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with or without the presence of non-indigenous spe-
cies (NIS, considered invaded and non-invaded sys-
tems in this study). The presence of crustose coralline 
algae suppressed the recruitment of some NIS (Par-
asmitina alba and Botrylloides niger). Our results 
also showed that the abundance of NIS (e.g. B. niger) 
could be prompted in highly fragmented habitats, col-
onizing bare substrates very efficiently. Overall, evi-
dence indicates that fragmentation events modulate 
biotic interactions and consequently determine the 
structure of the fouling communities. Future research 
should address both processes when analyzing biotic 
resistance to invasion in urban marine habitats.

Abstract  Habitat loss and fragmentation, and bio-
logical invasions are widely considered the most sig-
nificant threats to global biodiversity. While marine 
invasions have already shown dramatic impacts 
around the world’s coasts, many of these habitats are 
becoming increasingly urbanized, resulting in frag-
mentation of natural landscape worldwide. This study 
developed in Madeira (NE Atlantic) aims to under-
stand the synergistic interactions between fragmenta-
tion and biological invasions using submerged experi-
mental settlement panels in the field for 3 months. We 
fragmented crustose coralline habitats, decreasing 
patch size without an overall habitat loss, and deter-
mined its effects on the patterns of abundance of 
marine fouling organisms across limiting assemblages 
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Introduction

Habitat loss and fragmentation, climate change and 
biological invasions are considered the major anthro-
pogenic stressors threatening biodiversity in marine 
ecosystems worldwide, imposing significant and 
permanent changes to the ecology of coastal com-
munities (Myers et  al. 2000; Thompson et  al. 2002; 
Fahrig 2003; Reid et al. 2005; Airoldi and Beck 2007; 
Hutchison 2008; Cole et al. 2012).

Coastal urbanization, a process modifying marine 
and coastal ecosystems (Airoldi et  al. 2015, 2021), 
affects the complex interactions among biotic and abi-
otic processes (Matias et al. 2015). Urbanization can 
be associated with habitat fragmentation, an umbrella 
term describing the process by which habitat loss 
results in the division of large, continuous habitats 
into smaller remnants, isolated from each other by a 
matrix of different habitats (Didham 2010). There is a 
longstanding debate within the conservation research 
community based on the principle postulating that a 
single patch of habitat holds more species than sev-
eral small patches of the same total area (the so-called 
SLOSS debate, Diamond 1975). In coastal areas, 
fragmentation can alter the quality and connectivity 
of habitats (Wilcove et al. 1986; Collinge 1996; Gray 
1997; Fahrig 2003; Wilson et al. 2016), and through 
different mechanisms affect the distribution and abun-
dance of organisms, community structure and eco-
system processes (Didham 2010; Dugan et al. 2011; 
Smoothey 2013; Benedetti-Cecchi and Trussell 2014; 
Martins et  al. 2016; Cacabelos et  al. 2016a, b; Ber-
tocci et  al. 2017). The relative importance of these 
mechanisms has raised considerable discussion, high-
lighting the relevance of clearly discriminating direct 
versus indirect causal relationships among patch and 
landscape variables. While habitat fragmentation is a 
landscape‐level phenomenon, patch‐level processes 
(patch area, edge effects and patch shape complexity) 
can only be understood within a landscape context 
(isolation and matrix structure) (Didham 2010).

Biological invasions represent a severe threat to 
marine ecosystems (Halpern et  al. 2008; Molnar 
et al. 2008), and can be exacerbated by fragmentation 

(Haddad et al. 2015). A successful invasion depends 
on traits associated with the non-indigenous species 
(NIS) involved in the invasion process, its propagule 
pressure (i.e., the number and frequency with which 
larvae, seeds, juveniles, or adults of a species, arrive 
at a recipient native community over time) and the 
invasibility of the recipient community (Vitousek 
et  al. 1997; Lonsdale 1999; Mack et  al. 2000; Can-
ning-Clode 2015). According to Elton (1958) the 
uptake of available resources and the occupation of 
niches are complete in a species-rich community, 
preventing invasions. Multiple mechanisms must 
be considered when investigating biotic resistance 
hypotheses in marine systems (Caselle et  al. 2018). 
For example, biodiversity loss can facilitate several 
processes (e.g. provision of bare space) to promote 
the settlement and expansion of successful invad-
ers (Stachowicz and Byrnes 2006). While disturbed 
ecosystems can reduce persistence against human-
induced impacts (Hooper et  al. 2005), ‘healthy’ 
native communities have shown greater resistance to 
invasion (Levine and D’Antonio 1999; Arenas et  al. 
2006; Giakoumi and Pey 2017). There has been con-
siderable research effort on detection of invasive alien 
species (EU 2014; Tsiamis et al. 2019), but not much 
experimental work has been performed to better 
understand NIS impacts in coastal benthic communi-
ties (but see Katsanevakis et al. 2014, and references 
therein). Further research is still needed to advance 
the current understanding of which factors determine 
invasion success (with most studies focused on spe-
cies traits and both biotic and abiotic characteristics, 
e.g. Arenas et al. 2006), the underlying processes and 
mechanisms and how invasions influence biodiver-
sity patterns, with evidence suggesting that propagule 
pressure is of paramount importance (Simberloff 
2009; Brown and Barney 2021).

The different components of global environmen-
tal change are often studied and managed indepen-
dently, but simultaneously multiple stressors may 
produce synergistic or antagonistic effects (Didham 
et  al. 2007; Crain et  al. 2008). Habitat fragmenta-
tion strongly interacts with other components of 
global environmental change, including species inva-
sions, habitat‐use intensification and climate change 
(Hutchison 2008; Didham 2010). Habitat loss and 
fragmentation may enhance the spread of biological 
invasions worldwide, partially due to the available 
bare space provided by the loss of native species, 
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consequences of climate change or the increasing 
urbanization of coastal environments (With 2004; 
Megina et al. 2013). Several studies focused on miti-
gating the effects of loss and fragmentation of coastal 
urban areas have been developed in recent years, with 
promising results (e.g. Bulleri 2005; Bishop et  al. 
2017). The capacity of a fragmented habitat to sus-
tain biodiversity and ecosystem services will hinge 
upon the total amount and quality of habitat left in 
fragments, their degree of connectivity, and how they 
are affected by other human-induced stressors such as 
invasive species (Haddad et  al. 2015). However, lit-
tle is known on the effects of fragmentation in marine 
systems (but see Moschella et  al. 2005; Goodsell 
et al. 2007), or how the alteration of landscape struc-
ture might promote NIS spread, as well as its ecologi-
cal consequences (With 2004).

