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community level when grown in a monoculture and 
mixed community with four commonly co-occurring 
native species. The native species were also grown 
together as a control to compare to the invasive spe-
cies communities. Seven water treatments were 
applied to each community, including a ‘normal’ 
treatment (based on the average rainfall for the area), 
drought (water was one third of the normal treat-
ment), flood (water was double the normal treatment), 
and other simulated extreme events (where water 
availability was more variable than the normal treat-
ment). All plants were measured for growth (e.g., bio-
mass and stolon length) and competitive traits (i.e., 
relative competitive dominance and relative interac-
tion indices). Most growth traits in A. philoxeroides 
were enhanced with increased and/or more variable 
water availability in both the monoculture and mixed 
community. In contrast, differences in growth traits in 
the native plants were mostly non-significant across 
treatments in each plant community. Compared to 
the normal treatment, A. philoxeroides had higher 
relative competitive dominance (RDI) and interac-
tion (RII) indices in response to flooding. Conversely, 
RII in the native species was not significantly differ-
ent among treatments. Overall, our results suggest 
that A. philoxeroides is more responsive to flooding 
compared to the natives. Our study provides useful 
insights into growth response and competitiveness 
of A. philoxeroides to precipitation variability across 
different plant communities.

Abstract Over the last few decades, rainfall has 
become more variable, with a worldwide increase in 
the frequency of extreme precipitation events. While 
increases in rainfall variability are expected to signifi-
cantly affect plant species, the effects of precipitation 
dynamics on plant invasions remains understudied. 
We examined the growth response of Alternanthera 
philoxeroides to varying water availability at the 
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Introduction

Climatic change has been identified as one of the 
major factors that facilitate the colonization of new 
areas by invasive species (Chown et al. 2015), and is 
primarily represented by changes in environmental 
variability (i.e., alterations in the mean state of 
climate-dependent environmental conditions, from 
seasonal changes to variations over a geological 
timescale, Keyl and Wolff 2008). Such environmental 
changes can be examined either through an analysis 
of long-term climatic records or by comparing 
unusual or extreme climate responses to the typical 
environmental conditions for a specific ecosystem 
(Smith 2011). For decades, the field of ecology 
has used mean values as indicators of climatic 
site conditions (Jentsch et  al. 2007), with previous 
research often focusing on changes in static average 
values, and less attention being paid towards dynamic 
variables (Sisco et  al. 2017; Wang et  al. 2018). In 
recent years there has been a worldwide increase in 
the frequency and magnitude of extreme precipitation 
events (e.g., very high rainfall and severe droughts, 
Lehmann et  al. 2015). Long-term changes in 
mean precipitation cause gradual changes in plant 
establishment and mortality, species composition, 
and population density (Jin and Goulden 2014); and 
may result in large-scale alterations in community 
structure, ecosystem function, and ecotone boundaries 
(Allen and Breshears 1998; White et  al. 2000). In 
contrast, short-term changes in water availability 
associated with precipitation variability (including 
extreme events) can rapidly alter plant physiology, 
phenology, and leaf growth (Paruelo et  al. 1999; 
Zhang et al. 2005). Precipitation variability may also 
result in the sudden mortality of populations and 
extinction of some species (Greenwood et al. 2017).

Changes in precipitation can alter competition for 
shared resources among native and non-native species 
(Radford 2013; Schooler et  al. 2010). Although 
much research in invasion biology has focused on the 
links between environmental variation and invasive 
species (e.g., Bradley et al. 2010; Parepa et al. 2013), 
the impacts of precipitation variability (including 
extreme events) on plant invasions have received 

less attention (Sardans et  al. 2017). Previously it 
was found that invasive Commelinaceae species 
displayed higher average performance (e.g., biomass 
and relative growth rates) compared to native species 
in the same family for both high nutrients and 
across water availabilities (Burns 2004). Moreover, 
Chen et  al. (2019) and Wang et  al. (2016) found 
that invasive clonal plants in a native community 
benefited more from clonal integration under variable 
water availability compared to consistent watering. 
Based on these findings, invasive species may be 
expected to display greater growth and performance 
under more variable precipitation compared to native 
species. However, in secondary tropical forests in 
the Seychelles, only small differences in growth 
response of native and invasive species to different 
light and water treatments were found, with the native 
species performing better under low water availability 
(Schumacher et al. 2008). Another study revealed that 
biomass of invasive species did not differ significantly 
across water treatments (Han et al. 2012). Therefore, 
further research on how invasive plant species cope 
with hydrological fluctuations compared to native 
species is necessary for a more comprehensive 
understanding of the response of invasive species 
to varying water availability in native landscapes 
(Wang et al. 2018). Specifically, research focusing on 
the impacts of extreme precipitation events (which 
may result in high levels of disturbance) on invasive 
plants and co-occurring native species is likely to 
offer insights into how communities may alter under 
climate change.

