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Abstract Biotic interactions and mutualisms in

particular have an important role in ecosystem struc-

ture and functioning as well as in the maintenance of

biodiversity. Understanding how communities

respond to the introduction of non-native species and

what determines the establishment of novel interac-

tions between native and introduced species will help

in determining the potential impacts of biological

invasions. The aims of this work were to assess

patterns of frugivory and fruit removal in environ-

ments with invasion of non-native fleshy-fruited plants

and to evaluate whether novel associations between

native frugivores and non-native plants are determined

by fruit traits. For this we selected eight study sites in

areas with different degrees of invasion of non-native

fleshy-fruited plants. In each site, we measured fruit

availability and fruit traits of native and non-native

plants. In addition, we conducted direct frugivory

observations. We found that native and non-native

fruits differed based on morphological trait variables,

such as fruit weight and dimensions. Only two birds,

Elaenia albiceps (smaller and migrant) and Turdus

falcklandii (bigger and resident), are the main frugiv-

orous present in the area. At the scale of the

community of frugivores, neither visit nor fruit

removal rates differ between natives and non-natives.

However, at the species scale, while E. albiceps

preferentially foraged on native plants, T. falcklandii

preferred non-natives. Thus, some generalist frugivo-

rous species like T. falcklandii can play a key role in

promoting the invasion of non-native plants.

Keywords Biological invasions � Fruit trait �
Frugivory � Interaction networks � Seed dispersal �
Patagonia

Introduction

Biotic interactions and mutualisms in particular have

an important role in ecosystem structure and func-

tioning as well as in the maintenance of biodiversity

(Stachowicz 2001; Bascompte et al. 2006; Valiente-

Banuet et al. 2015). Mutualistic species interact with

each other forming complex interaction networks that

support key ecological processes like pollination and

seed dispersal (Bascompte and Jordano 2014). A rapid

global environmental change is taking place as a

consequence of anthropic activity (Millennium

Ecosystem Assessment 2003), and understanding

how the main drivers of this global change—habitat

loss and fragmentation, climate change, air and water

pollution and biological invasions—affect ecological

interactions has become of great interest in recent
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years (Tylianakis et al. 2008; Valiente-Banuet et al.

2015).

Biological invasions, in particular, can be mediated

by mutualisms and in turn can influence native

mutualisms (Traveset and Richardson 2014). Endo-

zoochory—the dispersal of seeds via ingestion by

vertebrate animals—can be affected by the introduc-

tion of non-native dispersers, non-native plants, or

both (Traveset and Richardson 2006). As seed-

dispersal systems usually have a high level of gener-

alism (Bascompte et al. 2003), alien dispersers or

plants often establish effective interactions with native

species (Traveset and Richardson 2006). The integra-

tion of non-native species to plant–disperser mutu-

alisms may have consequences that range from

scenarios of degradation and meltdown to scenarios

of rescue and recovery. In the first case, invasion

increases through time helped by mutualisms; while in

the second case, the establishment of mutualisms

between native and non-native species contribute to

the maintenance or recovery of native biodiversity

(Buckley et al. 2006). Understanding what factors

determine the successful integration of non-native

species to seed-dispersal networks would be useful to

predict the outcomes of species introductions in terms

of novel interactions and community-level

consequences.

The successful establishment of novel seed-disper-

sal interactions between non-native plants and local

frugivores will depend on the capacity of frugivorous

animals to incorporate the novel fruits into their diet

(Garcı́a et al. 2014). Although seed-dispersal interac-

tions are considered generalized, there are some traits

of the non-native fruits and/or the recipient frugivore

community that could determine the occurrence or not

of specific interactions. For example, high generaliza-

tion and abundance in birds are associated with the

ability to disperse non-native plants (Garcı́a et al.

2014; Bitani et al. 2020). Trait matching is another

factor that facilitates the occurrence of interactions

between birds and non-native plants (Peralta et al.

