

Surveyed

area (8 km2)

Total

(110 km2)

Surveyed

area (15 km2)

Total

(845 km2)

Total

(3025 km2)

Habitat composition

Agricultural 39.5 40.7 62.7 8.3 64.4 61.7

Woodland 48.9 43.9 21.7 84.6 10.4 14.9

Pasture 3.8 1.6 1.8 2.4 2.2 2.7

Urban + roads 3.4 6.6 9.6 1.8 16.0 11.2

Other 4.4 7.2 4.2 2.9 7.0 9.5

Observed sett densities (setts/km2)

Total setts 5.0 4.8 – 5.4 – –

Main settsa 2.0 0.88 – – – –

a Main setts are defined as all active setts with ‡3 entrances. See ‘Definition of used and unused

sites’ for details.
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Spatial information

All spatial information was handled in Arcview� GIS 3.1 (ESRI Inc.). Land
cover data (1:25000) for the extrapolation area were available from a national
mapping (the Area Information System (AIS); Nielsen et al. 2000). A digital
elevation model (DEM) was calculated for the extrapolation area based on 5-m
contour intervals. From the DEM we derived floating point raster maps of the
slope (degrees) and aspect (compass direction, 0–360�) with a resolution of
20 m.

Definition of used and unused sites

All sett sites located in the study areas were included in the analysis, irre-
spectively of activity status in the survey year (=‘used’ sites). This is based on
the assumption that any given sett represents a choice of habitat at the time of
establishment, even if the sett was not in use at the particular time of the survey.
It was not known with certainty which setts were main setts and which were
not, since no attempts were made to confirm reproduction or to map territories
borders. In the Fussingø and the Bjerringbro areas we made a careful guess, by
defining all active setts which had ‡3 entrances, as main setts (Kruuk 1978;
Good et al. 2001). This was required to get an estimate of mean distance
between main setts. Since secondary setts presumably are less important for
successful reproduction and survival than main setts, it is likely that habitat
requirements for secondary setts are somewhat relaxed, compared to main
setts. There is no reason to think however that the habitat cues used by badgers
to identify a suitable location for a secondary sett are different or conflicting
with those used when establishing a main sett. Secondary setts are sometimes
used for reproduction (Neal and Cheeseman 1996, p. 171) and former sec-
ondary setts are known to have been ‘upgraded’ to main setts in response to an
increase in population density (Ostler and Roper 1998). For a habitat model
intended to predict the probability that a given area is used for badger setts it is
therefore reasonable to include both main and secondary setts in the analysis,
given that it can be justified that no systematic differences exists between them.

In each study area a sample of randomly distributed points separated by a
minimum of 50 m was generated to represent non-selected sites (= ‘unused’
sites). Based on the assumption that all setts were found within the intensively
searched areas in Fussingø and Bjerringbro, unused random points were not
ground-checked in the field. Since the Aarhus study area was surveyed exten-
sively, the random non-selected points were ground-checked to confirm that no
badger setts were located within a 50 m radius around the point. In the two
validation areas random points were only placed within the surveyed sub-areas
(e.g. the 32 squares in the Bjerringbro area and the 33 woodlots in the Aarhus
area). There is thus no room for bias caused by differences in habitat composition
in the surveyed sub-areas and the study area as a whole. The sample of unused
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sites was larger than the sample of used sites in all areas (Fussingø: used, 75;
unused, 100; Bjerringbro: used, 39; unused, 100; Aarhus: used, 81; unused, 98).