Habitat disturbance is one of the most important 
variables involved in shaping life-history traits and 
influences the survival strategies of organisms in 
ecosystems with highly fluctuating environmental 
conditions (Gerisch et al. 2012). Disturbance can be 
defined as an event that disrupts any ecological level, 
environmental component, and/or organizational 
status of a biological cycle of organisms (and may 
include extreme precipitation events, such as floods 
and severe droughts, Pickett et  al. 1989; Battisti 
et al. 2016). The strength and direction of feedback 
loops are influenced by external temporal factors, 
including changes in soil resource availability (e.g., 
soil moisture) following disturbance (Kardol et  al. 
2013). For example, increased disturbance is often 
associated with greater environmental variability 
(Parepa et al. 2013), and high levels of disturbance 
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have been found to promote biological invasions 
(Hobbs and Huenneke 1992). The invasibility of a 
habitat can be enhanced due to disturbance since 
new sites are cleared and opened up for other 
species to colonise (Davis et al. 2000; Reznick et al. 
2020). Therefore, initial disturbance can promote 
invasions, which then further disturb the ecosystem. 
High levels of disturbance can lead to environments 
becoming increasingly less hospitable for native 
species (Davidson et al. 2011; Gaertner et al. 2017). 
Invasive species often display higher phenotypic 
plasticity than native plants (Liu et al. 2017; Parepa 
et al. 2013), and as such, disturbance resulting from 
fluctuating environmental conditions may provide 
an advantage for non-native species (Gaertner 
et  al. 2017). Consequently, invasive species might 
be expected to show enhanced competitiveness in 
response to extreme events. In the current study, we 
define competition as occurring when individuals 
of the same or different species (e.g., neighbouring 
plants) utilize common resources (e.g., light, 
nutrients, water, space) (Birch 19,757; Milne 1961; 
Grime 1973). As such, interspecific competition 
often results in the negative effect of one species on 
another due to limited shared resources (Birch 1957; 
Craine 2005), and therefore a good competitor 
might be one that: (1) exerts a strong negative effect 
on other species, and (2) has limited response to the 
presence of other species.

Here, we examine the effects of precipitation 
variability on the growth response of alligator weed 
(Alternanthera philoxeroides) at the community 
level. To do this we grew A. philoxeroides in a 
monoculture and in a mixed community (with 
four commonly co-occurring species native to 
China) to compare differences in growth traits 
among seven water treatments, including drought, 
flooding, as well as simulated precipitation events 
(e.g., alternate drought and flood). Additionally, 
we grew the native species together (to simulate a 
native species community) and applied the same 
seven water treatments. As such, we tested the 
following hypotheses: (1) invasive A. philoxeroides 
will display enhanced growth in response to 
precipitation variability, (2) growth trait response 
of A. philoxeroides and the native species will vary 
among plant communities (i.e., invasive species 
only, native species only, and mixed community), 
and (3) competitiveness of A. philoxeroides 

will increase in response to higher precipitation 
variability.

Materials and methods

Study species and plant propagation

Alternanthera philoxeroides is a creeping perennial, 
stoloniferous, and amphibious herb native to South 
America (Spencer and Coulson 1976), and has 
become an aggressive alien invader in 32 countries 
around the world (Tanveer et  al. 2018). The species 
was introduced to Shanghai as a forage crop in the 
1930s and is now widely distributed in over 20 
provinces in China (Huang et  al. 2017; Yan et  al. 
2020). Alternanthera philoxeroides disperses rapidly 
and occurs in aquatic, semi-aquatic, and terrestrial 
environments, mainly because each stolon consists 
of nodes that are capable of producing roots and new 
shoots, which can become new individual plants if 
disconnected (Xi et al. 2019).

To assess the response of A. philoxeroides to pre-
cipitation variability compared to native species from 
China, we selected four native species to simulate a 
local community, namely Eleusine indica, Solanum 
nigrum, Cynodon dactylon, and Youngia japonica 
(Fig. 1a). During our previous field surveys in Jiangsu 
Province, we found that these native species often co-
exist in the same ecosystem with A. philoxeroides. 
Moreover, a recent species diversity study based on 
59 plots across 10 provinces in China revealed that 
these four native species co-occur with A. philox-
eroides (Wu et  al. 2016). Communities where the 
native species co-occur with A. philoxeroides are 
primarily associated with aquatic habitats, but can 
spread into moist terrestrial environments (Schooler 
et al. 2010).

