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revealed that the data adequately captured a saturating 
non-native species richness over time. Additionally, 
we observed an increase in both alpha and gamma 
diversity of both native and non-native species over 
time, with a recent dip in trends. Beta diversity trends 
were more complicated, but eventually increased, 
contrasting trends in native species beta diversity. 
Our applied models indicate that in this highly altered 
ecosystem, climatic shifts were insignificant, while 
time was the primarily driving  factor. Proximity to 
anthropogenic structures and the distance to the out-
let were the only site-specific predictors facilitating 
non-native species diversity. These findings highlight 
the value and importance of long-term time series for 
the study of invasive species, particularly long-term 
invasion dynamics and once again underline that 
naturality of ecosystems precede the effect of climate 
change.

Keywords Data science · Macroinvertebrates · 
Time series · Trends · Invasive species · Alien species

Introduction

Non-native species are among the most important 
threats to global biodiversity, ecosystem functioning, 
and human well-being (Vitousek et  al. 1997; CBD 
2006). These species are introduced into a new envi-
ronment and can cause significant harm to the native 
flora and fauna, potentially outcompeting native 

Abstract Invasive species pose a significant threat 
to global biodiversity and human well-being. Despite 
the widespread use of long-term biomonitoring data 
in many natural science fields, the analysis of long-
term time series with a focus on biological inva-
sions is uncommon. To address this gap, we used 
twenty macroinvertebrate time series from the highly 
anthropogenically altered Rhine River, collected 
over 32 years from 1973 to 2005. We examined the 
adequacy of the data in capturing non-native species 
trends over time and explored trends in alpha, beta, 
and gamma diversity of non-native species with sev-
eral climatic and site-specific predictors. Our findings 
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species for resources, altering ecosystem processes, 
and causing extinction of native species (Mack et al. 
2000; Simberloff et  al. 2013). While not all non-
native species will ultimately become invasive (Cat-
ford et  al. 2016), climate change (Hellmann et  al. 
2008) and human-mediated ecosystem change (Sala 
et  al. 2000) will probably increase the likelihood of 
non-native species to establish, spread, and to cause 
notable impacts (D’Antonio et al. 2020).

The impacts of non-native species are far-reaching 
and can have significant economic consequences by 
damaging crops, fisheries, and forestry, leading to 
billions of dollars in losses each year (Diagne et  al. 
2021). Despite the significant impacts of non-native 
species, there is still much that is not understood 
about their ecology and the factors that contribute to 
their success (Simberloff et al. 2013; Courchamp et al. 
2017). Past studies investigating the ecology of non-
native species have primarily relied on historical or 
anecdotal data (see e.g., Haubrock et al. 2021; Clavero 
2022), rather than long-term monitoring (but see 
Soto et al. 2023a). This has resulted in a lacking, and 
incomplete understanding of the long-term impacts 
of non-native species on ecosystems and biodiversity 
(Strayer et al. 2006). As such, impact assessments and 
the projection of future impacts of non-native species 
have mostly focused on local scales and momentary 
recordings, rather than robust records from the past 
and present (Seebens et al. 2017; Vilizzi et al. 2021). 
However, recent studies have shown that long-term 
data from biomonitoring can be of unimaginary value 
to invasion scientists, managers, and stakeholders 
(Haubrock et al. 2022; Soto et al. 2023a, b, c).

The importance of long-term data obtained from 
biomonitoring cannot be overstated: Biomonitor-
ing data contains information on past records and 
changes in abundance and richness over time at local 
and large scales (Stork et al. 2017; Hulme 2022). By 
combining a multitude of monitored sites, biodiver-
sity change can be studied over a broad spatio-tempo-
ral gradient (Lepš et al. 2016). By studying changes 
in abundance and richness, scientists can gain a bet-
ter understanding of the factors that contribute to the 
success of non-native species. Biomonitoring data 
can further provide invaluable insights into the ecol-
ogy of non-native species and their impact on eco-
systems. It can reveal how ecosystems have changed 
over time, as well as the factors that have contributed 
to those changes. In particular, long-term data from 

highly invaded regions can be of utmost relevance 
as it may explain shifts in previous trends of non-
native species richness (Wright 2011). When linked 
with environmental (e.g., hydromorphological or cli-
matic) explanatory variables, this data can be used 
to explain trends in respective changes in non-native 
species diversity over time and thereby reveal predic-
tors of future invasion success (Bertocci et al. 2013); 
and if originating from an already anthropogenically 
stressed system which are commonly less species-
rich (McKinney and Lockwood 1999), revealing the 
importance of climate change or site-specific char-
acteristics (Alexander et al. 2015). By understanding 
which factors contribute to the success of non-native 
species, managers can develop more effective control 
strategies and develop mitigation strategies to deter 
the spread of non-native species (Pyšek et al. 2012).

