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Abstract Invasive alien species threaten tropical

grasslands and native biodiversity across the globe,

including in the natural mosaic of native grasslands

and forests in the Shola Sky Islands of the Western

Ghats. Here, grasslands have been lost to exotic tree

invasion (Acacias, Eucalyptus, and Pines) since the

1950s, but differing invasion intensities between these

species and intermixing with native species constitutes

a major challenge for remotely sensed assessments. In

this study, we assess the accuracy of three satellite and

airborne remote sensing sensors (Sentinel-1 radar

data, Sentinel-2 multispectral data and AVIRIS-NG

hyperspectral data) and three machine learning

classification algorithms to identify the spatial extent

of native habitats and invasive tree species. We used

the support vector machine (SVM), classification and

regression trees (CART), and random forest (RF)

algorithms implemented on the Google Earth Engine

platform. Results indicate that AVIRIS-NG data in

combination with SVM produced the highest classi-

fication accuracy (98.7%). Fused Sentinel-1 and

Sentinel-2 produce 91% accuracy, while Sentinel-2

alone yielded 91% accuracy; but only with higher

coverage of ground control points. The hyperspectral

data (AVIRIS-NG) was the only sensor that permitted

distinguishing recent invasions (young trees) with

high precision. We suspect that large areas will have to

be mapped and assessed in the coming years by

conservation managers, NGOs to plan restoration or to

assess the success of restoration activities, for which a

choice of sensors may have to be made based on the

age of invasion being mapped, and the quantum of

ground control data available.
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Introduction

Invasive alien tree species threaten ecosystem integ-

rity by modifying the structure and function of

ecosystems and have negative impacts on ecosystem

services delivery and native biodiversity (Le Maitre

et al. 2011; Mooney 2005). In particular, three genera

of invasive alien trees—acacias, pines and eucalyptus

species are often listed as the worst offenders in South

Africa (Gaertner et al. 2017; McConnachie et al.

2015), Brazil (de Abreu and Durigan 2011), Argentina

(Zalba et al. 2008), Uruguay (Six et al. 2013), Kenya

(Pellikka et al. 2009), New Zealand (Ledgard 2001),

Hawaiian Islands (Daehler 2005) and India (Ara-

sumani et al. 2019). These trees are native to Australia

and were introduced to several tropical and subtropical

countries in the nineteenth century (Richardson 1998).

These trees were largely established on grasslands and

shrublands which were historically classified as

wastelands (Joshi et al. 2018; Rundel et al. 2014).

All of these species are fast-growing, have high water

use and show potential for encroachment into native

grasslands and scrublands. Acacias, in particular form

dense stands, maintain a high leaf area all through the

year and have high evapotranspiration which impacts

water yields of infested catchments (Dye and Jarmain

2004). In South Africa, these species have also had

negative impacts on grassland birds (Allan et al. 1997;

Armstrong and Van Hensbergen 1995), small mam-

mals (Armstrong and Van Hensbergen 1995), inver-

tebrates (Donnelly 1985) and plants (Richardson and

Van Wilgen 1986).

In the Western Ghats, tropical montane grasslands,

also known as Shola grasslands have been lost to

exotic tree invasion at a rapid pace (Arasumani et al.

2018, 2019). This widespread invasion has impacted

various faunal communities, including threatened

species like the Nilgiri Pipit (Lele et al. 2020) and

Nilgiri Tahr (Alempath 2008) in the Western Ghats.

These trees were primarily established outside wildlife

preserves and protected areas since the 1950s. How-

ever, today, the invasion of exotic trees is rapidly

encroaching critical grassland landscapes, including

protected areas (Arasumani et al. 2019; Joshi et al.

2018). Our prior research using Landsat data (Ara-

sumani et al. 2019) indicates that 23% (340 sq. km.) of

montane grasslands have been lost to invasive exotic

tree stands within the past five decades. This data,

however, had included all exotic trees as a single class

due to the limitations with the spectral and spatial

resolution of LANDSAT imagery. Maps classifying

multiple invasive species into a single-class have

limitations as some species, like Acacia and Pine, may

invade remnant grasslands more rapidly than others. In

the Western Ghats, Acacia mearnsii and Pinus patula,

both listed among the most invasive species in the

World (IUCN-GISD), co-occur with less invasive

timber species as well as with native tropical forests

(Joshi et al. 2018). Such a complex landscape makes

the detection and estimation of the spread of the

invasive trees challenging. One of the major chal-

lenges for conservation managers is to detect the

invasion front, which typically consists of sparsely

dispersed seedlings and saplings that are difficult to

detect using remote sensing imageries (but see Ara-

sumani et al. 2020). Detecting this invasion front is,

however, critical in managing the invasion front as is

identifying the best combination of algorithms and

remote sensing platforms that can be used by conser-

vation agencies in tropical areas across the globe.