In early autumn (September 2016), healthy and 
uniform stems of the invasive species (i.e., cuttings) 
and seeds of the four native species were sampled 
from natural wetland habitat along the Yangtze 
River (119°32′E, 32°11′N) and transplanted to 
a greenhouse at Jiangsu University (119°27′E, 
32°12′N, Zhenjiang, Jiangsu Province, China). 
To investigate differences in plant responses to 
fluctuations in water supply between the invasive 
and native plants, 70 similar-sized seedlings per 
species were selected and three plant communities 
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were established: P1 comprising a monoculture 
of the invasive species only (A. philoxeroides), 
P2 which was a native species only community 
(with four species native to China), and P3 
which comprised a mixed community of invasive 
A. philoxeroides and the four native species 
(Fig.  1). We transplanted one seedling of each 
species into plastic pots (30  cm × 20  cm × 8  cm, 
length × width × height respectively) filled with 
straw, sand, vermiculite, peat, and fine vermiculite 
(at a ratio of 1:2:2:3:2). Plants were grown from 
autumn until early winter (1st October to 5th 
December) 2016. Due to limited availability of 
space in the greenhouse, our experiment had to 
be conducted over a shorter time-period than we 

initially intended. However, during extreme events, 
plants are often exposed to higher or lower resource 
availability at a large magnitude and for short 
periods of time (Yang et al. 2008). A plant’s fitness 
can depend on its ability to utilize resources during 
such events (e.g., flooding, drought) especially 
in low resource environments (Funk and Zachary 
2010). In addition, many studies have demonstrated 
that invasive species display higher plasticity 
compared to natives in response to environmental 
variability on time scales of weeks to months 
(e.g., Burns and Winn 2006; Muth and Pigliucci 
2007). In the case of our study, A. philoxeroides 
is a fast-growing clonal species, and individuals 
can become very large when grown under the right 
conditions. Therefore, given that a major focus of 

Fig. 1  Experimental design showing: (a) number of species 
per plant community, and number of replicates in each com-
munity and water treatment combination; (b) water treatments; 
and (c) data analysis design for the effects of water treatment 
and plant community (i.e., plant pattern). Plant communities 
in (a) include: P1 (invasive species only), P2 (native species 
only community), and P3 (mixed plant community compris-
ing both native and invasive species). Water treatments in (b) 
include: (i) normal (N), (ii) drought (D), (iii) flood (F), (iv) 
flood-drought interaction (D → F → D → F), (v) drought pulse 
(N → D → N), (vi) flooded pulse (N → F → N), and (vii) mul-
tiple pulses (N → F → N → D → N). Each plot in (b) repre-

sents the amount of water (mL) applied every five days dur-
ing the 65  days of the experiment, with the total amount of 
water being based on the frequency and amount of rainfall 
at an interval of five days from 1st October to 5th December 
between 1950 and 2015 (sourced from the Nanjing weather 
station). The coefficient of variation (CV) of each treatment 
(%) is also shown in (b). The data-analysis design in (c), shows 
a factorial study with dummy variable coding (× 11- × 73) 
which represents the plant trait values and their corresponding 
contrasts (contrasts are only between water treatments within 
communities or between communities within water treatment)



523Influence of precipitation dynamics on plant invasions: response of alligator weed…

1 3
Vol.: (0123456789)

our study is on extreme events and A. philoxeroides 
is a fast-growing invader, we consider two months 
an appropriate timeframe for exploring the early 
growth response of this species to precipitation 
variability and extreme events.

Precipitation variability and water treatments

One week after transplanting the seedlings, we applied 
the water treatments. We obtained daily precipitation 
data from the China Meteorological Administration 
database (http:// data. cma. cn/, accessed September 25, 
2016). From this dataset, we selected daily precipitation 
data from the Nanjing weather station for the growing 
period of the experiment (autumn to early winter 
2016) from 1950 to 2015. Specifically, we focused 
on the frequency of precipitation at an interval of five 
days from 1st October to 5th December. We calculated 
the mean precipitation at five-day intervals based on 
the frequency of rainfall over the 65  years between 
1950 to 2015 (i.e., 1468.92  mL in total, with the 
following precipitation values determined according 
to the amount of rainfall over five days: 108.95  mL, 
207.55  mL, 186.73  mL, 123.63  mL, 108.41  mL, 
164.96 mL, 88.19 mL, 75.33 mL, 74.30 mL, 92.79 mL, 
71.22  mL, 51.76  mL, and 115.10  mL) and this was 
used as the basis for the ‘normal’ water treatment (N) in 
our study [see (i) in Fig. 1]. For the drought treatment 
(D), we applied one-fifth of the normal water treatment 
[see (ii) in Fig. 1]. Plants treated with this amount of 
water in the D treatment were water-stressed, although 
the amount of water was sufficient to maintain plant 
survival. For the flood treatment (F), we used twice 
the amount of water as the normal water treatment 
[see (iii) in Fig.  1]. In addition, we had four water 
treatments that simulated more than one precipitation 
event. These included a flood and drought interaction, 
where we applied water simulating alternating drought 
(D) and flood (F) events (i.e., D → F → D → F); 
drought pulse treatment, which alternated between 
normal and drought treatments (N → D → N); flooded 
pulse treatment, alternating between normal and flood 
treatments (N → F → N); and multiple pulses treatment 
(N → F → N → D → N) (iv, v, vi, and vii respectively 
from Fig. 1). As such, there were seven water treatments 
in our experiment (see Fig. 1b for specific details). Tap 
water was used and the water volume was measured out 
using a measuring cylinder. Water was supplied to the 
plants through an artificial spray, which was applied 13 
times (once every 5-days) during the growing period 