Long-term data obtained from biomonitoring can 
be of considerable value to invasion scientists, pro-
viding needed insights into the dynamics of non-
native species and their impact on ecosystems over 
time. Here, we used continuously collected aquatic 
macroinvertebrate biomonitoring data from the Rhine 
River, a highly anthropogenically altered river in Ger-
many invaded by numerous non-native species (Le 
Hen et  al. 2023), to investigate changes in the local 
and regional presence of non-native species over time 
and how trends can be explained by external drivers 
(i.e., climatic shifts or hydromorphology; Hellman 
et  al. 2008). We hypothesize that in such an artifi-
cially altered system, (1) neither climatic nor envi-
ronmental (i.e., site-specific hydromorphological) 
changes facilitate the presence of non-native species 
locally or regionally, and (2) that continuous bio-
monitoring can identify the point at which saturation 
in non-native species occurs, i.e., when all non-native 
species are identified. Our results should hence be 
seen as a first investigation of the value of ‘true’ long-
term biomonitoring data for invasion scientists.

Methods

Data

To investigate the temporal dynamics of non-native 
species  in the Rhine River, we selected time series 
from this drainage within a recently collated database 
of long-term macroinvertebrate time series (Haase 
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et  al., unpublished data; but see Haubrock et  al. 
2022), reporting the abundance of macroinvertebrate 
taxa in streams and rivers across 22 European coun-
tries. We specifically selected the Rhine River, as it is 
one of the most heavily anthropogenically impacted 
freshwater rivers in Europe with a total length of 
1250  km (Rheinhold and Tittizer 1997; Van der 
Velde et al. 2000; Uehlinger et al. 2009), and provides 
numerous services such as transportation, power gen-
eration and drinking water (Cioc 2002; Uehlinger 
et  al. 2009). The opening of the Rhine-Main-Dan-
ube canal in 1992 links the Rhine catchment via the 
Main tributary with the Danube River and serves as 
a major pathway facilitating the spread of alien spe-
cies (Rheinhold and Tittizer 1997; Bij de Vaate et al. 
2002; Balzani et  al. 2022). Each time series com-
prised macroinvertebrate assemblages collected at a 
single site over a minimum of eight years.

We identified 45 time series from the Rhine River 
(Fig.  1)  and covered a period of 33  years (1968 to 
2007). Starting and ending years of time series, as 
well as their length varied among time series (Supple-
ment 1). These gaps could lead to biased or inaccurate 
interpretations and thus, to ensure the comparability 

of trends and patterns over time among time series, we 
selected a common period of all time series between 
1973 to 2005, retaining a total of 20 time series. 
Within these time series, macroinvertebrates were 
sampled consistently over time following the Ger-
man standard protocol DIN 38410 (Arndt et al. 2009). 
This protocol includes both qualitative and quantita-
tive methods for collecting and identifying macroin-
vertebrates, involving the use of a variety of sampling 
methods (e.g., kick sampling and hand sampling). We 
then kept only entries identified at the species level to 
ensure the homogeneity of the taxonomic resolution.

Filling gaps

As macroinvertebrate time series data was not annu-
ally sampled (i.e., there are missing years), we 
decided to fill the annual gaps to minimize the effects 
of missing years on successive analyses by using the 
mice function of the mice R package (Van Buuren 
and Groothuis-Oudshoorn 2011). This function relies 
on multiple imputations by chained equations (Van 
Buuren and Groothuis-Oudshoorn 2011) and is com-
monly implemented with specifying Generalized 
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Fig. 1  Location of the time series in the Rhine River in the western part of Germany
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Linear Models (GLMs) for the univariate conditional 
distributions (Raghunathan et  al. 2001; Royston and 
White 2011) to impute different types of variables. 
We used  the mice function  to impute missing years 
in species-specific taxa and their respective abun-
dances over time using predictive mean matching for 
numeric data (Van Buuren and Groothuis-Oudshoorn 
2011).

Non-native species saturation

To identify alien species in each time series, we veri-
fied the natural range of these species by checking 
three main sources: (1) Web of Science (https:// webof 
knowl edge. com/), (2) Invasive Species Compendium 
(CABI, https:// www. cabi. org/ ISC), and (3) the Global 
Biodiversity Information Facility (GBIF; https:// 
www. gbif. org/).