Choice of imageries

Field-based, landscape-scale, invasive species map-

ping techniques are known to be challenging in

tropical forests. Many researchers have attempted to

identify broad forest type categories using space-borne

and airborne images (Arasumani et al. 2018; Erinjery

et al. 2018; Foody and Hill 1996; Shimizu et al. 2019).

Discriminating between native and non-native spe-

cies, however, remains challenging with medium

resolution satellite data due to extensive intermixing

of species and canopy heterogeneity. Such complex

landscape scenarios may require high spatial and

spectral resolution imageries for appropriately classi-

fying invasive species. Researchers have also

employed microwave data (Chen et al. 2018; Laurin

et al. 2013; Wheeler et al. 2017), recently launched

Sentinel-2 multispectral images (Laurin et al. 2013;

Wheeler et al. 2017), and combinations of Sentinel-1

SAR (Synthetic Aperture Radar) images with Sen-

tinel-2 multispectral images to improve the classifica-

tion accuracy of tropical forests types and woody

invasive species (Erinjery et al. 2018; Kattenborn et al.

2019; Zhang et al. 2019). A few studies have also

suggested that hyperspectral images could produce

high accuracy for mapping tree species compared to
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the multispectral datasets (Awad 2018; George et al.

2014; Thenkabail et al. 2004).

Choice of classification algorithms

Several classification algorithms have been used for

classifying hyperspectral, multispectral, and SAR

data: of these, support vector machine (SVM; Burgess

et al. 2007), random forest (RF; Breiman 2001), and

classification and regression tree (CART; Breiman

et al. 1984) have been the most widely used especially

on the publicly-available Google Earth Engine Plat-

form (Gorelick et al. 2017). Although some studies

pick the best classification algorithm for classifying

hyperspectral data; all three algorithms are used for

mapping landcover on both multispectral and SAR

images (Lu et al. 2018) with perhaps differences in

their training data requirements. The SVM is an

iterative, non-parametric machine learning algorithm

widely used for classifying hyperspectral images

(Mountrakis et al. 2011). The SVM algorithm does

not depend on the statistical distribution of the data but

relies on training data adjacent to the class boundary to

deliver high accuracy even with limited training data

for classification (Melgani and Bruzzone 2004). The

random forest (RF) algorithm is a non-parametric

classifier that operates by generating a number of

classification trees and selecting the mode of the

predictions (Breiman 2001). CART models use recur-

sive binary splits on predictor data in a decision tree

framework to produce classifications at the end nodes

of the trees. By nature of the classification process,

CART models are considered somewhat easier to

interpret compared to RF-based models (Lawrence

andWright 2001). Notably, RF and CART approaches

are widely used to classify the remote sensing images

but have higher training data requirements relative to

SVM models (Delalay et al. 2019; Shaharum et al.

2020).

Objectives

Overall, this study aims to identify appropriate data

sources and algorithms to identify exotic tree species

on the Shola Sky Islands of the Western Ghats.

Specifically, we test the ability of (a) AVIRIS-NG

(hyperspectral), Sentinel-2B (multispectral) and Sen-

tinel-1B (microwave) data with (b) SVM, Random

Forest, and CART classification algorithms to

discriminate invasive woody species (Acacia, Pine

and Eucalyptus) from native tropical trees in the Shola

Sky Islands. The overall goal is to test the efficacy of

these imageries in detecting the invasion front—the

ecotone where conservation efforts can be targeted.

Methods

Study area

For the purposes of this study, we selected an area

admeasuring approximately 12 sq. km. in the Nilgiris

mountains (Fig. 1) that has a gradient of woody

invasive species infestation across this landscape. The

study area contains natural habitats such as montane

grasslands, montane forests and water bodies, and

non-native woody trees—Acacia spp, Eucalyptus spp,

and Pinus spp (Fig. 2).