(on the 3, 8, 13, 18, 23, and 28 October; 3, 8, 13, 18, 
23, and 28 November; and 3 Dec 2016). To categorize 
the degree of variability of the water treatments, we 
calculated the coefficient of variation (CV) for each 
treatment (these are given in Fig. 1b).

We used a two-factor study design with 5 replicates 
per community per treatment. There was a total of 
105 pots (3 plant communities × 7 water treatments × 5 
replicates) that were arranged in the greenhouse. Pots 
were spaced at least 20  cm apart from each other 
to avoid cross-contamination, and pot position was 
randomized every two weeks to counteract the effects 
of environmental patchiness within the greenhouse.

Growth trait measurements

All the plants were harvested after 65  days (on the 
5th December 2016), which was after the plants had 
stabilised and displayed vigorous growth. We measured 
the main stolon length of each plant of A. philoxeroides 
using a ruler and counted the number of nodes. The 
diameter of each plant was measured at three points 
along the stolon (the apex, middle, and terminal points) 
using a digital Vernier caliper (MNT, Shanghai, China). 
The root fractions were carefully removed from the 
soil and thoroughly rinsed using tap water. All plant 
parts were oven-dried at 60  °C to constant mass and 
weighed to the nearest 0.01  g (Portela et  al. 2019). 
The four native species were considered together 
when calculating the native species biomass (and 
this was measured using the same approach as for A. 
philoxeroides). Finally, the root to shoot (root/shoot) 
ratio of plants in each treatment for all species was 
calculated.

Competition and invasion efficacy in the mixed 
community

The proportion of invasive plant biomass to total 
plant biomass can be used as an indicator for invasion 
efficacy in the vegetation community (Parepa et  al. 
2013; Wang et al. 2021). We calculated the dominance 
of A. philoxeroides in only the mixed community using 
the relative dominance index (RDI) (Myers and Bazely 
2003), calculated as follows:

RDI =
biomass of A.philoxeroides

(biomass of A.philoxeroides + biomass of native species)

http://data.cma.cn/
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In the case of A. philoxeroides, RDI is the propor-
tion of community biomass represented by A. philox-
eroides, and ranges between 0 and 1, with a high RDI 
(i.e., values closer to 1) indicating that the focal spe-
cies is highly competitive. In our study, RDI values 
above 0.6 are considered relatively high (see Zhang 
et  al. 2017). We used the relative interaction index 
(RII) (Armas et al. 2004; Uddin and Robinson 2018) 
to characterise interspecific competition (i.e., native 
versus invasive species in the mixed community) 
under different precipitation treatments, which was 
calculated as:

For RII, Bw is the biomass of the focal plant 
growing with the neighbouring plants, and Bo 
is the biomass of the focal plant growing in the 
monoculture. So, when calculating RII for the 
invasive species, Bw represented the biomass of A. 
philoxeroides in the mixed community, while Bo was 
the biomass of A. philoxeroides in the monoculture. 
For the native species, the four native species were 
considered together when calculating RII. Therefore, 
Bw represented the biomass of the native species in 
the mixed community, while Bo was the biomass of 
native species in the monoculture. The RII is a metric 
of interaction intensity, and ranges between −1 and 1. 
A negative RII indicates that competition prevails, a 
positive value suggests the prevalence of facilitation, 
and a value of 0 represents when the net balance of 
the interaction is neutral (Cavieres et  al. 2017). In 
our study, RII values above 0.1 were considered to be 
high (see Tirado and Pugnaire 2005; Anthelme et al. 
2012; Schöb et al. 2013).