In this context, this study aims to assess the effect 
of biological invasions in structuring benthic com-
munities and the consequences of fragmentation 
and generation of free base space on forcing interac-
tions among neighbouring assemblages. Both stress-
ors were simultaneously manipulated to examine 
their isolated and combined effects on recruitment 
patterns, and macrofouling assemblages’ invasibil-
ity. According to theory, fragmented habitats are 
expected to hold fewer species than a single large 
patch, while assemblages with NIS in the neighbour-
hood, i.e. more exposed to invasion, are expected to 
be more readily colonized by NIS. On the other hand, 
considering fragmentation as a ‘landscape level’ dis-
turbance (Hobbs and Huenneke 1992; With 2004), 
and since disturbance generally promotes invasion 
(With 2002; Hutchison 2008), we hypothesize that 
fragmented assemblages will show a higher invasibil-
ity than unfragmented (i.e. undisturbed) assemblages.

Methods

Natural assemblages in the study area

Macrobenthic community structure in the shallow 
rocky subtidal of Madeira are mainly affected by 
wave exposure, sedimentation, depth and grazing 
by the sea urchin Diadema africanum Rodríguez, 
Hernández, Clemente & Coppard, 2008 (Bianchi 
et  al. 1998; Alves et  al. 2001; Friedlander et  al. 
2017; Gizzi et  al. 2020). Spatial variation among 

morphofunctional groups is mainly correlated with 
variation in the density of sea urchins (Sangil et  al. 
2018). When the density of sea urchins is high 
(> 2–2.5 ind. m−2), subtidal areas previously covered 
by erect, fleshy algae are transformed into unpro-
ductive overgrazed habitats dominated by crustose 
coralline algae (CCA), impoverished communities 
often termed ‘urchin barrens’ (Hernández et al. 2008; 
Friedlander et al. 2017; Sangil et al. 2018). A similar 
phenomenon has been described in other Macarone-
sian archipelagos and worldwide (see Tuya et al. 2004 
and references therein), probably due to increased 
inshore fishing pressure. Impoverished communities 
such as these coralline barrens can also be exposed to 
fragmentation due to physical or biological processes, 
such as urbanization (habitat modifications occur-
ring at a large spatial scale) or grazing by sea urchins 
(occurring at smaller spatial scale). Sea urchins can 
be continually scraping CCA, consuming the surficial 
layers along with any microalgal films and macroal-
gal recruits (Chapman 1981), or even ‘scrape’ the 
substrate, as has been described for Arbacia lixula 
(Linnaeus, 1758), that has a robust Aristotle’s lantern 
consistently with its preference for crustose algae as 
food (Bonaviri et al. 2011).

Building synthetic assemblages

To test the effect of invasions and fragmentation on 
the forcing of interactions among fouling organisms, 
we created synthetic assemblages containing bare 
rock, crustose coralline algae (CCA) and mature 
marina assemblages with a relevant NIS compo-
nent, intending to mimic the invasion process. In 
advance, and to get mature assemblages containing 
NIS, 7 × 7 × 2  cm basalt panels, the dominant natu-
ral volcanic rock in Madeira island, were suspended 
upside-down 1  m deep from wharves of Quinta do 
Lorde marina for 14 months (from April 2018 to June 
2019) to be fouled with mature assemblages (marina-
assemblages with a relevant NIS component, hereaf-
ter named ‘Invaded’). After 14  months in the field, 
assemblages colonizing these basalt panels were 
composed by 62.0 ± 19.6% (mean percent cover ± SE, 
n = 10) of NIS.

In June 2019, small basalt boulders bearing CCA 
species were collected from natural rock pools in 
Quinta do Lorde (NW Madeira Island, Portugal) and 
transported to be cut by a professional stonecutter. 
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Rock pieces were cut into the experimental size (10 
units of 7 × 7 × 2 cm and 40 units of 3.5 × 3.5 × 2 cm) 
and maintained in the mesocosm system and labora-
tory facilities of MARE—Marine and Environmental 
Research Centre, located at Quinta do Lorde Marina, 
for 24 h until the start of the experiment.

Experimental assemblages were created and 
attached to main 14 × 14 × 0.3 cm PVC panels with a 
high-quality adhesive sealant (T-REX Power Turbo, 
SMX® Polymer-Soudal, 20  min.) and suspended 
from wharves. Therefore, they consisted of PVC 
plates where one 7 × 7 × 2 cm or four 3.5 × 3.5 × 2 cm 
pieces of rock containing CCA were glued, depend-
ing on corresponding unfragmented or fragmented 
treatment. In the case of small rock pieces, they were 
glued to the four corners of the main PVC panel. Half 
of the PVC panels, corresponding to the ‘invaded’ 
treatment, contained 7 × 7  cm marina-assemblages 
with a relevant NIS component. Empty basalt pan-
els were used to cover the remaining free space in 
the PVC panels and complete the configuration (see 
Fig. 1 and A1.). Synthetic assemblages were then sus-
pended at approx. 50–70 cm depth upside down from 
wharves in a randomly located position in June 2019.

Sampling synthetic assemblages

In September 2019, three months after deployment, 
panels were retrieved from the field and sampled. 
For this, all fouling organisms were identified to the 
lowest possible taxonomic level with the aid of a ster-
eomicroscope Leica S8APO, based on scientific lit-
erature and then assigned to the categories of ‘native’, 
‘non-indigenous species’ (NIS), ‘cryptogenic’ (sensu 
Carlton 1996) or ‘unresolved’ (unable to identify 
to species level) based on scientific literature (e.g., 

Canning-Clode et  al. 2013; Chainho et  al. 2015; 
Marchini et  al. 2015; Gestoso et  al. 2017; Ramal-
hosa et al. 2019, 2021) and several current databases 
(AquaNIS Editorial Board 2015; Ahyong et al. 2018; 
Fofonoff et al. 2018; WoRMS Editorial Board 2020). 
All NIS, and not only those included in the marina 
assemblages’ were sampled to include the biological 
succession on bare rocks and calcareous crusts, which 
would be influenced by the particular species first 
arriving at the substratum, an array of direct and indi-
rect species interactions, and physical-environmental 
change, that dictates that the fouling assemblage gen-
erated will follow a range of trajectories with poten-
tially variable endpoints (Jenkins and Martins, 2010).