Field data

In our study region, native forests are generally

intermixed with non-native trees (Acacia spp., Pinus

spp., and Eucalyptus spp.). However, only acacias

were observed to be present at the actual grassland-

forest invasion front (i.e., pines and eucalyptus were

generally established in distinct stands). We collected

the unique land cover GPS points using simple random

sampling where target species land covered in excess

of a 30 m*30 m footprint to obtain ‘pure’ endmember

spectral signatures. We used 1049 ground-truth points

of montane grasslands, forest, acacias, eucalyptus,

pines and water bodies for image classification. For all

locations, we ensured that the positional dilution of

precision (PDOP) was lower than the AVIRIS-NG,

Sentinel-1, and Sentinel-2- spatial resolutions (4 m

and 10 m). To detect the Acacia spp. invasion front,

we collected 73 additional ground truth locations

concurrent with satellite imagery. We assessed the

efficiency of acacia invasion front mapping with

classifications produced by the three different image

datasets and algorithms on the Google Earth Engine

Platform as described below.

Image data

We obtained an AVIRIS-NG (Airborne Visible

InfraRed Imaging Spectrometer—Next Generation)
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apparent at-surface reflectance products (March 2018)

from the Jet Propulsion Laboratory (JPL), National

Aeronautics and Space Administration data portal

(NASA—https://avirisng.jpl.nasa.gov/dataportal/).

AVIRIS-NG data have high spatial (4 m) and spectral

(5 nm) spectral resolution with 425 spectral bands

spanning 380–2510 nm.We excluded noisy bands and

water vapour absorption bands (bands 1–10, 195–207,

287–316, 325–329) from the AVIRIS-NG dataset.

The Sentinel-2 Level-2 ground reflectance product

was not available for our study area on the GEE

platform for 2018. We, therefore, substituted this with

the Sentinel-2 Level-1 product from the USGS (United

States Geological Survey) Earth Explorer portal

(https://earthexplorer.usgs.gov/), and we performed

atmospheric corrections using Sen2Cor v2.8 in the

Sentinel Application Platform (SNAP) to convert at-

sensor radiance imagery to apparent at-surface

reflectance (http://step.esa.int/main/snap-supported-

plugins/sen2cor/sen2cor_v2-8/). We standardized all

bands to a 10 m spatial resolution for all subsequent

analyses.

We obtained the Sentinel-1 SAR Ground Range

Detected (GRD) product (March 2018) directly from

the GEE platform. This data was available as

calibrated and ortho-corrected and was pre-processed

using the Sentinel-1 toolbox for thermal noise

removal, radiometric calibration, and terrain correc-

tion (using the SRTM 30 m spatial resolution digital

elevation model). The final terrain-corrected data were

log-transformed to decibels. We used Sentinel-1 VH

(vertical transmit and horizontal receive) and VV

(vertical transmit and vertical receive) polarization for

image classification. We fused the Sentinel-1 (VV,

VH) bands (spatial resolution 10 m) and Sentinel-2 (2,

3, 4, 5, 6, 7 and 8) bands (spatial resolution 10 m and

20 m) for all subsequent analyses.

Classification algorithms

All image classifications were conducted using the

Google Earth Engine (GEE) platform. We chose GEE

to enable the creation of a workflow that can be

utilized by conservation managers in other regions to

track and manage invasions. We tested a combination

Fig. 1 a Study area—Nilgiri Hills. b A—AVIRIS-NG false colour composite image, B—Sentinel—2 false colour composite image,

C—Sentinel—1 VV polarisation image with training data and D—Sentinel—2 VH polarisation with validation data
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of Random Forest (RF; Breiman 2001), Classification

and Regression Tree (CART; Breiman et al. 1984),

and Support Vector Machine using radial basis

functions (SVM; Burges 1998) to assess the skill of

classification.We iterated the random forest trees from

0 to 50. We find that the RF classification accuracy

improves as the number of trees increases; however,

this pattern is seen in up to 6 trees. The classifier’s

performance continues almost identical to 50 trees.

For the SVM, parameter values (gamma and cost)

were determined by using an iterative grid search;

gramma 0.6 and cost 220 produced the high classifi-

cation accuracy.

We assessed the accuracy of the classifications

using an additional set of 300 ground truth points held

out from all preceding analyses and estimated accu-

racy metrics (overall accuracy, user accuracy, pro-

ducer accuracy and, Kappa coefficient) from the

confusion matrix (Congalton 1991; Congalton and

Green 2019).