Data analysis

For all growth and competitive traits, differences 
across treatments were explored using multivariate 
analysis of variance (MANOVA). Since many of the 
response variables we measured are likely to be highly 
correlated, MANOVA was considered appropriate 
for investigating treatment level differences on all 
growth traits (as MANOVA enables all response 
variables to be considered simultaneously, Quinn 
and Keough 2002). A one-way MANOVA was 
performed to investigate differences in growth traits 

RII =
(Bw − Bo)

(Bw + Bo)

across water treatments for each plant community 
(i.e., A. philoxeroides only community, native species 
only community, and mixed community). A two-way 
analysis of variance (ANOVA) was used to examine 
the effects of water treatment, plant community 
and their interactions on plant growth traits. In our 
study, water treatment and plant community were 
independent variables, while plant growth traits 
were dependent variables. To further examine 
competitiveness in A. philoxeroides, we used a one-
way MANOVA to investigate differences in RDI and 
RII across water treatments (N = 5 each for RDI and 
RII). Tukey’s honest significant difference (HSD) test 
was applied for multiple comparisons at 0.05 level 
of significance among the treatments. To determine 
whether the data met the assumptions of ANOVA, we 
tested all data for normality using the Shapiro-Wilks 
test and QQ plots, and for equality of variance with 
Levene’s test. We used Box’s M test of equality of 
covariance to test whether the variance–covariance 
matrices assumptions of MANOVA were met. We 
found that all traits met the normality and variance 
assumptions of parametric tests. All statistical 
analyses were performed using SPSS (version 22.0; 
IBM, Armonk, NY, USA).

Results

To compare the level of variability across water 
treatments, we determined the coefficient of varia-
tion (CV) of each treatment (Fig.  1b). The drought 
treatment was the least variable of all the treatments 
(CV = 49.26%), followed by the normal and flood 
treatments (CV values were 49.97% and 50.06% 
respectively, Fig.  1b). The flood-drought interac-
tion was the most variable of all the treatments 
(CV = 85.03%), followed by the multiple pulse 
(CV = 83.07%). Overall, our analyses revealed that 
for each plant community, growth traits were signifi-
cantly different across water treatments (p < 0.01, see 
Table  1 for outputs from one-way MANOVA). We 
also found that competitive traits significantly var-
ied across the water treatments (p < 0.005, one-way 
MANOVA, Table  2). For invasive A. philoxeroides, 
all growth traits were significantly affected by water 
treatment (p < 0.01, two-way ANOVA, Table  3). In 
contrast, only stolon length and root/shoot ratio in 
A. philoxeroides were significantly affected by plant 
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community (p < 0.01, two-way ANOVA, Table  3). 
For the native species, total biomass was signifi-
cantly affected by plant community, while root/shoot 
ratio was significantly affected by water treatment 
(p < 0.05, two-way ANOVA, Table 3). The interaction 
between water treatment and plant community had a 
significant effect on stolon length in A. philoxeroides 
and root/shoot ratio in the native species (p < 0.05, 
two-way ANOVA, Table 3).

Table 1  One-way multivariate analysis of variance (MANOVA) results for differences in growth traits across water treatments for 
each plant community

(a) Alternanthera philoxeroides monoculture, (b) native species only community, and (c) mixed community. Lawley–Hotelling 
trace, Wilk’s Lambda, and Pillai’s trace all gave similar estimates of F. Outputs for Pillai’s trace are shown. Significant differences 
(p < 0.05) are in bold. “b” denotes exact statistics

(a) A. philoxeroides only

Effect F Hypothesis df Error df p

Water treatment 2.814 30 140 < 0.001
Intercept 2941.223b 5 24 < 0.001

(b) Native species only

Effect F Hypothesis df Error df p

Water treatment 2.678 12 56 0.006
Intercept 523.867b 2 27 < 0.001

(c) Mixed community

Effect F Hypothesis df Error df p

Water treatment 2.746 42 162 < 0.001
Intercept 1012.039b 7 22 < 0.001

Table 2  One-way multivariate analysis of variance 
(MANOVA) results for difference in competitive traits (i.e., 
RDI and RII for invasive Alternanthera philoxeroides, and RII 
for the native species) across water treatments

Lawley–Hotelling trace, Wilk’s Lambda, and Pillai’s trace all 
gave similar estimates of F. Outputs for Pillai’s trace are shown
Significant differences (p < 0.05) are in bold. “b” denotes exact 
statistics

Effect F Hypothesis df Error 
df

p

Water 
treatment

2.562 18 84 0.002

Intercept 1715.392b 3 26 < 0.001

Table 3  Significance levels from a two-way analysis of vari-
ance (ANOVA) showing differences in growth traits measured 
from the invasive species (Alternanthera philoxeroides) and 
native species (Eleusine indica, Solanum nigrum, Cynodon 
dactylon, and Youngia japonica) across water treatments, plant 
community, and all interactions (N = 105)

Values provided in the table are F values
* and ** indicate a significant difference at p < 0.05 and 
p < 0.01, respectively

Species Traits Water 
treatments 
(W)

Plant 
commu-
nity (P)