Environmental variables used in the habitat model

From knowledge of badger ecology we chose a number of potential explanatory
variables related to land cover and terrain (Table 2). The spatial extent at which
explanatory variables should be extracted is not clear. The choice of sett sites by
badgers might be motivated both by on site characteristics and by neighbour-
hood attributes. We therefore chose to extract land cover and terrain variables
for areas of different extent. The proportion of forest cover was calculated in
circles of increasing radius (1–2000 m) around the site (F1, F25, F50, F100, F200,
F500, F1000, F2000). F1 is thus a binary variable indicating presence–absence of
forest on site, while F25–F2000 are floating point variables with values between 0
and 1. The basic terrain variables were ASPECT and SLOPE calculated from
the DEM. There is good evidence that badgers select for terrain heterogeneity
rather than slope and aspect in itself (e.g. Thornton 1988; Macdonald et al.
1996), and we therefore combined slope and aspect characteristics into a terrain
heterogeneity index. The terrain index TRI (Nelleman and Fry 1995) is a
commonly used measure based on the number of contour intercepts and the
number of contour changes along either NS, EW or diagonal transects in grid
cells. TRI has been applied successfully in a number of cases where terrain
ruggedness is thought to be important (e.g. Nellemann and Fry 1995; Nelle-
mann and Reynolds 1997; Eide et al. 2001). The disadvantage of this index is
that the contour counts are not straightforward to automate in a GIS. Danks
and Klein (2002) circumvented this by calculating Nellemanns TRI based on
ruggedness measures derived from a DEM, rather than counts of contour lines.
With slight modifications we followed the approach of Danks and Klein (2002).
We calculated an automated terrain index (Slope–Aspect Ruggedness Index;
SARI) for five areas of increasing extent (s=100, 200, 500, 1000 and 2000 m) in
the following way: Based on the floating point slope raster we calculated slope
heterogeneity as the standard deviation (SD) of SLOPE (SLSD) in a quadratic
moving window with side length s. A given 20 · 20 m cell in the SLSD raster
thus contains the SD of the slope values found in all cells in the surrounding
window. The integer values of ASPECT were grouped in bins of 10 (0–10�, 10–
20� etc.) yielding a total of 36 aspect groups. Aspect heterogeneity was then
calculated as the number of different aspect groups found within the quadratic
moving window (ASPVAR). Based on the intermediate SLSD and ASPVAR
raster layers, we calculated SARI for each spatial extent (s) as
(SLSDs * ASPVARs)/(SLSDs+ASPVARs) following Nellemann and Fry
(1995). Though badgers (and badger setts) are sometimes found in suburban or
built-up areas, human settlements and infrastructure such as large roads,
probably represent sources of disturbance as well as additional mortality.
Several studies have found significant negative relationships between various

3240



T
a
b
le

2
.

S
u
m
m
a
ry

o
f
th
e
ex
p
la
n
a
to
ry

v
a
ri
a
b
le
s
co
n
si
d
er
ed

in
th
e
h
a
b
it
a
t
m
o
d
el
.

V
a
ri
a
b
le

D
es
cr
ip
ti
o
n

A
ll
u
se
d
si
te
s
(n
=

7
5
)

M
a
in

se
tt
s
o
n
ly

(n
=

3
1
)

U
n
u
se
d
si
te
s
(n
=

1
0
0
)

M
ea
n
±

S
D

r
M
ea
n
±

S
D

r
M
ea
n
±

S
D

S
L
O
P
E

S
lo
p
e
(0
–
9
0

�)
7
.3
7
±

6
.6
6
*

0
.3
0

7
.1
6
±

6
.5
6
*

0
.3
4

3
.2
5
±

4
.8
1

A
S
P
E
C
T

A
sp
ec
t
(0
–
3
6
0

�)
1
4
8
.7

±
1
3
5
.5

n
s

0
.3
2

1
9
0
.7

±
1
3
9
.9

n
s

0
.1
8

1
1
6
.6

±
1
2
9
.3

D
IN

F
R
A

D
is
ta
n
ce

to
in
fr
a
st
r.
(m

)
3
3
7
.6

±
1
7
2
.7
*

0
.3
3

3
5
8
.4

±
1
9
2
.2
*

0
.2
8

2
3
2
.8

±
1
8
8
.0

F
o
re
st

n
ei
g
h
b
o
u
rh
o
o
d
m
ea
su
re
s

F
1

F
o
re
st

o
n
si
te

(y
/n
)