2020). Bill dimensions can limit the size of fruits that

birds are able to swallow, so not all fruits available are

potential food sources (phenotypic trait matching,

Jordano 1995; González-Castro et al. 2015). As a

consequence, smaller fruits can be consumed by a

greater number of frugivorous species than bigger

fruits (Kitamura et al. 2002; Sebastián-González

2017). Seed size is another trait predicted to contribute

to the effective seed dispersal of non-native plants

(Bitani et al. 2020). In addition, birds may show

preference for non-native fruits that resemble native

fruits (Aslan and Rejmanek 2012). Fruit crop size, or

the number of ripe fruits displayed by plants, is a

strong predictor of bird fruit consumption (Palacio and

Ordano 2018). As a consequence, non-native plants

with big crop sizes could be consumed to a high degree

by frugivorous species, increasing their invasive

potential. Fruiting phenology can also influence fruit

consumption by local frugivores, because non-native

plants fruiting asynchronously to native plants could

be seen as an attractive resource in times of scarcity

(Vergara-Tabares et al. 2018).

In the temperate forest of Patagonia, the prevalence

of mutualisms of seed dispersal by endozoochory is

very high, and approximately the 50% of woody plant

species produce fleshy fruits (Aizen and Ezcurra 1998;

Aizen et al. 2002). In addition, several non-native

fleshy-fruited shrubs and trees were introduced and

many of them are becoming invasive (Lediuk et al.

2014; Iglesias 2015). These plants were usually

introduced for ornamental purposes or because they

produce edible fruits. They are characterized by

having high loads of showy, bright-colored fruits,

presumably consequence of anthropic selection

(Rovere et al. 2013; Iglesias 2015). On the other hand,

the assemblage of vertebrate seed dispersers is rela-

tively simple (Aizen et al. 2002). Birds represent the

main group of frugivorous animals, with Turdus

falcklandii (Turdidae) and Elaenia albiceps (Tyran-

nidae) as the key seed dispersers (Amico and Aizen

2005). These species differ in body size, bill gape and

residence period in the area (Amico and Aizen 2005;

Reid and Armesto 2011). Thus, we could expect that

their role as seed dispersers of non-native plants will

also be different.

The aims of this study were (1) to evaluate the

topological differences in plant–frugivore interaction

networks between areas with and without invasion of

non-native fleshy-fruited plants, (2) to explore mor-

phological differences between native and non-native

fleshy-fruits in the temperate forest of Patagonia and

(3) to evaluate whether native and non-native plants

are preferentially consumed by (i) the community of

frugivores or (ii) specific frugivorous species. Specif-

ically, we studied patterns of fruit consumption of

native and non-native plants by local frugivores in

several areas with different degree of invasion of
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fleshy-fruited plants. We expect that frugivory will

differ between native and non-native plants, and that

these differences will be associated with fruit traits and

body and beak size of frugivorous birds.

Methodology

Study area

Fieldwork was conducted in two protected areas

within the northern region of the temperate forest of

Patagonia: Nahuel Huapi National Park (40� 58�S, 71�
30� W, 710,000 ha) and Llao Llao Municipal Park

(41� 02� S, 71� 33� W, 1226 ha). Mean annual

temperature ranges between 5 and 8 �C. The rainfall

regime is strongly seasonal, with mean annual precip-

itation ranging between 1000 and 1200 mm, mainly

concentrated between April and August (Mermoz and

Martin 1987). Most of the area is covered by evergreen

forest dominated by Nothofagus dombeyi and Austro-

cedrus chilensis. The shrub stratum is dominated by

the endemic bamboo Chusquea culeou and several

fleshy-fruited plant species; the most common are

Aristotelia chilensis, Ribes magellanicum, Maytenus

boaria, Azara microphylla, Luma apiculata,

Rhaphithamnus spinosus, Schinus patagonicus, Ber-

beris darwinii and Berberis microphylla. Several areas

are invaded by non-native fleshy-fruited plants such as

Rubus idaeus, Rubus ulmifolius, Prunus avium,

Prunus cerasus and Sorbus acuparia. Most of these

species fruit during the summer (Amico and Aizen

2005; Garcı́a et al. 2010; Iglesias 2015).

The seed-dispersal interaction network in this

system is very simple, with a small assemblage of

seed dispersers mostly composed of birds and mam-

mals. The main frugivorous birds are the resident T.

falcklandii (24 cm body length, 7.2 mm bill gape) and

the migrant E. albiceps (13 cm body length, 4.3 mm

bill gape), present in the area only during the spring–

summer season (Amico and Aizen 2005). Other

species, including Scelorchilus rubecula (Rhinocryp-

tidae), Xolmis pyrope (Tyrannidae), Patagioenas

araucana (Columbidae), Curaeus curaeus (Icteridae)

and Phytotoma rara (Cotingidae) have been reported

as eventual frugivores, but their diet is predominantly

granivorous, herbivore or insectivorous (Armesto and

Rozzi 1989; Amico and Aizen 2005). A small endemic

marsupial (Dromiciops gliroides, Microbiotheriideae)

and the Andean fox (Lycalopex culpaeus, Canidae)

have also been reported as seed dispersers of several

fleshy-fruited plants (Aizen et al. 2002; Amico et al.