High-quality photographs were taken from each 
panel with an Olympus TG-4 camera and analysed 
using Coral Point Count’s image analysis software 
(CPCe 4.1, Kohler and Gill 2006). In each image, 
cells containing the unfragmented (one square 
7 × 7  cm) and fragmented calcareous crusts (CCA) 
(four squares 3.5 × 3.5  cm) were selected, and 60 or 
15 random points were deployed per cell, respectively 
(i.e. commensurately with area), resulting in a matrix 
of 60 randomly distributed points per panel. Similar 
image analysis was used for sampling the bare rock, 
and, thus, cells 7 × 7  cm or 3.5 × 3.5  cm were sam-
pled close to unfragmented or fragmented CCA (see    
Fig.  1 for details). Fouling organisms were visually 
identified beneath each point, deployed on calcare-
ous crusts and bare rock, up to the highest achievable 
taxonomic resolution. Organisms present but not fall-
ing underneath cross points were recorded as rare and 
then assigned an arbitrary score of 1%. Obtained data 
were used to determine the cover of each identified 
taxa and bare space for specific cells of each panel, 
total percent cover, and Shannon diversity index.

Fig. 1   Diagram shows 
the synthetic assemblages, 
the areas sampled, and the 
number of random points, 
after the three months, 
they were suspended from 
wharves of Quinta do 
Lorde marina. Framed in 
green are points sampled 
in calcareous crusts, and 
those sampled on bare rock 
in blue (see photographs of 
synthetic assemblages in 
Supp. Mat.)
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Data analysis

Changes in univariate data, namely abundance (total 
percent cover of sessile taxa, including both algae 
and calcified filter feeders, as well as covers of spe-
cific status) and diversity index, were analysed using 
permutational analysis of variance (PERMANOVA) 
based on Euclidean distances of untransformed data 
(Anderson 2001). To evaluate NIS settlement success 
on experimental assemblages/treatments, those cat-
egorized as cryptogenic and unresolved were pooled 
with native species (NCU) for the statistical analy-
sis, as a more conservative approach (e.g., Gestoso 
et  al. 2018; Ramalhosa et  al. 2019). Analyses were 
based on a three-way model, including fragmenta-
tion (2 levels: unfragmented and fragmented), inva-
sion (2 levels: uninvaded and invaded), and substrate 
(2 levels: calcareous crust and bare rock), all of them 
fixed and orthogonal, with five replicates. In addi-
tion, a test for homogeneity of multivariate disper-
sions (PERMDISP) was performed to complement 
PERMANOVA (Anderson 2017), and transforma-
tions were applied when necessary. Whenever PER-
MANOVA showed a significant factor or a significant 
interaction of factors (p < 0.05), pair-wise compari-
sons were done to explore differences among all pairs 
of levels of the selected factor.

Changes in the structure of assemblages, encom-
passing richness and abundance, were analysed 
using PERMANOVA performed on square-root 
transformed data and based on Bray–Curtis similar-
ity matrix (Anderson 2001) and including three fac-
tors mentioned above. Non-metric multidimensional 
scaling (nMDS) was used to visualize multivari-
ate results. To detect what taxa contributed most to 
similarity within and dissimilarity among groups, 
an analysis of similarity percentages (SIMPER) was 
carried out. Analyses of variance based on Euclid-
ean distances was later used to test for differences in 
the main contributors to these similarities following 
previously described analysis for univariate data. The 
software PERMANOVA + for PRIMER (PRIMER-E 
Ltd, Plymouth, UK) was used for analyses.

Results

After 3  months suspended from wharves, and due 
to forcing interactions post fragmentation, the total 
percentage cover of macrofouling showed signifi-
cantly lower abundance at unfragmented than on 
fragmented assemblages (Table 1, Fig. 2). The same 
effect, although barely non-significant, was observed 
on the diversity index counting on native, crypto-
genic and unresolved status species (Table 1, Fig. 2). 

Table 1   Univariate analysis of variance of macrofouling assemblages across Fragmentation (Fr), Invasion (In) and Substrate (Su) 
levels after 3 months of panel deployment

* p < 0.05, **p < 0.01, ***p < 0.001, +p = 0.07
N, total percentage cover (excluding dead and alive calcareous crusts and bare rock); H, Shannon diversity index; NCU, native, 
cryptogenic and unresolved species; NIS, non-indigenous species. Analyses were performed on untransformed data. P-values are 
indicated in Table 4

Source df Total N H N-NCU H-NCU N-NIS H-NIS

MS F MS F MS F MS F MS F MS F

Fr 1 902.5 6.55* 0.37 1.63 58.4 0.4 0.64 3.37+ 501.7 2.35 0.13 0.59
In 1 340.3 2.47 0.01 0.04 11.7 0.1 0.18 0.96 225.6 1.06 0.29 1.27
Su 1 5760.0 41.79*** 0.00 0.01 2376.7 14.8*** 0.02 0.09 736.7 3.45+ 0.11 0.50
Fr ×  In 1 71.1 0.52 0.31 1.37 0.1 0.03 0.28 1.49 66.74 0.31 0.02 0.09
Fr × Su 1 233.6 1.69 0.37 1.61 275.6 1.7 0.14 0.75 1.74 0.01 0.55 2.43
In × Su 1 62.5 0.45 0.00 0.00 66.7 0.4 0.03 0.17 258.4 1.21 0.00 0.00
Fr × In × Su 1 134.4 0.98 0.57 2.50 95.1 0.6 0.30 1.58 3.4 0.02 0.30 1.32
Res 32 4411.1 0.23 160.1 0.19 213.3 0.23
Total 39
PERMDISP 0.714 0.624 0.009 0.329 0.167 1
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Thus, although invaded treatments have greater cover 
and biodiversity of biofouling organisms than non-
invaded treatments, invasion treatment did not signifi-
cantly affect the percentage cover of benthic organ-
isms or biodiversity (Table 1). On the other hand, the 
percentage cover of total macrofouling and native, 
cryptogenic, and species with unresolved status was 
significantly lower on calcareous crust substrate than 
bare rock (Table 1, Fig. 2).