W × P

A. philox-
eroides

Stolon length 11.43** 27.11** 6.67**
Stolon diam-

eter
5.19** 0.29 1.17

Node num-
ber

8.82** 3.48 1.60

Total bio-
mass

11.82** 0.24 1.88

Root/shoot 
ratio

12.05** 4.08* 1.82

Native spe-
cies

Total bio-
mass

1.55 4.16* 1.70

Root/shoot 
ratio

3.85** 0.18 3.04*
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Effects of water treatments and plant community on 
growth response of invasive and native species

When grown in the monoculture, only biomass, node 
number and root/shoot ratio of A. philoxeroides sig-
nificantly varied among water treatments (p < 0.05, 
Tukey’s HSD test, Fig.  2c, f and g). Conversely, in 
the mixed community, all growth traits of A. philox-
eroides differed significantly among water treatments 
(p < 0.05, Tukey’s HSD test, Fig.  2). In the mixed 
community, compared to the normal treatment, sto-
lon length of A. philoxeroides was 37% shorter in 
the drought treatment; and 32.5%, 27.5%, and 47.5% 
longer in the flood, flooded pulse and multiple pulse 
treatments respectively (Fig. 2a). Stolon diameter was 
significantly wider (p < 0.05, Tukey’s HSD test) in 
the drought pulse treatment compared with the nor-
mal and drought treatments (21.3% and 25% wider 
respectively, Fig.  2b). Root/shoot ratio in A. philox-
eroides was lowest in the flood treatment and highest 

in the drought treatment irrespective of plant commu-
nity (Fig. 2g).

We found that the total biomass of native species 
was not significantly different across treatments in 
either the native species only or mixed communities 
(p > 0.05, Tukey’s HSD test, Fig. 2d). Similarly, root/
shoot ratio of native species did not significantly vary 
among treatments in the mixed culture (Fig.  2e). In 
the monoculture, root/shoot ratio of native species 
in the flood-drought interaction, drought pulse and 
flooded pulse treatments were significantly higher 
than in the normal and flood treatments (p < 0.05, 
Tukey’s HSD test, Fig. 2e).

Competition between A. philoxeroides and native 
species across water treatments

The highest RDI of A. philoxeroides was in the flood 
treatment, which was significantly greater than the nor-
mal and drought treatments (p < 0.05, Tukey’s HSD 

Fig. 2  Effects of water 
treatment on growth traits 
in Alternanthera philox-
eroides and native species 
(Eleusine indica, Solanum 
nigrum, Cynodon dactylon, 
and Youngia japonica) 
across plant communities 
(N = 5). Significant dif-
ferences (p < 0.05) among 
treatments are denoted 
by different letters above 
and below the data points 
(upper case letters are used 
for the mixed culture, while 
lower case letters are used 
for the monoculture). Codes 
for water treatments (i–vii) 
are given in Fig. 1
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test, Fig. 3). RII of A. philoxeroides was highest in the 
flood pulse treatment, which was significantly greater 
than in the normal and drought treatments (p < 0.05, 
Tukey’s HSD test, Fig. 3). In contrast, RII of the native 
species was not significantly different among treatments 
(Fig. 3). Thus, our findings suggest that while RII of the 
native species was not influenced by water availabil-
ity, RII of A. philoxeroides was affected by changes in 
water level.

Discussion

Improving our understanding of plant invasions is 
critical not only because of its importance to invasion 
management, but also because it may offer insights 
into ecological patterns and processes (Guo et  al. 
2015). In the current study, our approach of subjecting 
different plant communities (invasive species only, 
native species only and mixed community) to a 
wide range of water treatments provided important 
information on growth, competitiveness and resource 
allocation strategy of A. philoxeroides. Our study 
offered insights into the effects of invasion from 
A. philoxeroides on biomass, competitiveness and 
resource allocation of the native species community. 
The findings from this study have implications for 
the response and impacts of invasive A. philoxeroides 
to precipitation variability under climate change, 
particularly extreme events, at the community level.

Growth of A. philoxeroides was enhanced in response 
to precipitation variability and extreme events

We found that precipitation variability and extreme 
events (e.g., flooding) significantly increased most 
growth traits of A. philoxeroides compared to the 
normal treatment, particularly in the mixed com-
munity (Fig.  2). Thus, our first hypothesis that this 
invasive species would display enhanced growth in 
response to precipitation variability was supported. 
Stolon length is positively associated with water fluc-
tuations, and increases in this trait may enable plants 
to escape from canopy shading, thereby facilitating 
greater light resource acquisition (Chen et al. 2019). 
Increases in stolon length and node number can result 
in greater clonal propagation (Xi et al. 2019), which 
likely provides clonal species with a competitive 
advantage. Additionally, increases in stolon diameter 
can boost buoyancy in clonal plants, enhancing their 
ability to survive in aquatic environments (He et  al. 
1999), ensuring photosynthesis is maintained dur-
ing flooding (Ayi et al. 2016). Alternanthera philox-
eroides has been found to have higher tolerance and 
plasticity in response to water fluctuations than native 
Ludwigia adscendens (Chen et  al. 2016). It is likely 
that under conditions where water availability is vari-
able, the ability of A. philoxeroides to invade a new 
habitat may be enhanced as the species can increase 
stolon growth and clonal propagation in response to a 
range of precipitation events. This notion agrees with 
Chen et al. (2019), who found that the positive effect 
of clonal integration on biomass and ramets of A. 
philoxeroides was stronger under a variable watering 
regime compared to constant watering.