2009). The role of other groups of vertebrate dis-

persers like reptiles is relatively unimportant for the

dispersal of the majority of plant species (Aizen et al.

2002).

We selected eight study sites: four in areas without

invasion of non-native fleshy-fruited plants and four in

areas with invasion (Online Resource 1). The sites

selected had different compositions of fleshy-fruited

plant species, although most species (73%) were

present in two or more sites. We established one plot

100 9 30 m at each study site, including as many

fleshy-fruited plant species as possible. A total of

seven native plant species and four non-native species

were found across all plots (Table 1), with a mean

(± SE) of 5 ± 0.85 species per plot (Online Resource

2). Sites were distanced from each other by at least

2 km. A complete description of study sites is

available in Online Resource 2.

All adult fleshy-fruited plants present at each plot

were individually identified and georeferenced using

GPS. We measured the availability of ripe fruits of

each individual plant, fruit traits of all species, and

conducted frugivory observations. Samplings were

conducted in the summer, between December 2016

and March 2017; where the majority of plants fructify.

Sampling periods varied according to the fruiting

phenology of each particular plot and were defined

trying to maximize fruit availability in terms of

number of species and fruit abundance.

Interaction networks

To visualize the global structure of interaction

networks, a bipartite network approach was used

(Spotswood et al. 2012). The number of fruits

removed by birds (see below) in each plant species

was used as the measure of interaction strength. Two

interaction networks were constructed, one for areas

without invasion of fleshy-fruited plants and other for

areas with invasion. For this, fruit removal data from

the four sites in each category were pooled.

Fruit availability

The fruit availability per individual plant was esti-

mated once, at the beginning of frugivory observations
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periods (see below). Whenever possible, we directly

counted the total number of ripe fruits per plant. In

cases where the fruit load was too large as for a direct

count, we selected a representative branch and counted

the number of ripe fruits there. Then, we counted the

total number of branches bearing fruits and multiplied

it by the number of fruits in the selected branch to get

an estimation of the total number of ripe fruits per

individual (Vollstädt et al. 2017).

Fruit traits

We collected between 15 and 20 ripe fruits per species

from at least five different individuals and two

different sites to measure fruit traits. We visually

recorded the fruit color at maturity of each plant

species (Table 1). We weighted fresh fruits on a

precision scale (model METTLER AJ150) and mea-

sured length from the base of the pedicel to the apex

(L) and diameter (D) using a caliper to the nearest

0.1 mm. In addition, the ratio between length and

diameter (L/D ratio) was used as an index of fruit

shape (globose fruits, L/D = 1; elongated fruits, L/

D[ 1; depressed fruits, L/D\ 1; Pizo 2002). Then,

we separated seeds from pulp, recorded the number of

seeds per fruit and weighted pulp and seeds. After that

we estimated the ratio between pulp (P) and seed

(S) weight (P/S ratio). Fruit material was dried in an

oven at 50 �C during one week and then flesh and

seeds were weighted. Using these data, we estimated

the water content of fruits as the difference between

the fresh and dry weight and the water percentage of

fruits as the percentage difference between dry and

fresh fruit weight. For each trait we calculated a mean

value per plant species (Online Resource 2). In the

case of R. ulmifolius and R. idaeus traits were

measured for the cluster of drupelets, because these

structures are the ones that result visually attractive for

dispersers. However, birds can remove individual

drupelets instead of clusters, especially smaller birds.

Frugivory observations

To study the removal of fruits and seeds by birds, we

conducted 20 h of observation of frugivory activity

per plot. Observations were conducted in the morning

(from 6:30 to 11:30) and each plot was visited four

times in a period of two weeks, short enough to avoid

large phenological variations in fruit availability. One

observer walked slowly through the plots to detect

frugivore activity and recorded every event of fru-

givory using binoculars (8 9 42). Observations were

conducted by two observers that alternated days and

sites. All frugivores foraging on fruiting plants were

identified to species level. We recorded for every visit

the number of fruits consumed, dropped or carried

away. In the cases of R. idaeus and R. ulmifolius, we

recorded the number of individual drupelets removed

from each aggregated fruit and then calculated the

proportion of the fruit removed based on the average

number of drupelets per fruit. For bird groups feeding

on one plant, we counted the number of individuals

and randomly selected one to record the number of

fruits handled. Then, we extrapolated the total number

of fruits consumed by this individual to the rest of the

birds of the group.