The factor ‘substrate’ affected the structure of mac-
rofouling assemblages significantly, with assemblages 
settled on bare rock differing from those settled on 
the calcareous crust (Table 2, Fig. 3). SIMPER analy-
sis revealed that while Spirorbis sp., Salmacina dys-
teri and the NIS Botrylloides niger, Parasmittina alba 
and Distaplia corolla recruited more on bare rock, the 
bryozoan Crisia sp. presented greater cover on top of 
the calcareous crust (Table 6). The structure of mac-
rofouling assemblage also changed significantly with 
‘fragmentation’, but depending on the ‘invasion’ level 
(i.e. a significant interaction Fr x Inv, Table 2, Fig. 3). 

The variability among replicates did not significantly 
contribute to these differences (PERMDISP = 0.561, 
p > 0.05). SIMPER analysis indicated that NIS con-
tribution to unfragmented and uninvaded habitats was 
dominated by Cradoscrupocellaria bertholletii and 
B. niger (accumulating 33.9% similarity) (Table  7, 
showing up to 75% similarity, dissimilarities are indi-
cated in Table  8). The polychaete Spirorbis sp. was 
especially abundant in these unfragmented treat-
ments, contributing for more than 37% to the simi-
larity in both invaded and uninvaded treatments. The 
NIS D. corolla and P. alba contributed to 19% simi-
larity in unfragmented and invaded habitats. In con-
trast, in the case of fragmented habitats, NIS contri-
bution to similarity within treatments was higher in 
invaded than in uninvaded treatments, with both B. 
niger and D. corolla contributing up to 33% similarity 
in invaded treatment versus previously cited NIS and 
P. alba accounting for 19.5% cumulative similarity in 
uninvaded treatment.

Fig. 2   Mean (+ SE, 
per panel) total cover of 
fouling organisms across 
fragmentation (A) and 
substrates (Bare = Bare 
rock, CCA = Calcareous 
crust) (B), diversity index 
of native, cryptogenic and 
unresolved species (NCU) 
across fragmentation levels 
(C) and the cover of NCU 
species across substrates 
(D) (n = 5)
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Univariate analysis performed on the percent-
age cover of these key species clarifies these results. 
Spirorbis sp. showed significantly higher abundance 
on unfragmented than fragmented habitats (Table  3, 
Fig.  4a). It was also negatively affected by calcare-
ous crust, which recruited much lower individuals 
than bare rock (Fig.  4b). The same substrate effect 
was observed for S. dysteri and P. alba (Table  3, 
Figs. 4c and d, respectively). On the other hand, per-
centage cover of NIS C. bertholletii and D. corolla 
were affected by invasion, but C. bertholletii showed 
greater abundance on uninvaded habitats, whereas 

D. corolla showed the inverse trend (Table 3, Fig. 4e 
and f, respectively). B. niger and Crisia sp. were both 
affected by fragmentation, but inconsistently across 
invasion levels. The NIS B. niger was more abundant 
in invaded treatments on fragmented habitats, while 
the opposite tendency was observed on unfragmented 
conditions. Crisia sp. showed the opposite trend, 
and while it was more abundant on uninvaded treat-
ments of fragmented habitats, its cover was higher 
on invaded and unfragmented treatments (Table  3, 
Fig. 4g and h, respectively).

Table 2   Permulational 
multivariate analysis of 
variance (PERMANOVA) 
of total assemblage across 
Fragmentation (Fr), 
Invasion (In) and Substrate 
(Su) levels based on Bray–
Curtis similarity matrix

Source df MS Pseudo-F P(perm)

Fr 1 7020.4 4.828 0.001
In 1 2012.6 1.384 0.232
Su 1 9530.0 6.554 0.001
Fr × In 1 3634.8 2.500 0.009
Fr × Su 1 1738.0 1.195 0.331
In ×Su 1 981.1 0.675 0.717
Fr x In × Su 1 1196.4 0.823 0.579
Res 32 1454.1
Total 39
Transf Sq root
PERMDISP P(perm) 0.561
Pair-Wise tests t P(perm)
Term ’Fr ×In’ for pairs of 

levels of factor Fragmen-
tation

Within Uninvaded Unfrag, Fragmented 2.062 0.003
Within Invaded Unfrag, Fragmented 1.765 0.007
Term ’Fr × In’ for pairs of 

levels of factor Invasion
Within Unfragmented Uninvaded, Invaded 1.624 0.023
Within Fragmented Uninvaded, Invaded 1.111 0.303

Fig. 3   Non-metric multidi-
mensional scaling (nMDS) 
representing the assemblage 
structure between fragmen-
tation (squares vs. circles) 
and invasion levels (full vs. 
empty figures) across sub-
strate levels (Bare = Bare 
rock, CCA = Calcareous 
crust). nMDS is based 
Bray–Curtis similarities on 
square-root transformed (for 
further details, see Table 2)



2188	 E. Cacabelos et al.

1 3
Vol:. (1234567890)

Discussion

In this study, we investigated the role of the frag-
mentation of crustose coralline habitats in deter-
mining the diversity patterns (i.e. species richness 

and abundance) of marine fouling organisms across 
assemblages with or without the presence of non-
indigenous species in Madeira Island. Despite limita-
tions related to the increase of richness and percent-
age cover in invaded treatments, which could mask 

Table 3   Univariate analysis of variance of relevant macrofouling taxa across Fragmentation (Fr), Invasion (In) and Substrate (Su) 
levels after 3 months of panel deployment

*p < 0.05, **p < 0.01, ***p < 0.001, +p = 0.07
NIS are highlighted in bold. P-values are indicated in Table 5