Fig. 3  Competitive traits in the mixed community (comprising 
both native and invasive species) showing a the relative domi-
nance index (RDI) or proportion of community biomass of 
Alternanthera philoxeroides, b relative interaction index (RII) 
of the native species, and c RII of A. philoxeroides. Codes for 

water treatments (i–vii) are given in Fig. 1. Significant differ-
ences (p < 0.05) among treatments are denoted by different let-
ters above the data points. Values represent the mean ± stand-
ard error (SE) (N = 5)
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In contrast to A. philoxeroides, total biomass of the 
native species from the current study did not vary in 
response to precipitation variability or extreme events 
in either plant community (Fig.  2). Our findings for 
the native species agrees with Chen et  al. (2019) 
who revealed that water variability had a limited 
effect on biomass in a native plant community. These 
findings have implications for restoration purposes 
with climate change impacts and provide a good 
avenue for future research. Differences in response 
across native species may account for the limited 
effects of water variability on total biomass of native 
plant communities. For the native species, root/shoot 
ratio was significantly affected by water treatment 
(Table  3, Fig.  2). Water availability is one of the 
major limiting factors for plant performance and 
strongly affects plant allocation strategy (and root/
shoot ratio) (Viciedo et al. 2021). Our findings for the 
native species here are consistent with predications 
of resource-limitation whereby plants should allocate 
biomass to structures that help them acquire more of 
the most limiting resource (Qi et al. 2022).

Growth of invasive and native species and resource 
allocation under varying precipitation

Our study revealed that while all growth traits in A. 
philoxeroides were significantly affected by water 
treatment, fewer traits were significantly affected by 
plant community (Table 3). Similarly, although native 
species biomass was significantly different between 
the mixed- and monoculture, differences in root/shoot 
ratio of native species between plant communities 
was not significant (Table  3). Consequently, our 
second hypothesis that growth trait response of the 
invasive and native species will vary among plant 
communities was supported to a lesser extent. Unlike 
in the mixed community, stolon length and diameter 
of A. philoxeroides did not significantly vary among 
water treatments when the species was grown in a 
monoculture (Fig.  2). In addition, compared to the 
monoculture, both stolon length and diameter were 
often greater in the mixed community under the 
more variable water treatments. Thus, our results 
suggest that interspecific competition in combination 
with highly variable water availability affects growth 
response in A. philoxeroides in mixed communities. 
This finding agrees with previous research which 
suggest that the success of an invasive species is 

dependent on its ability to persist in competition with 
other species (Bando 2006; Ullah et al. 2021; Wang 
et  al. 2021). The role of interspecific competition 
with native co-occurring species on the growth 
performance of invasive A. philoxeroides in response 
to increasingly variable precipitation provides a 
promising avenue for future studies.

Plants tend to enhance root growth when soil 
nutrients and water are limited and allocate less to 
their root systems when aboveground resources are 
limiting, maximizing their acquisition of limiting 
resources (Gill and Finzi 2016; Qi et al. 2022). In our 
study, we found a significant increase in the root/shoot 
ratio in response to the drought and flooded pulse 
treatments compared to the normal treatment in A. 
philoxeroides in the mixed community (Fig. 2). The 
higher root/shoot ratios of A. philoxeroides in these 
treatments in the mixed community suggest that this 
invasive species is able to alter its biomass allocation 
to obtain moisture under limiting and variable 
water availability (Freschet et  al. 2018). In contrast, 
although the species in the natives only community 
had a significantly higher root/shoot ratio in the flood-
drought interaction, drought pulse and flooded pulse 
treatments than in the normal treatment, in the mixed 
community this trait did not significantly differ across 
water treatments (Fig. 2). Our findings are consistent 
with the results of Wang et al. (2018) which revealed 
that invasive A. philoxeroides displayed higher 
root allocation than co-occurring native species in 
disturbed habitats. It appears that some exotic plants 
have a superior resource allocation strategy under 
environmental stress compared to native species. The 
findings from our study indicate that precipitation 
variability may favour A. philoxeroides (through an 
enhanced root system in response to water stress), 
making it more competitive than the native species 
used in this study (Gill and Finzi 2016). Our results 
therefore support the hypothesis that resource 
allocation strategies can play a major role in the 
success of this invasive species in limited or disturbed 
resource environments (Portela et al. 2019; Ren et al. 
2019).