Table 1 Fleshy-fruited

plant species present in the

study area. For each species

we indicate the family,

geographical origin, fruit

color, fruiting season and

number of sites in which it

is present

Plant species Family Origin Fruit color Fruiting season N sites

Aristotelia chilensis Elaeocarpaceae Native Black Summer 8

Azara microphylla Salicaceae Non-native Brown Summer 4

Berberis darwinii Berberidaceae Native Blue Summer 3

Berberis microphylla Berberidaceae Native Blue Summer 1

Maytenus boaria Celastraceae Native Red Summer and fall 7

Prunus avium Rosaceae Non-native Red Summer 4

Prunus cerasus Rosaceae Non-native Red Summer 1

Ribes magellanicum Grossulariaceae Native Black Summer 2

Rubus idaeus Rosaceae Non-native Red Summer 2

Rubus ulmifolius Rosaceae Non-native Black Summer and fall 1

Schinus patagonicus Anacardiaceae Native Blue Summer 7
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Statistical analyses

General network metrics (number of species, con-

nectance and web asymmetry) were calculated to

make a general description of the interaction net-

works; and group-level metrics (generality and niche

overlap) were calculated to describe functional differ-

ences between networks with and without invasion.

All metrics were calculated with the package ‘‘bipar-

tite’’ (Dormann et al. 2008) in R statistical software (R

Development Core Team 2017).

To explore morphological traits in native and non-

native fruits (Table 1), we conducted a principal

component analysis (PCA). Variables included were

length, diameter, L/D ratio, fruit weight, seed weight,

P/S ratio, number of seeds, water content and water

percentage. The two first principal components were

plotted in two-dimensional PCA scatter plots and

species were clustered based on their geographical

origin (native and non-native). Values of the first

principal component of the analysis for each fruit

species were saved for further inclusion in mixed

models. The PCA analysis was conducted using the

packages ‘‘pcaMethods’’ and ‘‘factoextra’’ (Stacklies

et al. 2007; Kassambara and Mundt 2017) in R

statistical software (R Development Core Team 2017).

To assess the activity of the community of frugi-

vores (number of visits and mean number of fruits

removed per visit) associated to plant species and

origin (native vs. non-native), we used linear mixed-

effect models fitted by maximum likelihood. First, we

analyzed the number of frugivore visits per plant

individual as a function of (1) plant species or (2) plant

origin. For this, the feeding visits of all frugivorous

bird species at an individual plant were pooled

together and this total number of visits was the

response variable. We considered only the plant

individuals that received at least one visit (i.e., there

were no zeros in the dataset). Thus, fixed effects

included in the models were (1) plant species or (2)

plant origin; site was included as a random effect. As

fruit availability is usually a strong predictor of

frugivore activity, it was included in the models as a

fixed effect. The same analyses were conducted using

the mean number of fruits removed per visit per plant

individual as the response variable. All numerical

variables were log-scaled prior to analyses. Linear

mixed-effects models were conducted using the

package ‘‘lme4’’ (Bates et al. 2015) in R statistical

software (R Development Core Team 2017).

We investigated whether differences in the activity

of the two main frugivorous birds present in the area

(E. albiceps and T. falcklandii) depended on plant

origin and fruit traits. To evaluate whether (1) the

number of visits and (2) the total number of fruits

removed differ between E. albiceps and T. falcklandii

in native and non-native plants, we conducted Pear-

son’s Chi-squared tests followed by pairwise compar-

isons. Expected values were estimated by multiplying

the number of interactions of each bird species by the

number of interactions of each plant category and

dividing this by the total number of interactions. For

these analyses we used the package ‘‘RVAideMe-

moire’’ (Hervé 2018) in R statistical software (R

Development Core Team 2017).

To assess whether the activity of different frugivore

species is associated to fruit traits, we used linear

mixed-effect models fitted by maximum likelihood.