Source df Spirorbis sp. S. dysteri P. alba C. berthol-
letii

D. corolla B. niger Crisia sp.

MS F MS F MS F MS F MS F MS F MS F

Fr 1 736.7 10.6** 111.1 4.6 0.1 0.0 1.7 0.2 0.3 0.0 513.6 4.2* 122.5 3.4+

In 1 0.1 0 0.3 0.0 3.4 0.1 66.7 6.5* 202.5 4.1* 90.0 0.7 13.6 0.4
Su 1 1120.1 16.1*** 302.5 12.6*** 293.4 9.8** 20.1 2.0 10.0 0.2 111.1 0.9 80.3 2.2
Fr × In 1 116.7 1.7 1.1 0.0 0.6 0.0 3.4 0.3 27.8 0.6 360.0 2.9+ 217.8 6.1**
Fr ×Su 1 43.4 0.6 111.1 4.6 5.6 0.2 3.4 0.3 22.5 0.5 27.8 0.2 27.8 0.8
In × Su 1 20.1 0.3 2.5 0.1 8.4 0.3 15.6 1.5 22.5 0.5 62.5 0.5 1.1 0.0
Fr × In × Su 1 241.7 3.5+ 4.4 0.2 5.6 0.2 5.6 0.5 1.1 0.0 0.3 0.0 2.5 0.1
Res 32 69.4 24.1 29.8 10.2 49.2 122.6 35.8
Total 39
PERMDISP 0.433 0.011* 0.027* 0.254 0.343 0.183 0.040*

Fig. 4   Mean (+ SE, per panel) cover of relevant species across fragmentation, invasion (Invaded in light grey) and substrates levels 
(Bare = Bare rock, CCA = Calcareous crust) (n = 5). NIS are highlighted in bold
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invasion effects, our results indicate that both frag-
mentation and substrate affected the abundance of 
fouling species, with the structure of fouling assem-
blages differing strongly between bare rock and cal-
careous crust. Moreover, fragmentation and invasion 
may interact and affect the composition of assem-
blages by modulating the recruitment and successful 
establishment of species.

Although the effects on some species were mostly 
negligible, opposite responses were observed on 
some non-indigenous species (NIS) versus native 
species (e.g. B. niger vs Crisia sp.), with previously 
invaded habitats facilitating NIS spread after frag-
mentation. Different NIS can aid one another in dif-
ferent ways, with numerous idiosyncratic interactions 
described in the literature (e.g. Simberloff and Von 
Holle 1999 and references therein). On some occa-
sions, interactions may be synergistic, and these inter-
actions among invaders may accelerate impacts on 
native ecosystems—an invasional ‘meltdown’ process 
(Simberloff and Von Holle 1999). Facilitation can be 
significant among invasive species and occur between 
invasive and native species, where the invader may 
act as either the facilitated or the facilitating spe-
cies (see Gallien and Carboni 2016 and references 
therein). The relative importance of competition and 
facilitation is likely to vary along environmental gra-
dients associated with disturbance (Gallien and Car-
boni 2016), forcing interactions among species such 
as the fragmentation event performed in the present 
study.

Sea urchin barren grounds, habitats dominated by 
encrusting coralline algae, are considered stable-state 
systems (Chapman 1981; Filbee-Dexter and Scheib-
ling 2014), and various feedback mechanisms have 
been cited to enable them to persist or resist to minor 
disturbances. Firstly, sea urchins themselves can con-
tribute to the resilience of these systems, preventing 
kelp recruitment by continuously scraping calcareous 
crusts (Chapman 1981; Filbee-Dexter and Scheib-
ling 2014). However, the persistence of the coral-
line crustose algae in our experimental panels is not 
related to this mechanism as they were suspended 
from wharves, and therefore inaccessible to benthic 
fauna like sea urchins. On the other hand, as chemi-
cal cues, some characteristics of the crustose coralline 
algae can induce fouling or contrarily suppress set-
tlement of marine organisms larval and spores. Fur-
thermore, larvae can use those biotic cues to select 

attachment sites. For example, in the north shore of 
Moorea, French Polynesia, Price (2010) found cor-
als recruited more frequently to one species of CCA, 
experiencing increased growth and survivorship 
on top of ‘preferred’ CCA. Other authors detected 
similar responses, showing that CCA can reduce set-
tlement of potential competitors (see Bulleri et  al. 
2002, and references therein) or structure coral reef 
communities through suppressions of macroalgae 
(Vermej et al. 2011). In the present study, we found 
suppression in recruiting some species on top of CCA 
compared to those colonizing the neighbouring bare 
rock. More importantly, some of them, such as P. 
alba and B. niger, are categorized as NIS, supporting 
the capacity of CCA as key players in determining 
the colonization process of macrofoulers and, conse-
quently, on the biotic resistance or resilience of these 
systems. Thus, our findings suggest that the mecha-
nism that helps prevent recruitment on top of calcare-
ous crusts may be highly relevant in determining the 
stability and invasibility of these systems (Gestoso 
et al. 2017).

Habitat fragmentation positively affected the 
native biodiversity and total cover of the sam-
pled fouling assemblages. Our result contrasts with 
broader literature as fragmentation: (i) does not 
affect the number of species nor the structure of ben-
thic assemblages (Matias et  al. 2015 and references 
therein), or (ii) leads to lower abundances (biomass) 
and species richness, in agreement with the ‘SL > SS’ 
principle postulated by Diamond (1975), proposing 
that a single large patch of habitat (SL) holds more 
species than several small patches (SS) of the same 
total area). Although species richness has been a 
standard measure of diversity in disturbance studies, 
as species losses may be coupled with immigration, 
a global decrease in species richness does not nec-
essarily result in local decreases in species richness 
(Elo et al. 2016). The mechanism where a disturbance 
event (such as fragmentation) affects species diversity 
depends on both community assembly processes (e.g. 
dispersal) and on whether disturbance disrupts the 
processes or not (Elo et al. 2016). For example, build-
ing coastal defences results in the loss and fragmen-
tation of sedimentary habitats, and their replacement 
by artificial rocky habitats that become colonised by 
algae and marine animals (Moschella et al. 2005).