Competitive traits and the role of facilitation

Our findings revealed that competitive traits in 
A. philoxeroides in the mixed community were 
influenced by variations in water level (Fig.  3). As 
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such, our third hypothesis that competitiveness of A. 
philoxeroides will increase in response to increased 
precipitation variability was met. Overall, our 
results suggest that water variability can improve 
competitiveness of A. philoxeroides which may 
mitigate the inhibitory effects from neighbouring 
species. In contrast, the RII of native species in the 
mixed community remained unchanged in response 
to water variation (Fig.  3). This finding could be 
interpreted in multiple ways. For example, it may 
indicate that species diversity is equivalent to trait 
diversity, leading to low overall community response. 
The result could also suggest that the native species 
were equally unaffected by the treatments. Growth 
response measurements collated from each species 
would offer further insights into the competitive 
ability of the natives. The mixed community was 
affected by the presence of invasive A. philoxeroides 
and previous studies suggest that there is a complex 
set of interactions between invasive species, native 
species, and the environment when resources are 
limiting or variable (Sardans et al. 2017).

Biotic interactions are important drivers of 
biological invasions (Simberloff and Von Holle 
1999), with many studies demonstrating the biotic 
containment of invaders by native species and 
greater competitive ability of invasive species (e.g., 
Levine et  al. 2004; Callaway and Aschehoug 2000). 
Yet, other studies have shown that there can be 
positive interactions between native and invasive 
species and these interactions may promote plant 
invasions (Mitchell et  al. 2006; Bulleri et  al. 2008). 
Such biotic interactions can be strongly influenced 
by changes in environmental conditions (Good et al. 
2014). In our study, positive RII values were found 
for A. philoxeroides under increasing precipitation 
variability indicating facilitation. Specifically, 
the highest RII was found for A. philoxeroides in 
response to the flooded pulse treatment (RII = 0.17, 
Fig.  3). Positive RII values were also found for the 
native species in the flooded pulse and multiple pulse 
treatments (Fig.  3). Thus our findings suggest that 
the native species are facilitating the invader under 
variable precipitation. This result is consistent with 
a previous study where it was revealed that invasive 
Acer negundo in a floodplain was facilitated in a 
native Salix community (Saccone et  al. 2010). As 
such, while competition may be important under 
favourable environmental conditions, facilitation 

may be more important in more stressful conditions 
with resident native species facilitating rather than 
competing with invasive species (Badano et al. 2007; 
Saccone et al. 2010). Facilitation can be an important 
driver of plant community structure (Brooker et  al. 
2008), and facilitative interactions among plants 
can result in increases in species abundance and 
diversity (Callaway 2007). In the case of stressful 
environments, facilitation may be a very important 
mechanism with established plants providing a 
beneficial microclimate underneath their foliage 
and protecting other plants from stressors (Callaway 
et  al. 2002; Good et  al. 2014). For example, 
facilitation in flooded environments may involve 
some plants ameliorating the anoxic rhizosphere for 
neighbouring plants via oxygen leakage (Luo et  al. 
2010). Therefore, facilitation among species may 
promote biological invasions through changes in 
environmental conditions (Flory and Bauer 2014), 
and positive interactions among species may result 
in an invasive species facilitating further invasions 
(Simberloff and Von Holle 1999).

Conclusion

We found that invasive A. philoxeroides displayed 
enhanced growth and competitiveness, and optimised 
biomass allocation in response to precipitation 
variability and extreme precipitation events (e.g., 
flooding). Consequently, A. philoxeroides can 
increase clonal growth and invest more resources 
into roots when water availability is variable or 
under extreme conditions, which likely confers a 
competitive advantage over native species in the wild. 
A limitation of our study was that only biomass was 
measured for the native species (and this measure 
was pooled for all species). Another limitation of this 
study is that it was conducted over a relatively short 
period of time. Future work should involve collating 
growth trait measurements of each individual native 
species to enable a species-level comparison, to 
provide further insights into the invasion of alligator 
weed in native communities. In addition, further 
work should apply treatments over a longer time 
period, include repeat trials, and involve altering 
water regimes for the extreme events in order to 
demonstrate clear effects of disturbance on these 
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species. Specifically, conducting an experiment over 
an entire growing season or over several years may 
provide information on the demographic impacts of 
competition and variable water availability. Overall, 
the findings from our study suggest that highly 
variable precipitation could facilitate the future 
spread of A. philoxeroides to new regions.
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