To determine whether sample size (i.e., number of 
time series over time) was sufficient to describe the 
presence of non-native species in the Rhine River and 
hence to identify a possible saturation in the detection 
of non-native and native species, both native and non-
native species occurrences were separately plotted 
against the cumulative number of time series investi-
gated per year. For this, we used the specaccum func-
tion of the vegan R package (Oksanen et  al. 2013), 
randomizing each time series ten times (Ferry and 
Cailliet 1996; Ferry et  al. 1997). Cumulative curves 
were considered to be asymptotic if ten previous val-
ues of the total number of taxa were within ± 0.5 of 
the range of the asymptotic number of taxa, indicating 
the required minimum of monitored time series years 
to describe the diversity of non-native and native spe-
cies (Huveneers et al. 2007).

Native versus non-native diversity over time

We calculated three common measures of biodiversity 
over spatial scales: alpha (α), beta (β), and gamma 
(γ) diversity for both the native and non-native com-
munities. Alpha diversity represents the diversity of 
species within a community (i.e., in each time series) 
and γ represents the overall number of species at 
large scale (e.g., Rhine River), while β diversity rep-
resent the differences in species composition among 
communities, estimated as the ratio between γ and α 
diversity (sensu Whittaker 1972), as a simplified yet 
reliable estimate (Andermann et al. 2022).

To analyse trends in α, β, and γ diversity, we used 
Generalized Additive Mixed Models (GAMMs) using 
the R-packages mgcv (Wood and Wood 2015). We 
included a set of climatic, site-, and region-specific 
characteristics that to some degree reflect anthro-
pogenic interferences (Soto et  al. 2023b) that may 
modulate the temporal trends of α, β, and γ diversity 
trends. We considered: (1) runoff, expressed as the 
annual Q (mm) which was extracted from the Terr-
aClimate dataset at 4-km spatial resolution (Abat-
zoglou et  al. 2018), (2) the elevation of each site 
(MERIT Hydro digital elevation model; Yamazaki 
et  al. 2019) at 90-m spatial resolution, (3) the sites’ 
local slope that was extracted using the r.stream.slope 
function (Hydrography90m; Amatulli et al. 2022), (4) 
the distance to the next weir or barrier (Global Res-
ervoir and Dam Database; GRanD v1.3), and (5) the 
distance to the outlet was extracted using r.stream.
distance function (Jasiewicz and Metz 2011) as site-
specific predictors. We further extracted (6) mean 
daily temperature and (7) total daily precipitation data 
from the E-OBS gridded European scale observation-
based dataset (spatial resolution: 0.1°; Cornes et  al. 
2018), and considered the average monthly tempera-
ture and precipitation of the 12 months preceding the 
sampling data as climatic predictors. Finally, (8) we 
included the average native species α and γ diversity, 
as native species richness can indicate competition 
(Sagouis et al. 2015), biotic resistance (Jeschke et al. 
2018), and habitat degradation (Mokany et al. 2020), 
therefore, the vulnerability of the ecosystem to inva-
sion (“invasibility”, Hui et al. 2016).

In order to select the “best model” possible (i.e., 
better explain the relationship between the response 
and predictors variables), we performed a model selec-
tion implemented in the glmulti function of the glmulti 
package in R (Anderson and Burnham 2004; Calcagno 
and de Mazancourt 2010). We found that based on the 
lowest corrected Akaike Information Criterion (AIC), 
‘elevation’ was the only non-relevant predictor, which 
was also subject to collinearity (Morlini 2006) and 
variance inflation (VIF, Craney and Surles 2002). The 
threshold for detecting collinearity among variables 
was established at a value of four, and thus, the vari-
ables exceeding this threshold were considered to be 
highly correlated and were evaluated individually for 
their ecological importance (i.e., were kept if consid-
ered important). The collinearity was evaluated using 
the vifstep function of usdm package (Naimi 2015). 

https://webofknowledge.com/
https://webofknowledge.com/
https://www.cabi.org/ISC
https://www.gbif.org/
https://www.gbif.org/
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Hence, each response variable (i.e., α, β, and γ diver-
sity of non-native species) was analysed as a function 
of climatic and site-specific characteristics, i.e.: ‘year’, 
‘mean monthly temperature’, ‘mean monthly precipi-
tation’, ‘the site’s slope’, ‘distance to the next weir’, 
‘distance to the outlet’, ‘runoff’, and finally ‘native 
species α diversity’ and ‘native species γ diversity’. In 
addition, we included the ‘site ID’ as a random effect 
to account for spatial variability among time series. 
We used a negative binomial distribution (with “log” 
link to the predictor) as appropriate for data when the 
residual variance is found to be larger than the mean 
which is in ecological data commonly known as over-
dispersion (White and Bennetts 1996; Wood 2008). 
All predictors were checked to ensure that variance 
inflations were lower than four, to exclude the possi-
bility of collinearity, and that all predictors were not 
affected by nonlinear correlations or dependencies 
(concurvity; Wood 2008). Lastly, the importance of 
the variables in each model were evaluated based on 
the χ2 and p of the respective model output using the 
gg_vimp function of the randomForestSRC R package 
(Ishwaran et al. 2023). All analyses were performed in 
R version 4.2.2 (R Core Team 2020).