While habitat loss typically occurs concurrently 
with habitat fragmentation (Collinge 2009), and the 
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impact of edge proximity is exacerbated by fragmen-
tation (showed for vegetated habitats, see Colomer  
and Serra 2021 for references), we follow the proxy of 
fragmentation established in Matias et al. (2015), i.e., 
decreasing patch size without an overall habitat loss. 
For example, Matias et al. (2015) found that fragmen-
tation did not significantly affect the assemblages of 
macroinvertebrates, suggesting that fragmentation 
effects may be limited when associated with habitat 
reduction. However, these effects may well be posi-
tive through habitat complexity enhancement (Berto-
lini et al. 2020), determining species composition and 
predation risks while altering effects that have been 
frequently analysed in vegetated habitats (Colomer 
and Serra 2021). Changes in connectivity among 
patches depend on their spatial scale and configura-
tion, the organisms’ perception of changes in spa-
tial patterns, the surrounding matrix and dispersal 
among patches (see Matias et al. 2015 and references 
therein). Fragmentation increases the edge-to-area 
ratio of patches, potentially affecting the intensity 
of the wave action and the local nearshore hydrody-
namics and biota recruitment, and although there is 
a growing body of literature on the responses of ani-
mals to increases in edge habitat (i.e. ‘edge effects’), 
no consistent evidence have been found about the net 
effect in aquatic systems (Boström et  al. 2011). In 
addition, abiotic effects at these edges can also cre-
ate abrupt changes in the transition zone between the 
fragment and surrounding matrix habitats (as widely 
explored in terrestrial environments or marine sea-
grass meadows, Cadenasso et al. 2003, Colomer and  
Serra 2021). In the present study, the structural condi-
tions at the CCA side do not strongly differ from adja-
cent bare rocks. Even so, the forcing of interactions 
among assemblages after habitat fragmentation could 
influence the obtained positive response, as in the 
case of Spirorbis sp., favoured in fragmented treat-
ments, or B. niger, favoured in fragmented treatments 
when NIS are present but favoured in unfragmented 
treatments when they are absent. Many species 
avoid edge habitats, while others have their prolif-
eration favoured by less predation and/or increased 
resource availability (Wirth et  al. 2008), depend-
ing on if resources are concentrated around edged or 
divided between habitats (Ries and Sisk 2004), and 
can therefore exert a direct influence on the benthic 
community.

Surprisingly, we found that habitat fragmentation 
negatively affected NIS cover in uninvaded systems, 
mainly because of the great abundance of C. berthol-
letii in unfragmented (and uninvaded) systems. Many 
studies provide clear evidence of substantial and typi-
cally degrading impacts of habitat fragmentation on 
biodiversity and ecological processes across world 
environments (see, e.g. Hagen et  al. 2012; Haddad 
et  al. 2015; Pardini et  al. 2017). Habitat fragmenta-
tion implies decreasing habitat size and connectivity, 
although having the same habitat across fragmenta-
tion levels. Thus, specific disturbance patterns would 
benefit good colonizers, predicted to spread better 
in landscapes where disturbances are small and dis-
persed (i.e., fragmented habitats) (With 2004). Some 
taxa colonizing the fragmented habitats are success-
ful invaders of natural communities (as botryllids, 
Sheets et  al. 2016). Although not analysed in this 
study, the deployment time can also have a relevant 
role in the succession of assemblages. For example, 
although spatially variable across Madeira island, set-
tlement of B. niger showed maximum values on bare 
plates deployed in April in the study area (compared 
to January or September deployments, Ramalhosa 
et al. 2021).

In addition, fragmentation can affect particular spe-
cies interactions and marine food webs (Hagen et al. 
2012). For instance, fragments of surviving coral sur-
rounded by reef pavement and coral rubble created by 
coral bleaching can have consequences for top-down 
control as average food chains shorten, generalist spe-
cies proliferate, and phase shifts may occur (Hughes 
1994). Our results indicate that habitat fragmentation 
negatively affected the system by increasing the NIS 
potential for spreading. We found different effects of 
habitat fragmentation across invasion levels (i.e. a 
significant interaction), which became more appar-
ent in the fragmented habitats exposed to invaders. 
Inadequate dispersers may spread better in landscapes 
in which disturbances are concentrated in space, 
whereas good dispersers (as typically invasive spe-
cies are) are predicted to spread better in landscapes, 
where disturbances are small and dispersed (i.e., frag-
mented habitats) (With 2004). It is important to high-
light that our experiment mimicked the invasion pro-
cess by taxa with NCU status at panel scale, and our 
experimental results must be interpreted with cau-
tion. If invasive species spread primarily through dis-
turbed landscape areas, fragmentation can have more 
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substantial consequences in invaded habitats, as pre-
viously established NIS can proliferate in fragments 
(see e.g. B. niger behaviour). When unfragmented, 
the system should have more chances to activate a 
kind of biotic resistance against NIS dispersion, and 
therefore invasion could be controlled (remember that 
NIS on unfragmented and invaded systems accounted 
for 3.65 average percent cover and 19.5% similarity, 
whereas it rose to 4.8 average percent cover and 33% 
similarity in fragmented and invaded habitats (Av ab., 
sq root transformed data). Accordingly, we assume 
that our result was likely attributed to the strong effect 
of fragmentation on biotic resistance, in agreement 
with previously reported effects of other global stress-
ors known to reduce population sizes and biodiversity 
and that is exacerbated by fragmentation (see Haddad 
et al. 2015 and references therein).

In regions experiencing anthropogenic alteration, 
particularly habitat fragmentation and biotic homoge-
nization, such as coastal habitats, critical connectivity 
thresholds may be required to maintain the ecologi-
cal integrity of native communities (Howeth 2017). 
This study represents an additional contribution to the 
general understanding of interactive effects between 
specific global change drivers, namely habitat frag-
mentation and biological invasions. This experiment 
revealed changes only 3-months after fragmentation, 
but understanding the relationship between short and 
long-term dynamics is a substantial challenge that 
ecologists must tackle, mainly in the current human 
scenarios where fragmentation and biological inva-
sions will continue (Haddad et al. 2015). Our findings 
suggest that both fragmentation and invasion perspec-
tives synergistically aid in managing biological inva-
sions and conservation actions on marine ecosystems. 
Both processes deserve consideration when analysing 
biotic resistance to invasion in urban marine habi-
tats. The change in the importance of NIS across an 
invasion gradient suggests that conservation priori-
ties for unfragmented habitats should be established 
when considering management issues. Using Madeira 
Island as a model system, this study contributes to a 
better understanding of the ecology of invasive spread 
across fragmented landscapes.
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Appendix

See Fig. 5.
See Tables 4, 5, 6, 7, 8. 