First, we analyzed whether the number of visits per

plant individual differs between bird species in

function of fruit traits. We considered only the plant

individuals that received at least one visit (i.e., there

were no zeros in the dataset). Thus, fixed effects

included in the model were the interaction between

bird species and the value of the first component of the

PCA; site was included as a random effect and fruit

availability as a fixed effect. The same analysis was

conducted using the mean number of fruits removed

per visit per plant individual as the response variable.

All numerical variables were log-scaled prior to

analyses. Linear mixed-effects models were con-

ducted using the package ‘‘lme4’’ (Bates et al. 2015)

in R statistical software (R Development Core Team

2017).

Results

A total of six frugivorous bird species and 756

interactions of frugivory with 1510 events of fruit

removal were recorded across all plots. E. albiceps and

T. falcklandii were the most abundant species,

accounting for 96% of the records. The other four

species were Colorhamphus parvirostris, Curaeus

curaeus, Lophura nycthemera (introduced species)

and Patagioenas araucana. The interaction network in

areas without invasion was made up of five bird
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species and four plant species, while in areas without

invasion it was made up of four bird species and ten

plant species (Table 2). In areas without invasion, E.

albiceps removed 93% of fruits and interacted with

four plant species, while T. falckandii removed 2% of

fruits and interacted with two plant species (Fig. 1a).

In areas with invasion, E. albiceps removed 80% of

fruits and interacted with eight species (6 native and 2

non-native), while T. falcklandii removed 17% of

fruits and interacted with seven species (four non-

native and three native, Fig. 1b). Network metrics for

areas with and without invasion are listed in Table 2.

Areas with invasion had more plant species. In these

areas the asymmetry of interaction networks was

- 0.42, while in areas without invasion it was 0.11.

The connectance was similar in areas with and without

invasion, while there were more than twice as many

interactions in areas with invasion.

Fruit availability varied between individuals, plant

species and sites, ranging from 1 to 275,850 fruits per

individual and from 8967 to 828,571 total fruits per

plot. Mean fruit availability was highest in A. micro-

phylla (36,979 fruits per individual) and lowest in B.

microphylla (2 fruits per individual). The abundance

of non-native plants differed between sites, being

absent in some plots and dominant (85.69% of fruit

availability) in others (see Online Resource 1).

Principal component analysis clearly differentiated

native and non-native fruits based on morphological

trait variables included (Fig. 2). The first principal

component explained a 65% of the variance and the

second principal component explained an 18%. Con-

tributions of each variable to the first two factors of the

PCA are shown in Table 3. PC1 represents larger fruit

(fruit diameter, fruit length, water content and fruit

mass are the variables that most contribute to this

axis). Axis 2 represents fruit with lower number of

seeds and lower water percentage. The arrangement of

plant species along the PC1 shows that non-native

plants have larger fruits than native ones. The fruit

color was also different between native and non-native

plants. Most non-native fruits were red (three of the

four species), while the native fruits were blue (n = 3),

black (n = 3) brown (n = 1) and red (n = 1).

Fruit availability per plant individual was positively

related to the number of visits and to the number of

fruits removed per visit in all mixed-effect models.

The total number of frugivore visits did not differ

among plant species (p[ 0.05 in all cases, Fig. 3a) or

between native and non-native plants (esti-

mate = 0.11, p = 0.51). The number of fruits removed

per visit was higher for two native species, A.

microphylla (estimate = 0.83, p = 0.02) and S. patag-

onicus (estimate = 1.33, p\ 0.01) (Fig. 3b). The

number of fruits removed did not differ by plant

origin (estimate = 0.19, p = 0.39). The complete

reports of linear mixed models are available in Online

Resource 3.

The activity of the two main frugivorous birds

present in the area (E. albiceps and T. falcklandii)

differed according to plant origin (Fig. 4). The number

of visits (X-squared = 383.2, df = 1, p\ 0.001) and

the total number of fruits removed (X-squared =

629.1, df = 1, p\ 0.001) differed from expected

values (Fig. 4a). Pairwise comparisons revealed that

E. albiceps visited native plants 15% more frequently

than expected (Fisher test, p\ 0.001), while T.

falcklandii visited non-native plants 457% more

frequently than expected (Fisher test, p\ 0.001,

Fig. 4b).