Results

In total, we recorded 35 native and 14 non-native spe-
cies at the species level (excluding genus-level infor-
mation) in the Rhine River time series from 1973 to 
2005 (see Supplement 2). Our species accumulation 
curves showed that observations of new non-native 
species tended to reach saturation earlier than obser-
vations for native species, with non-native species 
reaching their asymptote after an average of 14.0 
monitoring years compared to 41.1 monitoring years 
for native species (Fig. 2).

Focusing on diversity metrics, we observed a simi-
lar pattern in the α and γ diversity of non-native spe-
cies (Fig. 3a, c). Both showed a continuous increase 
until reaching their peaks between 1995 (γ diversity) 
and 2000 (α diversity). While the γ diversity of native 
species matched that of non-native species in terms 
of trend and percentage increase, the α diversity of 
native species peaked much earlier (1985 vs. 2000). 
Non-native α diversity increased from, on average, 
one non-native species (Dreissena polymorpha) in 
1973 to an average of 5.3 non-native species per time 

series in 2000 (an increase of 530%). Beta diversity 
(β diversity) of native and non-native species showed 
contrasting patterns, with non-native species decreas-
ing towards the mid-1980s (and native species β 
diversity increasing) before rising towards the end of 
the available period (and native species β diversity 
declining; Fig. 3a).

Examining non-native species α, β, and γ diversity, 
we observed a consistent pattern of change over time, 
which was statistically significant (p < 0.05; Supple-
ment 3). The ’year’ was found to be the most sig-
nificant predictor of change across these dimensions. 
Moreover, γ diversity of native species was also sig-
nificantly relevant in determining changes in α and γ 
diversity of non-native species, while the distance to 
the outlet was found to be a significant predictor of α 
diversity of non-native species (as shown in Fig. 4a). 
We further found that across the monitored period, 
the ratio between native γ and α diversity was larger 
than the ratio for non-native species (2.21 > 1.72). 

Discussion

Despite the importance of long-term data in ecol-
ogy, a limited number of studies in the field of 
invasion science focus on large-scale trends in non-
native species diversity over time using long-term 
time series data from biomonitoring efforts (but see 
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Fig. 3  Alpha (α) (a), beta 
(β) (b), and gamma (γ) (c) 
diversity of native (blue) 
and non-native (pink) 
species over time based on 
aquatic macroinvertebrate 
time series sampled within 
the Rhine River
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Haubrock et  al. 2022, 2023a, b;  Soto et  al. 2023c). 
This is mostly due to a lack of available and suitable 
data. However, we found that the information hid-
den within long-term time series data for studying 
non-native species is substantial, even when the taxo-
nomic information was lowered due to the exclusion 
of non-species-specific information. To the best of 
our knowledge, no other work has investigated trends 
in non-native macroinvertebrate species diversity (α, 
β, or γ) using high temporal resolution data over time 
from a highly degraded system like the Rhine River 
in Germany (but see Le Hen et al. 2023). Therefore, 
we believe that our study is the first of its kind.

A recently published study on the non-native 
fish community of the Rhine River (Le Hen et  al. 
2023)—albeit subject to substantial data gaps—found 
resembling trends to ours, i.e., that non-native spe-
cies were increasingly occupying a larger proportion 
of the community. Indeed, within the twenty time 
series analysed from the Rhine River in this study, we 
found that at the identified species level, non-native 
macroinvertebrate species contributed almost half of 
the overall alpha and about 1∕3 of gamma diversity 
at their respective peaks. Furthermore, native diver-
sities decreased stronger than non-native diversi-
ties after reaching their respective peak, indicating a 
potential turnover toward a non-native species domi-
nated community (Haubrock et  al. 2021). While we 