0
.9
2
0
±

0
.2
7
*

0
.4
9

1
.0

±
0
.0

*
0
.4
7

0
.4
5
0
±

0
.5
0

F
2
5

%
fo
re
st

in
2
5
m

ra
d
iu
s

0
.9
1
5
±

0
.2
6
*

0
.5
0

1
.0

±
0
.0
*

0
.5
0

0
.4
5
8
±

0
.4
8

F
5
0

%
fo
re
st

in
5
0
m

ra
d
iu
s

0
.9
1
2
±

0
.2
6
*

0
.5
1

1
.0

±
0
.0
*

0
.5
2

0
.4
5
5
±

0
.4
7

F
1
0
0

%
fo
re
st

in
1
0
0
m

ra
d
iu
s

0
.8
6
8
±

0
.2
5
*

0
.4
5

0
.9
6
6
±

0
.0
5
*

0
.4
8

0
.4
4
8
±

0
.4
3

F
2
0
0

%
fo
re
st

in
2
0
0
m

ra
d
iu
s

0
.7
7
9
±

0
.2
4
*

0
.4
5

0
.8
6
6
±

0
.1
1
*

0
.4
8

0
.4
2
7
±

0
.3
7

F
5
0
0

%
fo
re
st

in
5
0
0
m

ra
d
iu
s

0
.6
0
0
±

0
.1
8
*

0
.4
0

0
.6
4
0
±

0
.1
2
*

0
.4
3

0
.4
0
9
±

0
.2
5

F
1
0
0
0

%
fo
re
st

in
1
0
0
0
m

ra
d
iu
s

0
.5
6
±

0
.1
7
*

0
.3
6

0
.5
9
4
±

0
.1
2
*

0
.3
9

0
.4
1
±

0
.2
2

F
2
0
0
0

%
fo
re
st

in
2
0
0
0
m

ra
d
iu
s

0
.3
8
±

0
.1
2
n
s

0
.0
8

0
.3
9
5
±

0
.1
0
n
s

0
.1
2

0
.3
6
±

0
.1
3

T
er
ra
in

in
d
ic
es

S
A
R
I 1

0
0

S
A
R
I
in
d
ex
,
1
0
0

·
1
0
0
m

2
.8
8
±

1
.3
7
*

0
.5
2

3
.1
4
±

1
.2
7
*

0
.5
2

1
.2
3
±

1
.2
2

S
A
R
I 2

0
0

S
A
R
I
in
d
ex
,
2
0
0

·
2
0
0
m

3
.9
2
±

1
.7
8
*

0
.4
9

4
.3
5
±

1
.5
8
*

0
.5
1

1
.9
3
±

1
.6
4

S
A
R
I 5

0
0

S
A
R
I
in
d
ex
,
5
0
0

·
5
0
0
m

4
.8
3
±

1
.5
3
*

0
.5
0

4
.9
4
±

1
.3
8
*

0
.4
6

2
.9
0
±

1
.7
7

S
A
R
I 1

0
0
0

S
A
R
I
in
d
ex
,
1
0
0
0

·
1
0
0
0
m

4
.5
2
±

1
.1
5
*

0
.4
0

4
.5
7
±

0
.9
9
*

0
.3
6

3
.4
5
±

1
.3
1

S
A
R
I 2

0
0
0

S
A
R
I
in
d
ex
,
2
0
0
0

·
2
0
0
0
m

4
.2
1
±

0
.6
3
*

0
.1
8

4
.1
8
±

0
.5
4
n
s

0
.1
4

3
.9
3
±

0
.7
7

M
ea
n
v
a
lu
es
±
S
D

a
re

g
iv
en

fo
r
a
ll
u
se
d
si
te
s,
u
se
d
si
te
s
cl
a
ss
ifi
ed

a
s
m
a
in

se
tt
s,
a
n
d
u
n
u
se
d
si
te
s.
*
in
d
ic
a
te

si
g
n
ifi
ca
n
ce

(p
<

0
.0
0
1
)
o
f
a
M
a
n
n
–
W
h
it
n
ey

U
-t
es
t

fo
r
d
iff
er
en
ce
s
in

m
ed
ia
n
s
b
et
w
ee
n

th
e
re
le
v
a
n
t
u
se
d

a
n
d

th
e
u
n
u
se
d

sa
m
p
le
.
r
v
a
lu
es

in
d
ic
a
te

th
e
d
eg
re
e
o
f
co
rr
el
a
ti
o
n

w
it
h

th
e
d
ep
en
d
en
t
v
a
ri
a
b
le

(S
p
ea
rm

a
n
’s
r)
.
E
x
p
la
n
a
to
ry

v
a
ri
a
b
le
s
h
ig
h
li
g
h
te
d
in

b
o
ld

w
er
e
co
n
si
d
er
ed

in
th
e
lo
g
is
ti
c
m
o
d
el
s.