The effect of fruit size (represented by the first

component of the PCA) on the number of visits was

different between E. albiceps and T. falcklandii

(estimate = 0.24, p = 0.02). The number of visits of

T. falcklandii increased with fruit size, while that of E.

albiceps decreased (Fig. 5). The effect of fruit size on

the number of fruits removed per visit was also

different between bird species (estimate = - 0.37,

p\ 0.01), being negative in T. falcklandii and near

zero in E. albiceps (Fig. 5). The complete reports of

Table 2 Metrics of interaction networks in areas with and

without invasion

Without invasion With invasion

Total number of species 9 14

Number of bird species 5 4

Number of plant species 4 10

Number of interactions 425 1085

Connectance 0.50 0.45

Web asymmetry 0.11 - 0.42

Generality (birds) 2.31 4.00

Niche overlap (birds) 0.80 0.30
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linear mixed models are available in Online Resource

3.

Discussion

This study contributes to the understanding of how

frugivore communities respond to the introduction of

non-native fleshy-fruited plants, associating patterns

of fruit removal to plant species and fruit traits. The

successful integration of non-native plants into inter-

action networks suggests that generalist frugivores can

play a key role in promoting the invasion of non-native

plants; in particular in ecosystems with small assem-

blages of seed dispersers. This is the case of the

temperate forest of Patagonia, where E. albiceps and

T. falcklandii are two generalist species responsible

for the dispersal of most of the seeds, and that also

disperse non-native plants.

Interaction networks

We found that areas with invasion had more plant

species, which increased the asymmetry of interaction

networks (- 0.42 in areas with invasion vs. 0.11 in

areas without invasion). However, the number of

interactions also increased in areas with invasion, and

connectance remained similar, reflecting a good

integration of non-native plants into interaction net-

works. Previous studies agree that non-native species

can become integrated into novel interaction net-

works, which makes the restoration of native

a

b

Fig. 1 Seed-dispersal

network in a areas without

invasion of fleshy-fruited

plants and b areas with

invasion. Native species are

colored in blue and non-

native species in red. The

strength of interaction is

measured as the number of

fruits removed and is

indicated by the width of

interaction bars
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ecosystems very challenging (Spotswood et al. 2012;

Vizentin-Bugoni et al. 2019). Generality and niche

overlap values for the high level, on the other hand,

indicate that birds incorporate non-native fruits into

their diets, but there is a segregation of interaction

patterns among bird species. This segregation seems to

occur because bird species have different fruit pref-

erences, mainly driven by fruit traits (see ‘‘Patterns of

fruit consumption by bird species’’ later).

Fruit traits

Fruits of non-native plants were different to native

fruits based on the morphological traits measured. The

clearest difference is fruit size, showing that non-

native fruits are bigger than native fruits. Most studies

that analyzed differences between native and non-

native fleshy-fruited plants have focused on pheno-

logical differences, but there are few studies that

analyzed morphological and nutritional traits of native

and non-native plants and their possible consequences

for frugivory and seed dispersal, arriving to contrast-

ing results. A previous work conducted in Australia

found that non-native fruits were small and have

smaller seeds than native fruits (Gosper and Vivian-

Smith 2010). Another study conducted in the oceanic

island Mahé (Seychelles, Indian Ocean) found that the

range of fruit traits differ between native and non-

native plants; and the authors suggest that gaps in the

native fruit trait spectrum might be considered as

empty niches that can be exploited by non-native

plants (Kueffer et al. 2009). This could be the case in

Fig. 2 Two-dimensional scatterplot showing the distribution of

fruit species along the two first components of the PCA. Blue

triangles are native species, and red circles are non-native

species. The arrows indicate the contribution of each variable.

Each point represents one species: AC = Aristotelia chilensis,

AM = Azara microphylla, BER = Berberis darwinii and Ber-
beris microphylla, MB = Maytenus boaria, PA = Prunus
avium, PC = Prunus cerasus, RI = Rubus idaeus, RM = Ribes
magellanicum, RU = Rubus ulmifolius, SP = Schinus patago-
nicus. Concentration ellipses at a 0.95 confidence are shown
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our study system, since although non-native fruits are

so different from the native ones, they are well

integrated into the dispersal networks. Moreover,

bigger, bright-colored fruits and large crop sizes can

make non-native plant species particularly attractive

to dispersers (Aslan and Rejmanek 2012). In accor-

dance with our results, in communities of northern

Patagonia, Lediuk et al. (2014) found that two non-

native plants differ in phenology and fruit traits to

native plants: they have a longer fruiting period and

bigger, fleshier fruits than native plants. Fruit traits of

plants found to be invading the temperate forest in our

study system are probably the result of anthropogenic

selection, because the four species are widely culti-

vated in gardens and eaten by people or used for the

production of preserves and jams (Riádigos and

Martı́nez 1994; Rovere et al. 2013; Iglesias 2015;

Bravo et al. 2019).