Results

Comparison of different classification

We observed the highest overall accuracy (OA;

98.7%) and kappa coefficient (Kappa; 0.984) in

AVIRIS-NG dataset with SVM classification (Table 1,

Fig. 3), followed by S1 ? S2 datasets with CART

(OA—91.3%, Kappa—0.896), Sentinel-2 with SVM

(OA—91.0%, Kappa—0.892) and Sentinel-2 with RF

(OA—91.0%, Kappa—0.892).

The highest overall accuracy in the AVIRIS-NG

dataset was recorded with SVM classification (OA—

98.7, Kappa—0.984), followed by Random Forest

classification (OA—88.7 Kappa—0.864) and CART

classification (OA—85.7 Kappa—0.828). (Table 1,

Fig. 4).

The highest overall accuracy for Sentinel-2 data

was also obtained with SVM classification (OA—

91.0, Kappa—0.892) and RF classification (OA—

91.0, Kappa—0.892), followed by CART

Fig. 1 continued
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classification (OA—86.3, Kappa—0.836) with S2

bands of 2, 3, 4, 5, 6, 7 and 8 (Table 1, Fig. 5).

The S1 ? S2 datasets provided the highest overall

accuracy with CART classification (OA—91.3,

Kappa—0.896) and RF classification (OA—90.0,

Kappa—0.88), followed by SVM classification

(OA—82.0, Kappa—0.784) with Sentinel-2 bands 2,

3, 4, 5, 6, 7 and 8 and Sentinel-1 VV and VH

polarisations (Table 1, Fig. 6).

The Sentinel-1 dataset resulted in low accuracy of

all classifiers compared to the other datasets with the

highest overall accuracy with RF classification (OA—

49.3, Kappa—0.392), and CART classification (OA—

48.0, Kappa—0.376), followed by SVM classification

Fig. 2 Field photographs; a Montane grasslands, b Montane forests, c Pine, d Eucalyptus, e Acacia, and f Acacia invasion front
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(OA—48.3, Kappa-0.38) with VV and VH polarisa-

tions (Table 1, Fig. 7).

Best producer and user accuracy

The highest producer accuracy and user accuracy were

obtained from the AVIRIS-NG dataset with SVM of

all classes. Both Sentinel-2 imageries with SVM

classification, and S1 ? S2 datasets with CART

classification produced high producer & user accuracy

in detecting water, forests and grasslands, but had

lower accuracy in identifying acacias, eucalyptus and

pine. However, Sentinel-1 performed poorly, and the

user and producer accuracy of all the classes was low

(\ 50%) except for water (Table 1).

Number of training samples vs classification

accuracy

With limited data (25% of training samples), the

AVIRIS-NG dataset with SVM classification

performed well (OA—94%, Kappa—0.93) but RF

and CART classifications yielded a lower OA (81%;

Table 2). The Sentinel-2 with RF classification

performed modestly (OA—89%, Kappa—0.85) with

25% of training samples. We observed that AVIRIS-

NG dataset with SVM classification produced very

high OA (97%) even with the 50% per cent of training

samples; however, Sentinel-2 and S1 ? S2 datasets

yielded an overall accuracy of less than 90%. We

noted that the classification accuracy for S1 ? S2

datasets did not vary much with partial training

datasets of 75% when compared to the complete

training data set (Table 2).

Detecting the acacia invasion front

We observed high accuracy in detecting acacia

invasion front with AVIRIS-NG dataset with SVM

classification (97%). The RF and CART classification,

however, produced lower accuracy (\ 40%). Moder-

ate accuracy was observed in the Sentinel-2 with RF

Table 1 Image classification results

Landcover class AVIRIS (SVM) AVIRIS (RF) AVIRIS (CART) S2 (SVM) S2 (RF) S2 (CART)

UA PA UA PA UA PA UA PA UA PA UA PA

Montane forest 100.0 94.0 100.0 96.0 100.0 90.0 98.0 100.0 96.1 98.0 89.3 100.0

Montane grasslands 100.0 100.0 100.0 100.0 100.0 98.0 100.0 98.0 100.0 98.0 100.0 90.0