3241



measures of infrastructure and the presence of badger setts (e.g. Wright et al.
2000; Hammond et al. 2001). We therefore included a variable indicating the
distance to infrastructure (DINFRA), with infrastructure being defined as all
types of buildings, roads wider than 3 m and railroads.

Statistical analysis

The explanatory variables could not be considered normally distributed.
The degree of correlation between the response variable and all the explanatory
variables was therefore calculated using Spearman’s correlation coefficient
(r; Table 2) to evaluate the explanatory power of the variables extracted for
areas with different extent. Variables describing the same environmental
characteristics – for instance forest cover – at different spatial extents (ex. F200

and F500) were considered alternative rather than complementary. Conse-
quently they were never entered into the same model. To avoid including
explanatory variables with a too high degree of co-linearity, we calculated
Spearman’s r between all variables entered into the logistic models. The vari-
ables related to terrain (SLOPE and SARI100) showed as expected a fairly
strong co-linearity (r=0.649), but in all other pairs of variables correlation was
weak to modest (0.07–0.49).

Land use data will often show a certain degree of spatial autocorrelation, due
to the nature of the processes that shape landscape pattern (e.g. Carroll and
Pearson 2000; Lennon 2000). The presence of a strong spatial autocorrelation in
both response and explanatory variable will cause the autocorrelated explana-
tory variable to be shown significant more often than it should (Lennon 2000;
Legendre et al. 2002). Consequently, non-significant explanatory variables can
be retained in the regression model, and in the worst case, be interpreted as of
ecological significance. We evaluated the degree of spatial autocorrelation in the
explanatory variables entered into the final models at increasing spatial extent
(s = 0–1000 m). This was done by calculating the correlation coefficient
(Pearson’s r) between the value of the variable at the site, and the mean value of
the variable in a ring of inner radius s and width 1 cell (=20 m) around the site
(see Schadt et al. 2002 for an application of the same approach). The spatial
correlation coefficient in all cases decreased with increasing spatial lag and was
£ 0.4, which indicates that only a weak spatial autocorrelation was present even
over small distances (Figure 2). Spatial autocorrelation was thus not considered
of concern in the present data set.

A set of logistic models (PROC LOGISTIC, SAS Institute Inc., Cary, NC,
USA) was constructed by adding one variable at a time, beginning with the
strongest variable as judged from the r values in Table 2. The significance levels
for entering and removing a variable from a model was set to p<0.05 and
p<0.10, respectively. The goodness of fit of a model was evaluated using the
Akaike Information Criterion (AIC; Manly et al. 2002), choosing the model
with the lowest AIC value.
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Habitat model validation procedures

Based on the final model the predicted probability of use (P) was calculated for
each 20 · 20 m cell in the extrapolation area, excluding areas covered by open
water (sea and lakes). The ability of the model to discriminate between used
and unused sites both in the model data set (Fussingø) and in the two vali-
dation data sets (Bjerringbro and Aarhus) was evaluated using the area under
the Receiver Operating Characteristics (ROC) curve (Fielding and Bell 1997;
Pearce and Ferrier 2000). A ROC curve is obtained by plotting the sensitivity of
the model (=the proportion of used sites correctly predicted to be used)
against the false positive fraction (=the proportion of unused sites incorrectly
predicted to be used) over a large number of threshold probabilities. The
threshold probability is a predefined probability above which a cell is assumed
to be suitable for use. We used 20 different threshold values (5% intervals). For
a model with no discrimination capacity (random) the area under the ROC
curve (AUC) will be 0.5, while for a model with perfect discrimination capacity
AUC will be 1. AUC values between 0.7 and 0.8 indicate an acceptable dis-
crimination capacity, while AUC values ‡0.8 indicate that the model has
excellent discrimination capacity (Hosmer and Lemeshow 2000, p. 162). In
addition we calculated the maximum model accuracy as the total proportion of
correctly classified cells (Pearce and Ferrier 2000).