Fig. 5   Photogras showing real synthetic assemblages (see 
Photographs in Fig. 1.)

Table 4   P-values of the univariate analysis of variance of macrofouling assemblages across Fragmentation (Fr), Invasion (In) and 
Substrate (Su) levels after 3 months of panel deployment (Results in Table 1)

N, total percentage cover (excluding dead and alive calcareous crusts and bare rock); H, Shannon diversity index; NCU, native, cryp-
togenic and unresolved species; NIS, non-indigenous species. Analyses were performed on untransformed data

Source df Total N H N-NCU H-NCU N-NIS H-NIS

Fr 1 0.01 0.0986 0.56 0.0794 0.123 0.469
In 1 0.144 0.8757 0.764 0.334 0.32 0.271
Su 1 0.001 0.2537 0.001 0.7649 0.081 0.475
Fr × In 1 0.487 0.1195 0.989 0.2352 0.577 0.764
Fr × Su 1 0.213 0.0851 0.2 0.3939 0.928 0.124
In × Su 1 0.515 0.9307 0.54 0.6762 0.276 0.977
Fr × In × Su 1 0.345 0.8108 0.46 0.2174 0.9 0.243
Res 32
Total 39
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Table 5   P-values of the univariate analysis of variance of relevant macrofouling taxa across Fragmentation (Fr), Invasion (In) and 
Substrate (Su) levels after 3 months of panel deployment (Results in Table 3)

NIS are highlighted in bold

Source Df Spirorbis sp. S. dysteri P. alba MS C. bertholletii D. corolla B. niger Crisia sp

Fr 1 0.002 0.033 0.96 0.694 0.945 0.064 0.05
In 1 0.974 9.17E-01 0.741 0.016 0.045 0.428 0.599
Su 1 0.001 0.003 0.003 0.179 0.672 0.38 0.149
Fr × In 1 0.214 0.823 0.876 0.582 0.461 0.085 0.006
Fr × Su 1 0.455 0.041 0.653 0.576 0.506 0.645 0.408
In × Su 1 0.599 0.755 0.588 0.209 0.526 0.514 0.877
Fr × In x Su 1 0.072 0.703 0.646 0.463 0.881 0.962 0.863
Res 32
Total 39

Table 6   SIMPER analysis on transformed data (sq root) showing the contribution of taxa to the average Bray–Curtis similarity 
between Substrate levels (B, bare rock and CCA, calcareous crust)

Average similarities (Sim.) and dissimilarities (Diss.) are indicated in brackets. Non-indigenous species are highlighted in bold

Status B (Sim. 46.45%) Av.Abund Av.Sim Sim/SD Contrib% Cum.%

U Spirorbis sp. Daudin, 1800 3.7 14.74 1.78 31.73 31.73
NIS Parasmittina alba Ramalho, Muricy & Taylor, 2011 2.22 6.8 1.17 14.63 46.36

NIS Botrylloides niger Herdman, 1886 2.11 4.6 0.66 9.91 56.27
N Salmacina dysteri (Huxley, 1855) 1.9 4.28 0.74 9.22 65.48
N Spirobranchus triqueter (Linnaeus, 1758) 1.45 4.21 0.88 9.07 74.56
U Crisia sp. Lamouroux, 1812 1.36 3.24 0.76 6.98 81.53

CCA (42.80%) Av.Abund Av.Sim Sim/SD Contrib% Cum.%

U Crisia sp. Lamouroux, 1812 2.26 10.67 1.36 24.92 24.92
U Spirorbis sp. Daudin, 1800 1.88 7.57 0.87 17.68 42.6
U Amphipod sp. 1.4 5.1 0.9 11.92 54.52
U Unknown 1.3 3.97 0.78 9.27 63.79
NIS Distaplia corolla Monniot F., 1974 1.35 3.95 0.65 9.24 73.03
NIS Cradoscrupocellaria bertholletii (Audouin, 1826) 1.27 3.93 0.59 9.18 82.21

B and CCA (Diss. 62.37%) Group B 
Av.Abund

Group CCA 
Av.Abund

Av.Diss Diss/SD Contrib% Cum.%

U Spirorbis sp. Daudin, 1800 3.7 1.88 7.27 1.27 11.66 11.66
NIS Botrylloides niger Herdman, 1886 2.11 1.57 6.71 0.95 10.75 22.42
NIS Parasmittina alba Ramalho, Muricy & Taylor, 2011 2.22 0.66 5.75 1.44 9.23 31.64

U Crisia sp. Lamouroux, 1812 1.36 2.26 5.37 1.25 8.62 40.26
N Salmacina dysteri (Huxley, 1855) 1.9 0.48 5.15 1.19 8.26 48.52
NIS Distaplia corolla Monniot F., 1974 1.49 1.35 4.8 1.07 7.7 56.21
U Amphipod sp. 1.1 1.4 4.01 1.25 6.43 62.64
NIS Cradoscrupocellaria bertholletii (Audouin, 1826) 0.96 1.27 3.9 1.2 6.25 68.89

N Spirobranchus triqueter (Linnaeus, 1758) 1.45 0.62 3.85 1.3 6.17 75.06
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Table 7   SIMPER analysis on transformed data (sq root) shows taxa’s contribution to the average Bray–Curtis similarity between 
Fragmentation and Invasion levels

Average similarities (Sim.) are indicated in brackets. NIS are highlighted in bold