Acacias 98.0 98.0 86.0 86.0 74.1 86.0 88.0 88.0 78.0 92.0 69.7 92.0

Pines 100.0 100.0 70.8 92.0 71.0 88.0 79.6 86.0 85.7 84.0 89.3 78.0

Eucalyptus 98.0 100.0 78.4 58.0 76.5 52.0 80.4 74.0 88.1 74.0 81.1 60.0

Water 100.0 100.0 100.0 100.0 96.2 100.0 100.0 100.0 100.0 100.0 100.0 98.0

Overall accuracy 98.7 88.7 85.7 91.0 91.0 86.3

Kappa coefficient 0.984 0.864 0.828 0.892 0.892 0.836

Landcover class S1&2 (SVM) S1&2 (RF) S1&2 (CART) S1 (SVM) S1 (RF) S1 (CART)

UA PA UA PA UA PA UA PA UA PA UA PA

Montane forest 90.6 96.0 90.9 100.0 98.0 100.0 33.3 38.0 31.1 38.0 28.6 20.0

Montane grasslands 88.6 78.0 100.0 92.0 100.0 98.0 75.9 44.0 75.0 54.0 67.6 46.0

Acacias 76.2 90.0 79.3 92.0 78.3 94.0 28.0 52.0 24.7 48.0 26.6 58.0

Pines 76.2 64.0 88.9 80.0 88.9 80.0 46.7 42.0 52.4 44.0 48.6 36.0

Eucalyptus 76.2 64.0 82.6 76.0 84.8 78.0 40.7 22.0 53.3 16.0 44.1 30.0

Water 96.2 100.0 100.0 100.0 100.0 98.0 93.9 92.0 98.0 96.0 96.1 98.0

Overall accuracy 82.0 90.0 91.3 48.3 49.3 48.0

Kappa coefficient 0.784 0.88 0.896 0.38 0.392 0.376

S1, Sentinel-1; S2, Sentinel-2; UA, user accuracy; PA, producer accuracy
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Fig. 3 The best-classified

maps of native and non-

native habitats. a AVIRIS-

NG with SVM, b S1 ? S2

datasets with RF, c Sentinel-
2 with SVM, and d Sentinel-

2 with RF
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classification (60%) followed by SVM classification

(58%) and then CART classification (38%). The

S1 ? S2 datasets and Sentinel-1 alone produced less

than 40% accuracy across all classifiers.

Discussion

The systematic monitoring and mapping of invasive

alien species are essential for the conservation and

restoration of tropical grasslands. Therefore, spatially-

explicit information on native habitats and non-native

species is critical for sustainable forest management

and forecasting landscape changes into the future.

Fig. 4 The AVRIS-NG classified maps of native and non-native habitats. a Classified with SVM, b RF, c CART
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Image data sources

In this study, we found that the hyperspectral dataset

(AVIRIS-NG in this study) was the ideal platform for

discriminating between native trees and non-native

invasive trees with high precision. The AVIRIS-NG

dataset accurately delineated the edges of non-native

trees and native habitats, likely due to its high spatial

and spectral resolution. The S1 ? S2 datasets com-

prising multispectral and radar data proved to be a

reasonable alternative but were only marginally better

than using Sentinel-2 images alone. Finally, Sentinel-

1 data did not produce sufficient accuracy for classi-

fying and differentiating the invasive species from the

native species in the tropical montane habitats. Similar

results have been reported in classifying forest types

Fig. 5 The Sentinel-2 classified maps of native and non-native habitats. a Classified with SVM, b RF, and c CART
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with Sentinel-1 data in these tropical regions. Sentinel-

1 data may, however, be probably useful when the

Sentinel-2 images are affected by clouds (Erinjery

et al. 2018).

Our study supports results obtained by others using

hyperspectral remote sensing data for tropical tree

species mapping efforts (Hyperion data—30 m spatial

resolution 293 and 10 nm spectral resolution; George

et al. 2014; Thenkabail et al. 2004). While Sentinel-1

images have shown to be useful for detecting and

classifying water bodies in numerous studies (e.g.

Bioresita et al. 2018; Hu et al. 2020), we were unable

to map invasive woody species accurately. This may

be due to similarities in the backscattering SAR

signatures of native and non-native species. Sentinel-1

also has a shorter wavelength (C-band) that may not be

Fig. 6 The Sentinel-1 and Sentinel-2 classified maps of native and non-native habitats. a Classified with SVM, b RF, and c CART
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able to differentiate the forest types based on the

height and volume information where longer wave-

lengths (L-band) may be of advantage (Mitchell et al.

2014).

Although our study reports a relatively high accu-

racy of the combined Sentinel-1 and Sentinel-2

imageries, the difference with the use of only

Sentinel-2 was marginal; we believe that this is due

to our specific land cover types since Sentinel-1 image

showed similar texture of all three invasive species.