Sett distribution algorithm

Thehabitatmodel indicates theprobability that agivencell containsabadger sett.
Topredict thedistributionofsetts inanarea inwhichtotal settdensity isunknown,
an extrapolation algorithm is needed that is able to place setts in accordance with
theprobabilitymap.Wechosetodothisbydevelopinganalgorithmthatcalculates
aminimum acceptable distance (D) between a given sett and all of its neighbours,
based on the probability score. This mimics the presence of an exclusive territory
around each sett – a reasonable assumption for a territorial species such as the
badger. We aimed at developing an algorithm that (i) Was able to reproduce

Figure 2. The spatial correlation coefficient (Pearson’s r) of the three variables in the final model

at increasing area extent s.
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observed patterns of sett densities in different probability classes in the Fussingø
study area, (ii) Was functional over the whole range of probabilities, to avoid a
predefined probability threshold for use and (iii) Required a minimum of addi-
tional information.Thesettdistributionalgorithmthatcameclosest tomeetingall
the criteria above was one assuming a logistic relationship between inter-sett dis-
tance (D) and probability of use (P) at a given site:

D ¼ Dmin þ
Dmax �Dmin

1þ expð�a � P� bÞ ;

where a and b are fitted constants (a=�0.11; b=4) and Dmin and Dmax are the
minimum and maximum allowed distance between main setts, defining the
upper and lower limits of the distribution. In the Fussingø study area the dis-
tance between main setts and their closest main sett neighbour varies between
70 and 720 m with a mean of 212 m. We therefore fixed Dmin=200 m. While
Dmin is a parameter with a direct ecological relevance for a territorial species
such as the badger, Dmax is not. It was therefore varied over a large range
(1000–6000 m). The sett distribution algorithm was initialised with a single sett
randomly placed in the landscape. The rules for placing subsequent setts were
then (i) Pick a random location in the landscape and get the value of P for this
location, (ii) Calculate the minimum acceptable distance (D) to a potential
neighbour following the equation above (iii) Evaluate the actual distance to
every existing sett (iii) If a neighbour is closer than D pick a new random site
and begin from (i). If no neighbour is closer than D, then establish a sett on
location. For each value of Dmax we ran 100 replicates.

The predictions of the sett distribution algorithm were evaluated against three
different observed patterns in the Fussingø study area by calculating the sum of
squares of the difference between model prediction (Mi) and data (Di) over all
probability classes

SSQRT ¼
ffiffiffi

1

n

r

X

Di �Mið Þ2;

where n is the number of probability classes. The three patterns were: (i) The
total density of setts, (ii) The density of setts in different probability classes (e.g.
10–20%, 20–30% etc), and (iii) The relative number of setts in different prob-
ability classes. The final value of Dmax was chosen as the one that best repro-
duced all three patterns simultaneously.

Results

Environmental variables

Used and unused sites were significantly different with regard to the mean value
of all environmental variables, with the exception of ASPECT and the forest and
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terrain variable calculated for a large area extent (F2000 and SARI2000; Table 2).
Used badger sett sites tended to be located on slightly steeper slopes, with larger
distance to infrastructure, higher forest cover and more heterogeneous terrain
than the random unused sites. The correlation between the forest cover vari-
ables and the response variable decreased with distance beyond 200 m from the
site, but there were only marginal differences between the variables calculated
for a small area extent. Highest r value was found for F50. Highest r value for the
SARI index was found at the smallest area extent (100 m). It is important to
note that, since F50 indicates the forest cover within a radius of 50 m from the
site, and SARI100 indicates the terrain heterogeneity in a 100 · 100 m square
around the site, the two variables both identify the immediate neighbourhood
(approx. 50 m from site) as the unit of concern. There were no significant
differences between the used sample including all sites and the used sample
including only sites defined as main setts. Both samples identified the same set of
significant variables with very similar r values (Table 2).