Status Unfrag-Uninv (Sim. 43.58%) Av.Abund Av.Sim Sim/SD Contrib.% Cum.%

U Spirorbis sp. 3.69 17.9 1.52 41.08 41.08
NIS Cradoscrupocellaria bertholletii 1.8 9.23 1.14 21.17 62.25
NIS Botrylloides niger 1.75 5.53 0.82 12.7 74.95
N Spirobranchus triqueter 1.12 2.8 0.68 6.42 81.37

Unfrag-Inv (Sim. 47.98%) Av.Abund Av.Sim Sim/SD Contrib.% Cum.%

U Spirorbis sp. 3.49 17.97 2.45 37.45 37.45
U Crisia sp. 2.07 10.1 1.47 21.06 58.5
NIS Distaplia corolla 2.11 6.02 0.84 12.55 71.06
NIS Parasmittina alba 1.54 3.31 0.65 6.9 77.95

Frag-Uninv (Sim. 44.06%) Av.Abund Av.Sim Sim/SD Contrib.% Cum.%

U Crisia sp. 2.69 10.06 1.21 22.83 22.83
U Amphipod sp. 1.6 5.52 1.1 12.52 35.35
U Spirorbis sp. 1.82 5.34 1.14 12.11 47.45
NIS Botrylloides niger 1.88 4.38 0.69 9.93 57.39
NIS Distaplia corolla 1.31 3.72 0.84 8.45 65.84
NIS Parasmittina alba 1.52 3.55 0.65 8.07 73.91
N Salmacina dysteri 1.61 2.9 0.52 6.58 80.49

Frag-Inv (Sim. 41.76%) Av.Abund Av.Sim Sim/SD Contrib% Cum.%

NIS Botrylloides niger 3.11 9.77 0.89 23.39 23.39
U Amphipod sp. 2.05 6.8 1.23 16.29 39.67
U Spirorbis sp. 2.16 5.06 0.81 12.13 51.8
U Crisia sp. 1.6 4.61 0.87 11.04 62.84
NIS Distaplia corolla 1.71 3.97 0.88 9.5 72.34
U Unknown 1.28 2.98 0.52 7.14 79.49
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Table 8   SIMPER analysis on transformed data (sq root) shows taxa’s contribution to the average Bray–Curtis similarity between 
Fragmentation and Invasion levels

Unfrag_Uninv and Unfrag_Inv (Diss. 58.52%) Unfrag_
Uninv 
Av.Abund

Unfrag_Inv 
Av.Abund

Av.Diss Diss/SD Contrib% Cum.%

NIS Distaplia corolla 0.55 2.11 6.49 1.13 11.09 11.09
U Spirorbis sp. 3.69 3.49 6.18 1.15 10.56 21.65
NIS Botrylloides niger 1.75 0.63 5.72 1.19 9.77 31.42
U Crisia sp. 0.88 2.07 5.33 1.3 9.1 40.53
NIS Parasmittina alba 1.31 1.54 5.15 1.22 8.8 49.33
NIS Cradoscrupocellaria bertholletii 1.8 0.74 5.04 1.29 8.61 57.94
N Spirobranchus triqueter 1.12 1.2 3.94 1.23 6.74 64.68
N Salmacina dysteri 0.62 1.09 3.8 1.16 6.5 71.18
C Diplosoma listerianum (Milne Edwards, 1841) 0.87 0.5 3.31 0.74 5.66 76.83

Unfrag_Uninv and Frag_Uninv (Diss. 62.62%) Unfrag_
Uninv 
Av.Abund

Frag_Uninv 
Av.Abund

Av.Diss Diss/SD Contrib.% Cum.%

U Spirorbis sp. 3.69 1.82 7.8 1.3 12.45 12.45
U Crisia sp. 0.88 2.69 7.19 1.15 11.48 23.93
NIS Botrylloides niger 1.75 1.88 5.41 1.27 8.64 32.57
NIS Cradoscrupocellaria bertholletii 1.8 1.22 4.81 1.31 7.69 40.26
NIS Parasmittina alba 1.31 1.52 4.79 1.18 7.65 47.91
N Salmacina dysteri 0.62 1.61 4.79 1.06 7.65 55.56
U Amphipod sp. 0.57 1.6 4.14 1.3 6.61 62.17
NIS Distaplia corolla 0.55 1.31 3.91 1.19 6.25 68.42
N Spirobranchus triqueter 1.12 0.93 3.45 1.21 5.5 73.92
C Diplosoma listerianum 0.87 0.72 3.27 1.01 5.22 79.13

Unfrag_Inv and Frag_Uninv (Diss. 57.24%) Unfrag_Inv 
Av.Abund

Frag_Uninv 
Av.Abund

Av.Diss Diss/SD Contrib% Cum.%

U Spirorbis sp. 3.49 1.82 6.14 1.28 10.73 10.73
NIS Botrylloides niger 0.63 1.88 5.21 1.14 9.1 19.83
NIS Distaplia corolla 2.11 1.31 5.09 1.21 8.9 28.73
U Crisia sp. 2.07 2.69 4.91 1.16 8.58 37.31
N Salmacina dysteri 1.09 1.61 4.65 1.34 8.13 45.44
NIS Parasmittina alba 1.54 1.52 4.65 1.25 8.13 53.56
U Amphipod sp. 0.79 1.6 4.01 1.28 7 60.56
NIS Cradoscrupocellaria bertholletii 0.74 1.22 3.69 1.08 6.45 67.01
N Spirobranchus triqueter 1.2 0.93 3.46 1.22 6.05 73.07
NIS Virididentula dentata (Lamouroux, 1816) 0.47 0.94 3.18 0.92 5.55 78.62

Unfrag_Uninv and Frag_Inv (Diss. 63.96%) Unfrag_
Uninv 
Av.Abund

Unfrag_
Uninv 
Av.Abund

Av.Diss Diss/SD Contrib% Cum.%

NIS Botrylloides niger 1.75 3.11 8.5 0.95 13.29 13.29
U Spirorbis sp. 3.69 2.16 8.32 1.27 13.01 26.31
U Amphipod sp. 0.57 2.05 5.22 1.52 8.16 34.47
NIS Distaplia corolla 0.55 1.71 4.88 1.1 7.63 42.1
NIS Parasmittina alba 1.31 1.4 4.88 1.18 7.62 49.73
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