This, however, is different from other studies that have

reported relatively higher accuracy in the classifica-

tion from the combined Sentinel-1 and Sentinel-2

imageries for mapping different forest types (Erinjery

et al. 2018; Kattenborn et al. 2019), agricultural

applications (Veloso et al. 2017), mapping wetlands

Fig. 7 The Sentinel-1 classified maps of native and non-native habitats. a Classified with SVM, b RF, and c CART
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(Slagter et al. 2020), extracting urban extents (Iannelli

and Gamba 2019), and delineating water bodies

(Ahmad et al. 2019).

Classification algorithms

We observed the highest classification accuracy when

using the SVM algorithm for classifying the hyper-

spectral data relative to RF and CART algorithms.

This is in agreement with several other studies that

have also observed SVM to be highly suitable for

classifying hyperspectral data (Burai et al. 2015;

George et al. 2014; Lim et al. 2019; Raczko and

Zagajewski 2017). Both RF & SVM algorithms

produced good classification accuracy with Sentinel-

2 images compared to CART, as also observed by Lu

et al. (2018). In our tests, we observe that CART is

reasonably accurate, but some grassland and acacia

invasions around the water bodies tended to be

misclassified with pine trees; this was also the issue

with a S1 ? S2 classification. Although SVM per-

formed well with Sentinel-2 data (91%), it produced

low accuracy for the classification with the S1 ? S2

datasets (82%). This is perhaps because the SVM

algorithm does not do well with noisy data typical to

Sentinel-1 data, and when target land cover class may

have similar backscattered textures.

While Sentinel-2 did fairly well in detecting

invasive species and natural habitats, we found that

the combination of AVIRIS-NG data with an SVM

classification model was the only sensor to detect

acacia invasion-front with high accuracy. While we

are not aware of other studies focusing on detecting

invasion fronts, AVIRIS-NG data have been success-

ful for mapping mangroves to the species (Chaube

et al. 2019) and for crop type identifications (Salas

et al. 2020).

In this research, we utilized medium (S1 and S2—

10 m) and high spatial resolution (AVIRIS-NG—4 m)

images for IAS mapping. We were, therefore, suc-

cessful in mapping the species at the pixel scale. We

suspect that sub-pixel classification methods may be

more suitable for data with spatial resolution images

over 30 m.

Influence of the number of ground truth points

We observed that a limited number of ground truth

points (* 25% of our points) were sufficient for

obtaining high accuracies when using hyperspectral

data (AVIRIS-NG). However, multispectral data

(Sentinel-2) seemed to require a higher density of

ground truth points ([ 50%) to get reasonable accu-

racies. If the study area is large, Sentinel-2 data might

need three times the number of ground truth points

than that required to classify a similar hyperspectral

image. Conversely, hyperspectral data (AVIRIS-NG)

is not available for all places, but data can be captured

using a UAV-borne hyperspectral sensor. Using an

Table 2 Accuracy assessment with 25%, 50%, 75% and 100% of training samples

OA

(25%)

Kappa

(25%)

OA

(50%)

Kappa

(50%)

OA

(75%)

Kappa

(75%)

OA

(100%)

Kappa

(100%)

AVIRIS-NG (SVM) 94.00 0.93 97.00 0.96 97.67 0.97 98.67 0.98

AVIRIS-NG (RF) 81.33 0.78 85.67 0.83 86.33 0.84 88.67 0.86

AVIRIS-NG

(CART)

73.00 0.68 84.00 0.81 85.33 0.82 85.67 0.83

Sentinel-2 (SVM) 80.33 0.76 89.67 0.88 91.33 0.90 91.00 0.89

Sentinel-2 (RF) 89.00 0.87 90.67 0.89 91.00 0.89 91.00 0.89

Sentinel-2 (CART) 87.67 0.85 89.00 0.87 89.67 0.88 86.33 0.84

Sentinel-1&2

(SVM)

65.67 0.59 72.67 0.67 80.00 0.76 82.00 0.78

Sentinel-1&2 (RF) 89.33 0.87 89.00 0.87 90.67 0.89 90.00 0.88

Sentinel-1&2

(CART)

87.67 0.85 90.33 0.88 88.33 0.86 91.33 0.90

OA overall accuracy
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UAV, however, might require significant effort and

investment for large study regions.