Habitat model, predictions and validation procedures

Initially a set of logistic regression models was developed based on the
strongest terrain index (SARI100). Due to the high correlation between
SLOPE and SARI100 a parallel set of models was developed based on
SLOPE yielding a total of 6 regression models (Table 3). The model that
presented the best fit to the data was based on the SARI100 index and
contained in addition the forest cover variable F50 and DINFRA (Table 3,
M3). All three variables were highly significant.

Table 3. Summary of the logistic models. The final model, highlighted in bold types, is the model

with the lowest AIC value.

Model AIC df Intercept Variable (i) bi SEi p-value

Null model 241.0 174

M1 187.7 173 �2.068 SARI100 0.876 0.1375 <0.001

M2 171.0 172 �3.291 SARI100 0.672 0.1495 <0.001

F50 2.199 0.5644 <0.001

M3 165.6 171 �3.978 SARI100 0.761 0.1581 <0.001

F50 1.628 0.5883 0.005

DINFRA 0.003 0.001 0.008

M4 222.2 173 �0.909 SLOPE 0.123 0.0293 <0.001

M5 190.5 172 �2.546 SLOPE 0.062 0.0314 0.049

F50 2.659 0.5371 <0.001

M6 189.0 171 �2.904 SLOPE 0.064 0.0318 0.041

F50 2.364 0.5492 <0.001

DINFRA 0.002 0.001 0.066
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The validation procedures indicated that the final model (Table 3, M3) had a
satisfactory ability to discriminate between used and unused sites (Table 4).
The model was extrapolated to the entire extrapolation area and the external
validation against independent data was performed separately on data from
each of the two validation areas and on the pooled data for both areas. Judged
from the AUC values the model had a very high discrimination capacity: 0.892
for the Fussingø data set, 0.833 for the Bjerringbro data set, 0.744 for the
Aarhus data set and 0.826 for the pooled validation data set.

A map of the predicted probability of use (P) for the extrapolation area is
shown in Figure 3. The amount of suitable habitat predicted to be present in
the extrapolation area varies between 0.2 and 23.7% of the total area
depending on the value chosen for the threshold for use (e.g. the value of p

Table 4. Validation of the habitat model predictions against the model data and the two

independent validation data sets.

Study area n AUC Accuracy Threshold

Used Unused

Fussingø 75 100 0.892 94.0 0.40

Bjerringbro 39 100 0.833 86.3 0.40

Aarhus 81 98 0.744 77.0 0.35

All validation data 120 198 0.826 79.6 0.40

AUC indicates the area under the ROC curve. The measure for model accuracy is threshold

dependent. The value stated here is the maximum accuracy obtained. The ‘Threshold’ column

indicates the corresponding threshold level.

Figure 3. The predicted probability (P) of use in 0.2 intervals. The outlines of the three study

areas are indicated (a) Fussingø, (b) Bjerringbro and (c) Aarhus.

3246



above which habitat is considered suitable). At the probability threshold where
the model best describes the data (p=0.4) the model predicts that 6.4% of the
extrapolation area is suitable habitat.

Sett distribution and density

The comparison of the predictions of the sett distribution algorithm for
different values of Dmax with the three observed patterns of sett distribution
in the Fussingø area is shown in Figure 4. The SSQRT values indicate the
degree of error between the pattern predicted by the model and the ob-
served pattern. An SSQRT value of zero indicates perfect fit. All three
patterns confirmed that the sett algorithm was able to predict the distri-
bution and density of setts reasonably well at Dmax values above 2000 m.
Both the relative number of setts and the density in different probability
classes had limited sensitivity to the value of Dmax. Overall density however
was clearly best reproduced with a Dmax value of 4000 m. All further
analyses were therefore performed with a Dmax value of 4000 m. The
resulting map of predicted densities of main setts in the extrapolation area is
given in Figure 5. An independent validation against the estimated main sett
density in the Bjerringbro area (Table 5) indicated a good correspondence
between model prediction (0.75 ± 0.18 setts/km2) and observed density
(0.88 setts/km2).