Table 3 Relative contribution of each fruit trait variable to the

first two components of the PCA, their corresponding eigen-

values and cumulative variance explained

Variables PC 1 PC 2

Length 0.96 0.13

Diameter 0.98 - 0.01

Fruit weight 0.92 0.37

Length/diameter ratio - 0.65 0.44

Seed weight 0.89 0.44

Pulp/seed ratio 0.61 - 0.45

Number of seeds 0.36 - 0.69

Water content 0.93 0.35

Water percentage 0.72 - 0.51

Eigenvalue 5.85 1.62

Cumulative

variance %

65.02 82.99

Fig. 3 Boxplots showing a the log-scaled number of visits and

b the log-scaled number of fruits removed per visit (partial

residuals of the mixed-effects model) as a function of plant

species. Native species are colored in blue and non-native

species in red. Significance levels: **0.01 B p\ 0.01 *0.01 B

p\ 0.05. Codes for species are detailed in the legend of Fig. 2

Fig. 4 Barplot comparing the observed and expected a number

of visits and b number of fruits removed for E. albiceps and T.
falcklandii visiting native and non-native plants. Native species
are colored in blue and non-native species in red. Error bars

show the 95% confidence interval for each observed number of

records
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Patterns of fruit consumption by the community

of frugivores

Despite differences between native and non-native

fruits, the total number of frugivore visits did not

depend on plant species and origin. This, added to

network analysis (see above), shows that the commu-

nity of disperser birds successfully incorporated non-

native fruits to their diets. These results agree with

several previous works that demonstrate that non-

native plants are dispersed by resident frugivores (e.g.,

Bartuszevige and Gorchov 2006; Spotswood et al.

2012; Heleno et al. 2013). Birds removed more fruits

per visit for two native plant species (Azara micro-

phylla and Schinus patagonicus). This may be partly

because those fruits are small and birds need to

consume a greater amount to be satiated; but fruits

could also be selected by their nutritional content

(Schaefer et al. 2003; Blendinger et al. 2016; Morán-

López et al. 2018), not explored in this study. The

nutritional content of fruits can determine the selection

by frugivorous birds, structuring the composition and

spatial patterning of plant communities (Morán-López

et al. 2018).

Previous studies showed that native birds are

legitimate seed dispersers of several alien fleshy-

fruited plant species (Martin-Albarracin et al. 2018);

thus, the integration of non-native plant species to the

resident interaction network can facilitate plant inva-

sion. Previous works have found contrasting results

regarding the preference of native or non-native fruits

by resident birds. For example, a study conducted in

the South African Mediterranean climate region found

that several bird species exhibited higher visitation

frequency indices on fruits of alien shrub species

(Mokotjomela et al. 2013). Conversely, native birds

preferred native fruit species in northern California

(Aslan and Rejmanek 2012). However, there is strong

evidence that fruits of non-native plants are important

food items for native birds in different parts of the

world (Smith et al. 2013; Gleditsch and Carlo 2014;

Rojas et al. 2019), and that non-native fruits do not

need to resemble native fruits to be dispersed by

frugivores, but that generalist non-native plants can

easily establish seed-dispersal interactions with gen-

eralist frugivores (Peralta et al. 2020). Our work shows

that even in a very simple system, in which differences

between native and non-native fruits are so marked,

non-native plants integrate successfully to the inter-

action network. It is very expected that this pattern is

also observed in more diverse systems, with more

disperser species having diverse morphological traits.