Influence of spatial and spectral resolution

We believe that the higher spatial resolution of

AVIRIS-NG dataset over S1 and S2 provides a

distinct advantage in distinguishing smaller native

forest patches from non-native trees. We found that

the S1 and S2 datasets were not able to detect acacia

invasion due to the lower spatial resolution compared

to AVIRIS-NG dataset.

The fine spectral resolution of AVIRIS-NG (span-

ning 425 spectral bands) compared to Sentinel-2 (8

spectral bands) helped discriminate between individ-

ual native and invasive species. Other studies have

shown similarly high species-level classification accu-

racies in complex landscapes (George et al. 2014;

Skowronek et al. 2017). Spectral signature overlaps in

the Sentinel-2 dataset resulted in lower average

accuracy in detecting pines and eucalyptus similar to

findings from Pu et al. (2012) and Marshall and

Thenkabail (2015).

Inferences for conservation managers

Mapping and distinguishing native trees from non-

native trees is an essential task for land managers for

Table 3 Recommendations for conservation managers

Data Best

classification

algorithms

Possible

applications

Advantages Limitations

Hyperspectral data (AVIRIS-

NG or UAV with

Hyperspectral sensor)

SVM 1. Invasive

species

mapping

2. Forest

species

mapping

3. Invasion

front

detection

1. Require limited ground

truth points for

classification

2. High precision outputs

1. Applicable for smaller areas

2. Presently, airborne and satellite data

are not available for all the areas

3. Capturing and processing UAV data

might be time-consuming

4. The data needs to be uploaded to the

Google Earth Engine (GEE) platform

Multispectral data (Sentinel-2) SVM & RF 1. Invasive

species

mapping

1. Data are available

globally

2. Data are already

available on the GEE

platform

3. Suitable for larger areas

1. Needs a high-density of ground truth

points

2. Limited accuracy compared to

hyperspectral data

3. Difficult to classify small patches of

forests

4. Invasion front mapping not possible

at the species level

Fused dataset—radar and

multispectral (S1 ? S2)

RF 1. Invasive

species

mapping

1. Data are freely

available in GEE

globally

1. Needs more ground truth points

2. Limited accuracy

3. Radar data contains backscatter

noise or similar backscatter signature

for all the species

4. Invasion front mapping not possible

at the species-level

Radar data (Sentinel-2) RF 1. Water

bodies

extraction

1. Data are freely

available in GEE across

the world

2. Water bodies can be

extracted during the

monsoon season

1. Invasive species and forest mapping

are not possible
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conserving native and endemic species, assessing fire

risks, and impacts on ecosystem services. We found

that airborne hyperspectral imagery provides the best

solution for detecting invasive species and the inva-

sion front. However, the availability of hyperspectral

images is a major limiting factor for most locations.

These data were only available only for 12 sq. km. of

our study area. Further, procuring such data can be

prohibitively expensive. Where these data are not

available, we recommend using Sentinel-2 satellite

data with SVM or RF algorithms as it offers a

reasonable compromise between accurately discrim-

inating native and non-native trees while allowing the

mapping of large spatial extents. Sentinel-2 images,

however, require a high-density of ground truth points

and may still be unsuitable for mapping young

invasion because of the limited spatial and spectral

resolution. Conservation managers may also consider

using RapidEye images with an object-oriented clas-

sification approach if they need to map a mixed-

species invasion front, and do not need to discriminate

among the invasive species along that front (Ara-

sumani et al. 2020). If the invasion front requires

constant monitoring in a smaller study area, an

unmanned aerial vehicle with a hyperspectral sensor

may be indispensable. Finally, we also recommend

that conservation managers and restoration NGOs use

the online Google Earth Engine (GEE) platform

because of the high processing power required for

processing high spatial and spectral resolution data.

We provide the GEE code used for this study in

Appendix 1. We have detailed our recommendations

for conservation managers in Table 3.

In this research, we demonstrate the advantage of

remotely-sensed hyperspectral, multispectral, and

radar data for mapping, and distinguishing native

and non-native invasive species using AVIRIS-NG,

Sentinel-1 and Sentinel-2 datasets. Although the high-

resolution, hyperspectral AVIRIS-NG dataset proved

superior, we were severely constrained by its spatial

availability. The multispectral Sentinel-2 data, on the

other hand, were useful in identifying native and non-

native trees across a large landscape. Combined with

the processing power of the GEE platform, this study

demonstrates the opportunity for species-specific

discrimination of invaded landscapes that can be

replicated across the globe.
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