Figure 4. The comparison of the three predicted (for the whole extrapolation area) and observed (in

theFussingø area) patterns of sett density anddistribution using different values ofDmax. The SSQRT

value indicate the degree of error between predicted and observed patterns (see text for details). The

best fit to all three patterns is thus obtained where the total error (bold line) is at its minimum.
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Discussion

Predictive models in management of the european badger

The European badger follows a fairly consistent pattern when selecting sett
habitat. This renders predictive habitat modelling a very useful tool in the
management of this species. We have presented a simple statistical model with
high predictive ability and applied it in predicting sett distribution and densities
in a region in central Denmark. We did this using a simple threshold-inde-
pendent algorithm linking the predicted probability of use to inter-sett dis-
tances. Our aim was to optimise not only the predictive ability of the habitat
model, but also the utility of the model in management. To achieve the latter we
limited the choice of habitat model parameters to such that could be obtained
on a digitised format on a national scale. This was done well knowing that

Figure 5. The predicted mean density (D) of main setts for the extrapolation area. The outlines of

the three study areas are indicated (a) Fussingø, (b) Bjerringbro and (c) Aarhus.

Table 5. Final estimates of predicted main sett densities (mean ± SD of 100 replicates) in the

study areas and the extrapolation area.

Area Predicted sett

density (setts/km2)

Observed sett

density(setts/km2)

Extrapolation area 0.62 ± 0.01 –

Fussingø 1.95 ± 0.89 2.0

Bjerringbro – surveyed area 0.75 ± 0.18 0.88

Bjerringbro – total area 0.47 ± 0.86 –

Aarhus – surveyed area 0.43 ± 0.22 –

Aarhus – total area 0.30 ± 0.71 –

The observed main sett densities (see Table 1) added for comparison.
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certain variables that could potentially increase the fit of the model, such as on-
site soil conditions, would have to be ignored. Our approach demonstrates
however that it is possible to obtain a predictive ability that is above or com-
parable to previously published models of badger sett distributions (Wright
et al. 2000), using just three explanatory variables. Each of the variables has
documented relevance to badger ecology and is readily calculated in any GIS
system. This renders the model economic to parameterise and allows resources
to be channelled towards testing and validation rather than developing pre-
dictions. As such the habitat model fulfils the ideal requirements to a predictive
management model (e.g. Mosher et al.1986).

Using presence/absence data to predict densities

Several previous predictive habitat models for the badger have been based on
observed sett densities rather than presence/absence data (Thornton 1988;
Macdonald et al. 1996). In a recent review of a large number of predictive
habitat models developed for both plant and animal species, Pearce and Ferrier
(2001) concluded that models based on abundance data generally had a poorer
performance when applied to independent data than models based on pres-
ence/absence data. For species where reasonably accurate abundance models
were developed, the corresponding (cheaper) presence/absence model per-
formed equally well in indicating relative abundance, as did the abundance
models. The present study suggests a method by which sett densities can be
predicted from presence/absence data without including a predefined threshold
for when habitat is sufficiently suitable for use. This approach rests on the
assumption that sett densities are higher in areas predicted by the habitat
model to have a high probability of use. This assumption is in agreement with
data. The sett distribution algorithm predicts an overall sett density of 0.62
setts/km2 in the extrapolation area. This is comparable to reported densities in
Scotland, Ireland and low-density population in England at similar latitudes
(Johnson et al. 2002 and references therein). Although limited data is currently
available to validate this overall estimate of sett density, the fact that the sett
distribution algorithm accurately predicts both the local density and the dis-
tribution of setts along the suitability gradient in the Fussingø area, as well as
the overall density in the Bjerringbro area, lends credibility to the results.
However, additional information about local sett densities is required to
evaluate the general utility of the approach for developing threshold-inde-
pendent predictions of sett densities.

Model performance and variable relevance

Local forest cover and terrain heterogeneity were the primary explanatory
variables in the present model. The habitat model had a better performance in

3249



the Bjerringbro than in the Aarhus validation area. This is primarily due to
differences in the forest cover in the surveyed area (Bjerringbro: 43.9% forest,
Aarhus: 84.6% forest). An environmental constraint (here availability of forest
cover) is only useful for prediction as long as it is limited. However, even in
close to continuous forest cover (Aarhus area) the habitat model obtained a
satisfying discriminating capacity.