Patterns of fruit consumption by bird species

Seed-dispersal interactions can be shaped by associ-

ations between fruit and seed dimensions and frugi-

vore�s body size and bill gape (Wheelwright 1985;

Donatti et al. 2011). Thus, although both E. albiceps

and T. falcklandii are legitimate dispersers of native

and non-native plants (Lediuk et al. 2014; Iglesias

Fig. 5 Scatterplots showing the effect of the interaction

between the two main frugivorous bird species and fruit size

(represented by the first component of the PCA of Fig. 2) on

a the number of frugivore visits and b the number of fruits

removed per visit. Native species are located to the left of zero

(small-sized fruits) and non-native species are located to the

right of zero (big-sized fruits) along the horizontal axis. Each

point represents one plant individual. Regression lines for each

bird species are drawn. Values from y-axes correspond to the

partial residuals of mixed-effects models for each response

variable
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2015; Martin-Albarracin et al. 2018), they could play

different roles in the dispersal of seeds of different

plant species. When analyzing frugivory by bird

species, we found clear differences between native

and non-native plants (Fig. 4). E. albiceps visited

native plants more than expected and also removed

more fruits than expected, showing that this migrant

bird is selecting native plants. T. falcklandii, on the

other hand, visited non-native plants more than

expected and also removed more fruits than expected,

so it is selecting non-native fruits. These differences

could be explained by constraints imposed by bill gape

and fruit size. E. albiceps has a smaller gape width that

prevents it from eating large fruits (Amico and Aizen

2005; Burns 2013), while T. falcklandii has a large bill

that allows ingest bigger fruits. T. falcklandii is also an

opportunistic species and may be particularly attracted

by non-native fruits; that are bigger than native fruits,

and have different color than natives (Iglesias 2015).

In this work we found that most non-native fruits are

red, while this color is rare between native fruits (1 of 8

species). Behavioral and morphological differences

between T. falcklandii and E. albiceps can influence

their seed-dispersal effectiveness (Schupp et al. 2010).

For example, as T. falcklandii frequently feeds in

forest gaps, it can benefit non-native plants that

perform better in disturbed areas, such as R. ulmifolius

(Vargas et al. 2013a), by depositing their seeds in

microsites suitable for germination.

Although E. albiceps is present in the area only

during the summer season, it is very abundant and has

a key ecological role in the dispersal of seeds in the

temperate forest of Patagonia (Amico and Aizen 2005;

Garcı́a et al. 2010; Martin-Albarracin et al. 2017).

Because of its great abundance, this species may still

cause issues, even though they visit non-native fruits

less than expected. Further, it could contribute to the

long-distance dispersal of seeds during migration

periods (Viana et al. 2016).

On the other hand, T. falcklandii, although not as

abundant as E. albiceps, eats a greater proportion and

diversity of non-native fruits. Other studies found that

T. falcklandii and other Turdus species are important

dispersers of seeds of non-native plants in temperate

ecosystems (Bartuszevige and Gorchov 2006; Wil-

liams 2006; Burns 2012; Smith-Ramı́rez et al. 2013;

Dı́az Vélez et al. 2018). In addition, as T. falcklandii is

resident in the area, it could disperse seeds of non-

native plants that fruit in other seasons like Sorbus

aucuparia and Crataegus monogyna (Iglesias 2015;

Lediuk et al. 2016). Other studies agree that generalist

birds have an important role in the dispersal of seeds of

non-native plants (Bartuszevige and Gorchov 2006;

Jordaan et al. 2011; Vergara-Tabares et al. 2018).

Implications for the community of fleshy-fruited

plants in the temperate forest of Patagonia

Although seed-dispersal systems are usually associ-

ated to a wide spectrum of disperser animals, there are

examples in which non-native plants reliant on one or

few seed dispersers become invasive (Gosper et al.

2005). This could be the case in the temperate forest of

Patagonia, where most seed dispersal relies on two

bird species. In addition, the fact that these birds

incorporated non-native fruits to their diet demon-

strates that they have some degree of dietary

flexibility.

Some of these introduced plant species and their

congeners develop a very aggressive behavior in

different environments of the world as in Patagonia,

such as Rubus ulmifolius, Rubus niveus (Baret et al.

2004; Renterı́a et al. 2012; Vargas et al. 2013b, a),

Prunus serotina and Prunus mahaleb (Deckers et al.

2008; Amodeo and Zalba 2013). This makes it

important to know the main factors that contribute to

their spread, in particular their dispersal agents.

Moreover, beyond plant invasion, the availability of

non-native fruits may indirectly affect seed dispersal

of native plants. As T. falcklandii is the main disperser

of native fleshy-fruited plants during winter (when E.

albiceps is absent), those plants may be highly

dependent on T. falcklandii for seed dispersal; thus,

changes in the diet of this species will particularly

affect them.
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