acknowledge that the disregard of species information 
at the genus level results in the loss of a considera-
ble amount of information, this may also be the case 
for non-native species which themselves also suffer 
from an identification bias, i.e., them often not being 
identified correctly (Gurevitch et  al. 2011). In many 
cases, temporal dynamics of native and non-native 
species were synchronized, i.e., following each other. 
Non-native species α diversity followed similar pat-
terns as native species α diversity—thereby indicat-
ing the presence of an underlying driver (e.g., climate 
warming) affecting both—albeit non-native species 
trailing native species α diversity trend by finding a 
peak substantially later and decreasing less from its 
peak when directly compared. While we cannot make 
any inference as to why native species α diversity 
declined after its peak, the weaker decline in non-
native species might however indicate their resilience 
toward ecosystem change (Pyšek et  al. 2020). It is 
also possible that unfavorable conditions can severely 
affect native species reducing their abundance or even 
leading to local extinction and creating empty niches, 
which in turn provide new opportunities for non-
native species to establish (Catford et  al. 2016), or 
that competitive interactions between native and non-
native species resulting in the decline of native spe-
cies (Davis et al. 2020). As such, the concomitant pat-
tern in native and non-native gamma diversity, similar 
to the comparable trend in α diversity, hints towards 
the effect of e.g., global warming, which increases the 
productivity of freshwater ecosystems that then allow 
a higher richness and larger abundances. While we 
cannot exclude the possibility that the recent decline 
in native species diversity was caused by unfavora-
ble climatic conditions, temperature and precipita-
tion were not limiting factors for either native or 
non-native species (Hellman et  al. 2008). This also 
indicates that in highly anthropogenically altered 
ecosystems, other non-climatic drivers may make the 
difference in native and non-native species changes 
(Vitousek et al. 1997).

Indeed, the applied models did not reveal any sig-
nificant climatic effects on non-native species diver-
sity. However, the results suggest that native species’ 
γ diversity, which represents the total regional native 
species richness, was a significant predictor of a 
site’s α diversity and the regional non-native γ diver-
sity. While a positive increase in native γ diversity is 
unlikely to favor higher invasion rates, the positive 
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relationship between native species γ diversity and 
non-native α and γ diversity is intriguing. This rela-
tionship may reflect (1) a higher identification bias, 
which positively affects non-native species identifica-
tion as well, while it may also (2) be due to favorable 
environmental conditions that promoted higher detec-
tion rates, or (3) reflect general shifts in species rich-
ness in an already anthropogenically altered environ-
ment. Remarkably, our findings revealed that the γ:α 
diversity ratio of native species was larger than that of 
non-native species, implying that non-native species 
exhibited a more uniform distribution across the stud-
ied stretch of the Rhine river compared to native spe-
cies, which is suggestive of the prevalent ecological 
profile of non-native species (Leprieur et  al. 2008). 
Although only the change over time was found to be 
significant for β diversity, non-native α diversity was 
also predicted by an increasing distance to the outlet. 
The continuous invasion of non-native species from 
the Ponto Caspian region in the Rhine River since 
the opening of the Rhine-Main-Danube canal in 1992 
may explain why the distance to the outlet reflects 
the ongoing downstream spread of non-native spe-
cies. Hence, our results suggest that the effects of 
anthropogenic disturbance that caused severe degra-
dation of habitats outweigh climatic effects (Vitousek 
et al. 1997; Hulme 2007), or that in an already highly 
anthropogenically altered system, climate effects are 
of lesser magnitude. This, once again, underlines the 
importance of restoration projects to revert ecosys-
tems to their natural condition (Strayer et  al. 2005; 
Sinclair et al. 2022).

Long-term biomonitoring data analysis has hence 
become a critical component of ecological science 
and should be considered by invasion scientists. Our 
findings suggest that 20 long-term monitoring sites 
along the Rhine River repeatedly monitored over the 
study period were sufficient to identify all non-native 
species, indicated by saturation curves having reached 
their respective asymptote. This highlights the sig-
nificance of having a network of long-term monitor-
ing sites with high spatio-temporal resolution, such as 
eLTER (Mirtl 2018). Interestingly, the native species 
accumulation curve reached its asymptote considera-
bly later, possibly indicating better species-level iden-
tifications or the immigration of native species from 
the surrounding areas. The Rhine River is frequently 
used for shipping and likely serves as a steppingstone 
for the introduction of new alien species upstream 

(Leuven et  al. 2009). Therefore, long-term biomoni-
toring throughout the entire Rhine River catchment 
could prove to be an effective way not only to identify 
non-native species introductions but also to mitigate 
their spread (Feld et al. 2011). Our results thus sup-
port the value of long-term biomonitoring in identify-
ing non-native species.
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