That terrain attributes are important for the choice of sett sites for the
badger is well founded in the literature (e.g. Macdonald et al. 1996; Good et al.
2001). It is less clear which attributes related to local terrain badgers are
selecting for. Sloping areas offer better draining conditions, and facilitate
digging. A favourable aspect increases microclimatic conditions. Local terrain
heterogeneity shields the sett from view and might thus decrease disturbance
(Good et al. 2001) and topographically heterogeneous areas are likely to
consist of more varied substrate, thus increasing the chance that a suitable
geological microsite is available. The terrain heterogeneity index (SARI)
tested in the present study combines all these features into a single aggre-
gated variable. It is worth nothing that all three variables in the final model
describe local neighbourhood rather than on-site characteristics. Both the
forest cover and the terrain variable identify the same extent: the area within
approx. 50 m from the sett site appears to be the unit of concern. This area
exceeds the extent of most badger setts, but is much smaller than a home
range. This indicates firstly that very small and perhaps isolated forest pat-
ches are less preferred than larger or more connected ones. Secondly it shows
that the cues (e.g. forest cover, terrain heterogeneity) used for sett site
selection are perceived locally and their presence in the surrounding home
range is of little or no importance. This highlights the importance of inves-
tigating scale in habitat modelling as also recently demonstrated by Schadt
et al. (2002).

Sett density as a surrogate for badger densities?

The density of breeding setts has often been used as a surrogate for population
densities (e.g. Thornton 1988; Cresswell et al. 1989; Roper 1993; Virgos 2001).
This in spite of the fact that the actual relationship between sett densities and
badger densities across the observed density gradient in Europe is poorly
documented in the literature (Macdonald et al. 1996). A number of reasons
exist why this relationship might be neither consistent nor straightforward:
First, the badger is tremendously flexible with respect to the size of the social
group. It has been suggested that suitable sett sites may be a limited resource in
some areas (Roper 1993). Once this is true any increase in population size
would have to be in the form of an increase in social group size rather than in
the number of social groups (as observed by Rogers et al. 1997, 2000). Second,
sett occupancy rates may be below one. At low densities, where nearest
neighbour distances between setts are large, successful dispersal of individuals
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between social groups is likely to become constrained by the spatial configu-
ration of setts. This is a common phenomenon in spatially structured popu-
lations. Fewer social groups – and thus breeding opportunities – in the local
neighbourhood may discourage dispersal (as suggested by Revilla and Palo-
mares 2002) and thus increase social group size in occupied setts. Uncertainty
regarding occupancy rates is less of a problem when dealing with empirical
data on sett densities, as it is fairly easy to determine whether a given sett is in
use or not. It becomes an issue however, if we attempt to extrapolate from
predicted sett densities to population densities. For such an exercise to be
successful more attention to the spatial aspect of sett distribution and the
possible consequences for the occupancy of breeding setts is needed.

Synthesis and recommendations

Decisions in management and conservation very often have to be made based
on a less than optimal information about the system in question. Limited
available resources or urgency in the need for answers, means that improving
our abilities to produce reasonable answers based on current knowledge of the
system is high priority. Predictive models are important tools in achieving this.
The approach used here is an attempt to produce, in a step-wise manner, useful
predictions about habitat suitability and densities of badger setts in a region in
Denmark. In doing so we have aimed at optimising the utility of the model in
management, by carefully selecting parameters and improving the incorpora-
tion of terrain characteristics in the habitat model. We have attempted to solve
some of the common problems related to the inference of abundance estimates
from presence/absence data. We are confident that this approach will be useful
in management of the badger in other regions of Northern Europe. The con-
crete models presented here have, however, been developed and validated for
local conditions in Denmark. Further validation is needed to determine the
utility of the current model parameterisation in other regions. The relevance of
each predictive variable for the local environment should be considered (e.g. a
variable related to forest coverage is meaningless in continuous forest, geo-
logical conditions will increase in importance if large regions are entirely
unsuitable habitat e.g. exposed bedrock). Denmark is dominated by a mosaic
of agriculture, build-up areas and woodlots. Similar areas are found for in-
stance in parts of the UK, the Benelux region and Northern Germany. In these
regions the current model parameterisation may very well have a predictive
ability similar to that found for the study areas in Denmark.
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